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Héctor, mis hermanos Sof́ıa y Johan, y a mi querida Natalia.



Contents

Contents

1 Presentación - Presentation 5
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Chapter 1

Presentación - Presentation

1.1 En español

Nota Importante: Las notationes en los Caṕıtulos 3 y 4 son independientes.

1.1.1 Plan de contenidos

El presente trabajo se estructura de la siguiente forma:

• En la sección 1.1.2 de este caṕıtulo se entrega un resumen general del
contenido de la investigación desarrollada, mientras que en la sección
1.1.3 del mismo se presenta brevemente un resumen de los resulta-
dos existentes relativos a los problemas estudiados, y de los resultados
nuevos obtenidos en el transcurso de la investigación. Ambos puntos
están es español y serán extendidos en los caṕıtulos 3 y 4.

• En el caṕıtulo 2 se entrega un resumen en español de las herramientas
necesarias para abordar los problemas estudiados en los caṕıtulos 3 y
4 y se fijan algunas convenciones.

• El caṕıtulo 3 contiene una investigación desarrollada por el autor de
esta Tesis. Se encuentra en inglés y cuenta con una introducción propia
donde se explica de manera completa el contexto de la investigación y
se presentan los resultados ya existentes. Además, cuenta con una
sección donde se presentan los resultados nuevos. El objetivo central
es estudiar la representación de cuadrados por medio de polinomios
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1.1. En español

de segundo grado en varios campos, principalmente sobre las funciones
meromorfas p-ádicas, y deducir consecuencias en Lógica.

• El caṕıtulo 4 contiene una investigación en conjunto desarrollada por
Thanases Pheidas (codirector de la Tesis), Xavier Vidaux (director de
la Tesis) y por el autor de esta Tesis. Al igual que el Caṕıtulo 3, se
encuentra en inglés y cuenta con una introducción propia donde se ex-
plica de manera completa el contexto de la investigación y los resultados
nuevos. El objetivo central es estudiar definibilidad y codificación uni-
forme sobre familias de estructuras, para obtener algunos resultados
fuertes de indecidibilidad.

• Finalmente, en el Caṕıtulo 5 se entrega una lista de problemas abiertos
relativos a la investigación y se presentan posibles direcciones en las que
el trabajo se puede extender. Este caṕıtulo se encuentra en español y
en inglés.

1.1.2 Resumen

En el Caṕıtulo 3 demostraremos un resultado sobre representación de cuadra-
dos mediante polinomios mónicos de segundo grado en el campo de las fun-
ciones meromorfas p-ádicas (los polinomios considerados tienen sus coefi-
cientes en este mismo campo), para aśı resolver el problema de Büchi de
los n cuadrados en este campo. Usando este resultado, demostramos la no
existencia de un algoritmo para decidir si un sistema de formas cuadráticas
diagonales sobre Z[z] representa o no en el anillo de funciones enteras p-ádicas
(con variable z) un vector dado de polinomios de Z[z], y un resultado similar
para funciones meromorfas p-ádicas cuando los sistemas admiten condiciones
de anulamiento sobre las incógnitas. Esto mejora la ya conocida respuesta
negativa al análogo del Décimo Problema de Hilbert para estas estructuras.
También mejoramos algunos resultados de Vojta relativos al caso de fun-
ciones meromorfas complejas, campos de funciones algebraicas y finalmente
campos de números, y mostramos una directa conexión de esto último con
la conjetura de Bombieri para superficies sobre campos de números.

Por otro lado, en el caṕıtulo 4 se demuestran algunos resultados sobre
definibilidad y codificación uniforme en familias de estructuras, y se obtienen
a partir de ellos resultados de indecibilidad uniforme. Por ejemplo, la relación
“x != y” se puede definir de manera uniforme sobre el lenguaje de anillos en
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1.1. En español

la familia de todos los campos, por medio de la fórmula

∃u xu = 1 + yu.

El estudio del concepto de uniformidad nos permitirá obtener técnicas para
probar resultados del siguiente tipo: no existe un algoritmo para saber si un
sistema de ecuaciones diofantinas con condiciones del tipo “x no constante”
sobre algunas variables x, admite o no solución en Fp[z] para infinitos p. Ésto
contrasta fuertemente con la situación análoga sobre Fp, donde es sabido que
si existe un algoritmo para saber si o no un sistema de ecuaciones diofantinas
tiene solución en Fp para infinitos p (en efecto, basta verificar si el sistema
tiene alguna solución compleja, lo cual se puede decidir algoŕıtmicamente).
Además, obtenemos una definición de la relación “existe un número natural
s tal que x = yps

o y = xps
” sobre una amplia clase de anillos de funciones

en caracteŕıstica p, donde la fórmula que se obtiene es positiva existencial
y no utiliza el número p (en particular, para clases de anillos de funciones
algebraicas cuyo campo de constante es algebraico sobre Fp).

1.1.3 Introducción

This section is a short Spanish version of the introductions (in English) of
Chapters 3 and 4.
Esta sección es un resumen extendido de las introducciones (en inglés) de los
caṕıtulos 3 y 4.

En 1900 Hilbert propuso el problema de encontrar un algoritmo para
decidir si, dada una ecuación polinomial con coeficientes enteros, ella posee o
no soluciones enteras. Este problema, conocido como el Décimo Problema de
Hilbert, fue respondido negativamente por Matijasevich 70 años más tarde
[Mat] concluyendo un trabajo desarrollado principalmente por M. Davis, H.
Putnam y J. Robinson. El resultado obtenido fue que en realidad no existe
tal algoritmo. En lenguaje moderno, lo que realmente se demostró es que
los conjuntos recursivos de Z son diofantinos, y como consecuencia la teoŕıa
positiva existencial de Z es indecidible en el lenguaje de anillos {0, 1, +, ·}.
A partir del Décimo Problema de Hilbert aparecen dos problemas naturales:

P1: Resolver análogos en otras estructuras.

P2: Si hay una respuesta negativa para un análogo del Décimo Problema en
una L-estructura M, debilitar el lenguaje L manteniendo la respuesta
negativa.
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1.1. En español

Para el problema P1, una técnica que surge es tratar de codificar existen-
cialmente Z en la estructura M que nos interesa. De esta forma se puede
responder negativamente el análogo del Décimo Problema en M utilizando
el resultado para Z. En el Caṕıtulo 4, esta idea será extendida a codifica-
ciones uniformes sobre familias de estructuras, para obtener indecidibilidad
en situaciones más generales.

Por otra parte, relativo al problema P2, J. R. Büchi estudió la posibilidad
de debilitar el lenguaje de anillos y mantener el resultado de indecidibilidad
para la teoŕıa positiva existencial de enteros sobre el nuevo lenguaje. Conc-
retamente, Büchi formuló una conjetura en teoŕıa de números y probó (en
un trabajo no publicado y comunicado póstumamente por Lipshitz [L]) que
suponiendo que dicha conjetura era correcta, entonces la teoŕıa positiva ex-
istencial de Z sobre L2 es indecidible, con el lenguaje

L2 = {0, 1, +, P2},

donde P2 es un śımbolo de relación unaria que se interpreta de la siguiente
forma: P2(k) śı y sólo si “k es un cuadrado”. El problema aritmético que
condiciona este resultado actualmente es conocido como el Problema de Büchi
para enteros (BP2(Z)) y es el siguiente:

Problema. Decidir si existe algún entero N ≥ 3 tal que toda solución en Z
del sistema de ecuaciones

x2
i−1 − 2x2

i + x2
i+1 = 2, i = 2, . . . , N − 1

satisface x2
i = (x + i)2, i = 1, . . . , N para algún entero x.

Análisis numéricos del problema y argumentos heuŕısticos (ver [BB, Pi,
He]) sugieren que N = 5 serviŕıa, pero no se ha logrado probar siquiera que
tal N exista. La conjetura es que BP2(Z) tiene respuesta positiva, y en esta
dirección Vojta [Vo2] demostró usando técnicas de Bogomolov que BP2(Z)
tiene respuesta positiva si asumimos una conjetura de Lang sobre puntos
racionales en superficies de tipo general.

En muchos casos, dado un anillo M y un lenguaje L, si la teoŕıa positiva
existencial de M sobre L es indecidible y si el análogo del problema de
Büchi es cierto en M, entonces es posible utilizar el argumento de Büchi
para debilitar L y mantener la indecidibilidad; por esto en particular nace el
interés de resolver un análogo de BP2(Z) sobre otros anillos.
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1.1. En español

Se sabe que tienen respuesta positiva análogos del problema de Büchi en
varias estructuras, como por ejemplo BP2(M), donde M es el campo de
funciones meromorfas complejas, y BP2(K), donde K es el campo de fun-
ciones de una curva algebraica en caracteŕıstica cero (ver [Vo2]), BP2(F (z))
donde F es un campo de caracteŕıstica cero o mayor que 18 (ver [PV1, PV2]),
y recientemente BP2(K) donde K es el campo de funciones de una curva
algebraica en caracteŕıstica positiva y suficientemente grande (ver [SV]).

Representation of squares by monic second degree polynomials in
the field of p-adic meromorphic functions

En el Caṕıtulo 3 se resuelve un análogo del problema de Büchi para Mp

(funciones meromorfas p-ádicas) con el objetivo de mejorar los resultados
existentes de indecidibilidad para el anillo de funciones enteras p-ádicas y
el campo de funciones meromorfas p-ádicas. También se estudiarán gen-
eralizaciones al problema de Büchi para campos de funciones de curvas en
caracteŕıstica cero, para el campo de funciones meromorfas complejas, y con-
secuencias de la conjetura de Lang en generalizaciones al problema de Büchi
para extensiones finitas de Q adaptando las técnicas de Vojta.

Más precisamente, consideremos los lenguajes

Lz
R ={0, 1, +, ·, z},

L∗R ={0, 1, +, ·, z, ord},
Lz

2 ={0, 1, +, P2, fz}, and

L∗2 ={0, 1, +, P2, fz, ord},

donde P2 y ord son śımbolos de relaciones unarias, y fz es un śımbolo de
función unaria. En anillos de funciones en la variable z, el śımbolo z se
interpreta como la variable, P2(x) se interpreta como “x es un cuadrado”,
fz(x) se interpreta como “x %→ zx”, e interpretamos ord(x) como “ordz(x) ≥
0” (siempre y cuando tenga sentido en el anillo considerado).

Definimos Ap como el anillo de funciones anaĺıticas p-ádicas y Mp como
el campo de funciones meromorfas p-ádicas en la variable z. El siguiente
resultado fue probado en [LP].

Teorema. (Lipshitz-Pheidas) La teoŕıa positiva existencial de Ap en el
lenguaje Lz

R es indecidible.
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1.1. En español

El siguiente resultado fue probado en [Vi].

Teorema. (Vidaux) La teoŕıa positiva existencial de Mp en el lenguaje L∗R
es indecidible.

Con el objetivo de poder obtener resultados similares en los lenguajes Lz
2

y L∗2 respectivamente, se resuelven en el Caṕıtulo 3, los análogos del Prob-
lema de Büchi en Ap y Mp.

Teorema. Sea P ∈ Ap[X] un polinomio mónico de grado 2. Si P (a) es un
cuadrado en Ap para al menos 13 valores de a ∈ Cp, entonces o bien P tiene
coeficientes constantes o bien P es un cuadrado en Ap[X]

Teorema. Sea P ∈ Mp[X] un polinomio mónico de grado 2. Si P (a) es
un cuadrado en Mp para al menos 35 valores de a ∈ Cp, entocnes o bien P
tiene coeficientes constantes o bien P es un cuadrado en Mp[X].

Nota que el resultado para funciones anaĺıticas es una consecuencia (pero
con otra constante) del resultado para funciones meromorfas. Este resultado
para funciones anaĺıticas era parte de mi tesis de maǵıster [P], pero decid́ı
incluirlo en este trabajo por la conveniencia del lector ya que su demostración
es mucho más simple que el resultado para meromorfas.

También en el Caṕıtulo 3 se demuestran resultados análogos a lo ante-
rior para el campo de funciones meromorfas complejas y para el campo de
funciones de una curva algebraica en caracteŕıstica cero. Además, se explo-
ran análogos para campos de números asumiendo una conjetura de Lang-
Bombieri. Estos resultados extienden los resultados en [Vo2].

Para campos de números, los resultados que se obtienen (bajo la Conje-
tura de Bombieri-Lang) tienen consecuencias directas en investigaciones de
autores de computación y de teoŕıa de números (ver [Al, Bre, BB, Pi]) que
buscan secuencias largas de cuadrados de enteros con segundas diferencias
constantes no necesariamente 2, implicando (asumiendo que la conjetura de
Bombieri-Lang es cierta para superficies) que para una constante D dada,
hay un largo acotado para secuencias no triviales de cuadrados con segundas
diferencias iguales a D.
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1.1. En español

Definibilidad Uniforme e Indecidibilidad en Clases de Estructuras

Otro mejoramiento posible al Décimo Problema de Hilbert en otros anillos
es considerar una familia de anillos sobre un mismo lenguaje L y tratar de
mostrar la (no) existencia de un algoritmo para decidir si una L-fórmula se
satisface para todos ellos, para alguno de ellos o para infinitos de ellos, entre
otros casos. Una de las principales motivaciones desde el punto de vista lógico
para considerar un problema de esta naturaleza es que en una situación aśı es
necesario estudiar definiciones y codificaciones uniformes sobre una familia
de estructuras.

Este campo de investigación parece haber sido poco explorado. Pueden
ser considerados como relevantes los trabajos [Ax, AxK12, AxK3, CHr, Hr,
Mac, Rum].

En el Caṕıtulo 4 abordamos problemas de (in)decibilidad uniforme para
familias de estructuras. Por ejemplo, es sabido que dado un sistema de
ecuaciones diofantinas S sobre Z, existe un algoritmo para saber si S posee
o no soluciones módulo p para infinitos primos p (basta con chequear si
el sistema tiene alguna solución compleja o no - ver [Nav]). Extendiendo
este resultado cabe preguntarse si existe o no un algoritmo para saber si un
sistema diofantino S como el anterior admite (o no) soluciones en Fp[z] para
infinitos primos p, cuando se permiten condiciones de “no constante” sobre
algunas de las incógnitas. En realidad, la condición ‘para infinitos primos p’
podŕıa reemplazarse por condiciones como “para al menos un p” o “para todo
primo p”. En el Caṕıtulo 4 se considerarán estos problemas y extensiones a
los mismos para familias más generales de anillos de funciones.

En particular se demuestra el siguiente teorema:

Teorema No existe algoritmo alguno que permita resolver los siguientes
problemas:

Decidir si un sistema diofantino con condiciones de ‘no constante’ sobre
algunas de las incógnitas tiene solución en Fp[z] para

1. algún primo p,

2. todo primo p impar,

3. infinitos primos p,

4. todos los primos p, posiblemente salvo un número finito,

11



1.1. En español

5. todos los primos p de la forma 4k + 1.

Ver Corolario 4.1.20 para un enunciado más general.
Para conseguir ésto, una herramienta central son las definiciones uni-

formes, y con particular importancia la definición uniforme positivo exis-
tencial sobre clases de anillos de funciones en caracteŕıstica positiva de la
relación “existe un número natural s tal que x = yps

o y = xps
” (donde p

es la caracteŕıstica del respectivo anillo). Esto se consigue sobre una am-
plia clase de anillos de funciones en caracteŕıstica p y de manera uniforme.
Aśı, en particular, en la fórmula que se obtiene no aparece el parámetro p.
Definir esta relación ha sido desde hace tiempo un punto central para var-
ios autores al momento de codificar los enteros en un anillo de funciones en
caracteŕıstica positiva (ver por ejemplo, en orden cronológico, [De2], [Ph1],
[Ph2], [KR], [S1], [PZ1], [S2], [Ei] y [ES]) y esta es la primera vez que se con-
sigue hacer con fórmulas positivo existenciales que no dependen de p. Para
mayores detalles, ver el Caṕıtulo 4.

Conclusion

En resumen, los resultados que se consiguen en los caṕıtulos 3 y 4 se relacio-
nan principalmente con las siguientes problemáticas:

1. Resolver el análogo del Problema de Büchi para Mp.

2. A partir de los resultados que obtenemos relativos al Problema de Büchi
en Mp, demostrar la indecidibilidad de la teoŕıa positiva existencial de
Mp en el lenguaje L∗2.

3. Asumiendo la conjetura de Lang, resolver generalizaciones del prob-
lema de Büchi sobre extensiones finitas de Q y, en general, estudiar la
representación de cuadrados en K por polinomios mónicos de segundo
grado que no son cuadrados de K[x].

4. Desarrollar y estudiar un concepto adecuado de definibilidad uniforme
sobre familias de estructuras.

5. Desarrollar técnicas de codificación uniforme sobre familias de estruc-
turas, para obtener resultados fuertes de indecidibilidad sobre clases de
estructuras.

12



1.2. In English

6. Definición uniforme de la relación “existe un número natural s tal que
x = yps

o y = xps
” sobre clases amplias de anillos de funciones en

caracteŕıstica positiva.

1.2 In English

Important Note: Notation in Chapters 3 and 4 are independent.

1.2.1 Description of Contents

The present work is structures in the following way:

• In Section 1.1.2 of this Chapter we give a general abstract of results
obtained in the thesis. Specific introductions are given at the beginning
of Chapters 3 and 4.

• In Chapter 2 we introduce some preliminary material of Mathematical
Logic which will be necessary in Chapters 3 and 4 and we fix notation.

• Chapter 3 contains new results. It is written in English and has its
own introduction where we detail the context of this research work and
we present several known results. It also contains a section with new
results. There we study the representation of squares by means of poly-
nomials of degree two in various fields, mainly over p-adic meromorphic
functions, and deduce consequences in Logic.

• Chapter 4 corresponds to a joint work with Thanases Pheidas (coadvi-
sor of this Thesis) and Xavier Vidaux (advisor). As in Chapter 3, it is
written in English and it contains its own introduction explaining the
context and giving various new results. There we study uniform defin-
ability and encodability over families of structures, in order to obtain
some strong undecidability results.

• Finally, Chapter 5 contains a list of open problems that naturally arise
from this work. It is written in Spanish and in English.
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1.2. In English

1.2.2 Abstract

In Chapter 3 we prove a result on the representation of squares by monic
second degree polynomials in the field of p-adic meromorphic functions in
order to solve positively Büchi’s n squares problem in this field. Using this
result, we prove the non-existence of an algorithm to decide whether a system
of diagonal quadratic forms over Z[z] represents or not in the ring of p-adic
entire functions (in the variable z) a given vector of polynomials in Z[z], and
a similar result for p-adic meromorphic functions when the systems allow
vanishing conditions on the unknowns. This improves the negative answers
for the analogue of Hilbert’s Tenth Problem for these structures, for the
cases in which such answers have been given. We also improve some results
by Vojta concerning the case of complex meromorphic functions, the case of
function fields and finally the case of number fields, and show an intimate
relation of the latter with Bombieri’s conjecture for surfaces over number
fields.

In Chapter 4 we obtain several definability and uniform encodability re-
sults in various families of structures, and from those, we deduce several
uniform undecidability results. For example, the relation “x != y” can be
defined in a uniform way over the language of rings in the family of all fields
by means of the formula

∃u xu = 1 + yu.

The study of the general concept of uniformity will allow us to obtain tech-
niques for proving results of the following type: There is no algorithm to
decide whether or not a system of Diophantine equations with conditions of
the type “x is non constant” over some variables x, admits a solution in Fp[z]
for infinitely many p. This contrasts strongly with the analogous situation
over Fp, where it is known that there is an algorithm to decide whether or not
a system of Diophantine equations has a solution in Fp for infinitely many
p (actually, it is enough to verify whether or not the system has a solution
in C, which can be done effectively). Moreover, we obtain a definition of
the relation “there exists a natural number s such that x = yps

or y = xps
”

over a wide class of rings of functions of positive characteristic p, such that
the obtained formula is positive existential and does not use the number p
(in particular, for some classes of rings of algebraic functions whose field of
constants is algebraic over Fp).

14



Chapter 2

Material preliminar -
Preliminary Concepts

2.1 Material preliminar

Con respecto al análisis complejo p-ádico (en particular, la Teoŕıa Nevan-
linna no-Arquimediana), el material necesario será introducido en el mismo
Caṕıtulo 3. A continuación, introducimos los conceptos básicos de la Lógica
Matemática que usaremos a lo largo de este trabajo. Seguimos la termi-
noloǵıa de Cori y Lascar [CL].

Dado un lenguaje L, una L-estructura es un conjunto M junto con

• una constante por cada śımbolo de constante en L,

• una función n-aria por cada śımbolo de función n-aria en L, y

• una relación n-aria por cada śımbolo de relación n-aria en L.

Usualmente asumimos que los lenguajes tienen un śımbolo “=” que se
interpreta como la igualdad.

Cuando hablamos de fórmulas sobre un lenguaje L (o de L-fórmulas)
entenderemos siempre que se trata de fórmulas bien formadas sobre L (por
ejemplo, la cadena de śımbolos ∃∀x no es una fórmula para nosotros). Es-
cribiremos F (x1, . . . , xn) (o en ocasiones F [x1, . . . , xn] cuando la otra no-
tación es ambigua) para indicar que la fórmula F tiene sus variables no cuan-
tificadas (o variables libres) entre las variables x1, . . . , xn. Si una fórmula no
tiene variables libres, decimos que es un enunciado o una fórmula cerrada.
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2.1. Material preliminar

Una fórmula es positiva existencial si sus únicos cuantificadores (de haber)
son ∃ y sus únicos conectores son ∧ y ∨, sin negaciones.

Si F es un L-enunciado y M es una L-estructura, decimos que M satisface
F o que F es cierta en M (se escribe M |= F ) si al interpretar F en M
se obtiene una afirmación verdadera en M. Por ejemplo, con el lenguaje
L = {0, 1, +, ·} tenemos

Z ! ∃x∃y x · y = x + 1

(tomar x = 1, y = 2) y

Z ! ∃x∀y x + y = y + y.

Si M es una L-estructura con conjunto base M y si C ⊆ Mn diremos que
una fórmula F (x1, . . . , xn) define el conjunto C si para todo (a1, . . . , an) ∈ Mn

se tiene: la fórmula F (a1, . . . , an) es cierta en M si y sólo si (a1, . . . , an)
pertenece a C (donde F (a1, . . . , an) es el enunciado obtenido a partir de
F (x1, . . . , xn) al reemplazar cada xi por ai). Diremos que C ⊆ Mn es (pos-
itiva existencialmente) definible en M sobre L si hay una fórmula (positiva
existencial) que lo define. Una función es definible si su gráfico es definible.

Por ejemplo, el teorema de Lagrange asegura que la relación x ≤ y es
positiva existencialmente definible en Z sobre el lenguaje de anillos LA =
{0, 1, +, ·} por medio de la fórmula

F (x, y) : ∃x1∃x2∃x3∃x4 y = x + x2
1 + x2

2 + x2
3 + x2

4

donde cada śımbolo de tipo “z2” es solamente una notación para “z · z”.
Una teoŕıa de una L-estructura M es un conjunto de enunciados de L

que son verdaderos en M. En particular la teoŕıa positiva existencial de M
sobre L es el conjunto de todos los L-enunciados positivo existenciales que
son ciertos en M.

Un conjunto C ⊆ Nn es decidible si hay un algoritmo (una máquina
de Turing) que calcula su función caracteŕıstica. Es posible codificar de
manera efectiva (computable) todos los LA-enunciados dentro del conjunto
N, es decir, asociar un número natural único (número de Gödel) a cada LA-
enunciado. Sea G el conjunto de números de Gödel. La respuesta negativa del
Décimo Problema de Hilbert implica que el subconjunto Gpe de G de números
que son números de Gödel de un enunciado positivo existencial cierto en
N, es indecidible. De esta forma, no hay un algoritmo para decidir si una
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2.2. Preliminary Concepts

fórmula positiva existencial sobre LA es cierta en N. Como el śımbolo “≥”
es positivo existencialmente LA-definible sobre Z, es posible transformar de
manera efectiva una LA-fórmula F positiva existencial en otra F ′ (cambiando
cada ocurrencia de tipo “∃x” por “∃x ≥ 0”) tal que N |= F śı y sólo si Z |= F ′.
Aśı, se deduce que la teoŕıa positiva existencial de Z es indecidible (no hay
un algoritmo para decidir si una fórmula positiva existencial sobre LA es
cierta en Z, pues si lo hubiera lo aplicamos a F ′). Se concluye (observando
como son constituidas las fórmulas positivas existenciales sobre LA) que no
hay un algoritmo para decidir si un sistema de ecuaciones diofantinas tiene o
no una solución entera. Un argumento similar (aunque generalmente mucho
más complicado) de definibilidad y/o codificación nos permitirá demostrar
indecidibilidad para otros problemas.

2.2 Preliminary Concepts

With respect to p-Adic Complex Analysis (and in particular, for the non-
Archimedean Nevanlinna Theory), the necessary basic concepts will be in-
troduced as they are needed in Chapter 3. In the rest of this section, we
introduce the basic concepts from Mathematical Logic that we will use all
along this work. We follow the terminology of Cori and Lascar [CL].

Given a language L, an L-structure is a set M together with

• an element of M for each constant symbol in L,

• an n-ary function for each n-ary function symbol in L, and

• an n-ary relation for each n-ary relation symbol in L.

Usually we assume that the languages have a symbol “=” which is inter-
preted as equality.

By a formula over a language L (or L-formula), we mean a well-formed
formula over L (for example, the string of symbols ∃∀x is not a formula
for us). We will write F (x1, . . . , xn) (or sometimes F [x1, . . . , xn] when the
other notation is ambiguous) to indicate that the formula F has all its non-
quantified variables (or free variables) among x1, . . . , xn. If a formula does
not have free variables, we call it a sentence or a closed formula. A formula
is positive existential if all its quantifiers (if any) are existential and ∧ and
∨ are the only connectives, with no negation symbols.
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2.2. Preliminary Concepts

If F is an L-sentence and M is an L-structure, we say that M satisfies
F or that F is true in M (written M |= F ) if the interpretation of F in M
is true in M. For example, with the language L = {0, 1, +, ·} we have

Z ! ∃x∃y x · y = x + 1

(choose x = 1, y = 2) and

Z ! ∃x∀y x + y = y + y.

If M is an L-structure with base set M and if C ⊆ Mn, we will say that
a formula F (x1, . . . , xn) defines the set C if for each (a1, . . . , an) ∈ Mn we
have: the formula F (a1, . . . , an) is true in M if and only if (a1, . . . , an) belongs
to C (where F (a1, . . . , an) is the sentence obtained from F (x1, . . . , xn) after
replacing each xi by ai). We will say that C ⊆ Mn is (positive existentially)
definable in M over L if there exists a formula (positive existential) that
defines it. A function is definible if its graph is definable.

For example, the theorem of the four squares of Lagrange implies that
the relation x ≤ y is positive existentially definable in Z over the language
of rings LA = {0, 1, +, ·} by means of the formula

F (x, y) : ∃x1∃x2∃x3∃x4 y = x + x2
1 + x2

2 + x2
3 + x2

4

where each symbol of the type “z2” is just a notation for “z · z”.
A theory of an L-structure M is a set of sentences of L which are true in

M. In particular, the positive existential theory of M over L is the set of all
positive existential L-sentences which are true in M.

A set C ⊆ Nn is decidable if there is an algorithm (a Turing machine) that
computes its characteristic function. It is possible to code in an effective way
all LA-sentences within the set N, namely, to mechanically associate a unique
natural number (Gödel number) to each LA-sentence. Let G be the set of
Gödel numbers. The negative answer to Hilbert’s Tenth Problem implies
that the subset Gpe of G of numbers which are Gödel numbers of positive
existential sentences true in N, is undecidable. Therefore, there is no algo-
rithm to decide whether or not a positive existential formula over LA is true
in N. Since the symbol “≥” is positive existentially LA-definable over Z, it is
possible to transform in an effective (mechanical) way a positive existential
LA-formula F into another such formula F ′ (by replacing each occurrence
of “∃x” by “∃x ≥ 0”), such that N |= F if and only if Z |= F ′. Hence, we
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2.2. Preliminary Concepts

deduce that the positive existential theory of Z is undecidable (there is no
algorithm to decide whether or not a positive existential formula over LA is
true in Z, as otherwise we would apply it to F ′). We conclude (observing how
are made up positive existential formulas over LA) that there is no algorithm
to decide whether or not a system of Diophantine equations has an integral
solution. A similar argument (though usually much more complicated) of
definability and/or codification will allow us to prove undecidability results
for a variety of other problems.
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Chapter 3

Representation of squares by
monic second degree
polynomials in the field of
p-adic meromorphic functions

3.1 Introduction

In 1970, after the work developed by M. Davis, H. Putnam and J. Robin-
son, Hilbert’s Tenth Problem was answered negatively by Y. Matiyasevic
(see [Mat] or [Da]). In logical terms, it was shown that the positive exis-
tential theory of Z in the language of rings LR = {0, 1, +, ·} is undecidable,
which means that there exists no algorithm to decide whether a system of
diophantine equations (or equivalently, a single diophantine equation) has
integer solutions or not. For a general survey on Hilbert’s Tenth Problem
and extensions of it, see for example [PZ2] or [Po] (see [S3] for results about
number fields and function fields).

Soon after the problem was solved, J. R. Büchi proved in an unpublished
work (see [L] or [Maz]) that a positive answer to a certain problem in Number
Theory (which we write here BP(Z)) would allow to show that there exists
no algorithm to decide whether a system of diagonal quadratic forms over Z
represents or not a given vector of integers.

The number-theoretical problem BP(Z) is based on the following obser-
vation. If we consider the first difference of a sequence of consecutive integer
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3.1. Introduction

squares (for example 1, 4, 9, 16), we obtain a sequence of consecutive odd in-
tegers (in our example 3, 5, 7). Hence, the second difference is the constant
sequence (2). One may ask whether a sequence of squares having second dif-
ference equal to the constant sequence (2) must be a sequence of consecutive
squares. The sequence 62, 232, 322, 392 shows that it is not true in general.

Problem 3.1.1 (BP(Z)). Does there exist an integer M such that the fol-
lowing happens:
If the second difference of a sequence (x2

i )
M
i=1 of integer squares is constant

and equal to 2, then there exists an integer ν such that x2
i = (ν + i)2 for

i = 1, . . . ,M (that is, the squares must be consecutive).

This problem became known as the n Squares Problem or Büchi’s Prob-
lem. Numerical evidence suggests that M = 5 should work (see for example
[Pi]), but BP(Z) still is an open problem.

Assuming a positive answer to BP(Z), Büchi was able to prove, using
the negative answer given to Hilbert’s tenth problem and assuming a pos-
itive answer to BP(Z), the non-existence of an algorithm for the problem
of representation of a vector of integers by diagonal quadratic forms. The
problem of the existence of such an algorithm can be shown to be equivalent
to the problem of decidability of the positive existential theory of Z over the
language L2 = {0, 1, +, P2}, where P2(x) is interpreted as “x is a square”.

In order to get similar consequences in Logic for other rings of interest,
and motivated by the arithmetical interest of the problem, several authors
have studied variants of BP(Z). A natural thing to do is to replace the ring
Z by another commutative ring A with unit. Depending on the ring, we
sometimes need to make additional hypothesis in the statement of BP(A):

• If A is a ring of functions of characteristic zero in the variable z, then
we ask for at least one xi to be non-constant.

• If A is a ring of positive characteristic, then we ask M to be at most
the characteristic of A.

For variants on Büchi’s problem (for example, considering sequences whose
second difference is a constant sequence (m) for some m not necessarily = 2),
see [Al] and [BB]. For the problem BP(A) with A a ring, we know that the
following cases (among various others) have a positive answer: BP2(Fp) with
p > 2 (see [He]), BP2(M) where M is the field of complex meromorphic
functions (see [Vo2]), BP2(F (z)) where F (z) is the field of rational functions
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3.1. Introduction

over a field of characteristic 0 or p ≥ 19 (see [PV1, PV2]). Moreover, Büchi’s
problem has a positive answer even in the case of function fields of curves (see
[Vo2] for the characteristic zero case and see [SV] for ‘large enough’ positive
characteristic). Under a conjecture in Diophantine Geometry, Vojta showed
in [Vo2] that BP2(Q) would have a positive answer (hence BP2(Z) would
have a positive answer). See [PPV] for a survey on Büchi’s problem and its
variants.

The positive existential L2-theory of a ring is usually much weaker than
its positive existential LR-theory. But when Büchi’s problem has a positive
answer for a ring A then those theories for A are (in general) equivalent.
This is what happens for example for p-adic analytic functions and for p-adic
meromorphic functions (see Section 3.2.2).

We will solve BP(A) for some rings of functions, namely, the field of
p-adic meromorphic functions, the field of complex meromorphic functions
and function fields of curves in characteristic zero by showing in each case
a somewhat stronger result on representation of squares by polynomials, in
the spirit of the following:

Given a ring B and a subset A of B, there exists a constant M satisfying
the following condition:
For any set {a1, . . . , aM} of M elements in A, there exists a ‘small’ set E ⊆
B[X] such that, if a monic polynomial of degree two P ∈ B[X] has the
property that each P (ai) is a square in B, then P ∈ E or P is a square in
B[X].

We will prove such a result for number fields, but assuming that the
following conjecture by Bombieri holds for surfaces.

Conjecture 3.1.2 (Bombieri). If X is a smooth projective variety of general
type defined over a number field K/Q, then X(K) is contained in a proper
Zariski closed set of X.

The results for function fields, complex meromorphic functions and num-
ber fields are based on Vojta’s work on Büchi’s problem (see [Vo2]), where he
solved Büchi’s problem for complex meromorphic functions, function fields
and (assuming the above conjecture) for number fields. The results related
to the p-adic setting are proved in a completely different way from Vojta’s
proof for the complex meromorphic case, and indeed, our proof is closer to
the ideas in [PV1, PV2].

On the one hand, from an arithmetic point of view, our interest is not
only in solving Büchi’s problem in some structures, but also understand how
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3.2. Main results

many times a second degree polynomial which is not a square, can represent
a square.

On the other hand, from the point of view of Logic, our main interest
in solving Büchi’s problem for p-adic meromorphic functions is that some
analogues of Hilbert’s Tenth Problem for the ring of p-adic analytic functions
(see [LP]) and the field of p-adic meromorphic functions (see [Vi]) have been
proved to be undecidable (those problems are open in the complex case).
Those results allow us, in the p-adic case, to derive consequences in Logic
from Büchi’s problem. This will be explained below in Section 3.2.2.

We also refer the reader to [De1] where is developed a general method
used to solve negatively analogues of Hilbert’s Tenth Problem for rings of
functions.

3.2 Main results

In this section, we present the statements of the results proven in this work.

3.2.1 Representation of squares in the field of p-adic
meromorphic functions

Let p be a prime number and let Cp be the field of p-adic complex numbers
(the completion of the algebraic closure of the field Qp of p-adic numbers).
Throughout the paper, one can replace Cp by any algebraically closed field of
characteristic zero, complete with respect to a non-trivial non-Archimedean
valuation.

Let Ap be the ring of entire functions over Cp and let Mp be the field of
meromorphic functions over Cp. We prove the following theorem on repre-
sentation of squares by polynomials.

Theorem 3.2.1. Let P ∈ Mp[X] be a monic polynomial of degree two. If
P (a) is a square in Mp for at least 35 values of a ∈ Cp, then either P has
constant coefficients or P is a square in Mp[X].

By solving the second order recurrence implied in the statement of Büchi’s
problem, we can use the above theorem to show the following.

Corollary 3.2.2. The problems BP(Ap) and BP(Mp) have a positive an-
swer.
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3.2. Main results

Theorem 3.2.1 can be improved for the ring Ap of p-adic entire functions
in the following way.

Theorem 3.2.3. Let P ∈ Ap[X] be a monic polynomial of degree two. If
P (a) is a square in Ap for at least 13 values of a ∈ Cp, then either P has
constant coefficients or P is a square in Ap[X].

The proof of Theorem 3.2.3 is shorter and simpler than the proof of Theo-
rem 3.2.1. Indeed, the method used in the proof of Theorem 3.2.3 essentially
is a p-adic simplified version of the method in [PV1, PV2]. Unfortunately,
several technical difficulties arise when we consider the problem for Mp, and
this requires the use of Nevanlinna theory and some combinatoric arguments.

We will prove these results in Section 3.4 and Section 3.5. In Section 3.3,
the reader will find some general results from p-adic Complex Analysis that
we will need later in the proofs.

3.2.2 Undecidability for p-adic entire and meromor-
phic functions in Büchi’s language

Corollary 3.2.2 allows us to obtain very strong undecidability results for p-
adic analytic and meromorphic functions, improving results by Lipshitz and
Pheidas, and by Vidaux. In order to state the theorems, we need to introduce
some notation.

Recall that Ap stands for the ring of entire functions over Cp, and Mp

stands for the field of meromorphic functions over Cp, with variable z.
By a diagonal quadratic equation over a ring A we will mean an equation

of the form
a1x

2
1 + · · ·+ anx

2
n = b

where the ai and b are elements of A and the xi are the unkowns.
Define the following languages:

Lz
R ={0, 1, +, ·, z},

L∗R ={0, 1, +, ·, z, ord},
Lz

2 ={0, 1, +, P2, fz}, and

L∗2 ={0, 1, +, P2, fz, ord},

where P2 and ord are unary predicate symbols, and fz is a unary function
symbol. In Ap and Mp, P2(x) is interpreted as “x is a square”, fz(x) is
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interpreted as “x %→ zx”, and we interpret ord(x) as “x(0) = 0” (all other
symbols are interpreted in the obvious way).

Theorem 3.2.4. Multiplication is positive existentially definable in Mp and
in Ap over the language Lz

2.

See Section 3.6 for a proof.
We recall that the following two theories are undecidable: the positive

existential theory of Ap in the language Lz
R (see [LP]) and the positive exis-

tential theory of Mp in the language L∗R (see [Vi]). From this and Theorem
3.2.4 we deduce:

Theorem 3.2.5. The positive existential theory of Ap in the language Lz
2

and the positive existential theory of Mp in the language L∗2 are undecidable.

This result allows us to prove the following (see Section 3.6).

Theorem 3.2.6. There is no algorithm to solve any of the following prob-
lems:

1. Given a system of diagonal quadratic equations

r∑

i=1

aijx
2
i = bj j = 1, . . . , s

with all the aij and bj in Z[z], to decide whether or not the system has
a solution in Ap.

2. Given a system of diagonal quadratic equations

r∑

i=1

aijx
2
i = bj j = 1, . . . , s

with all the aij and bj in Z[z], and given a set I ⊆ {1, . . . , r}, to decide
whether or not the system has a solution in Mp satisfying xi(0) = 0
for each i ∈ I.
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3.2.3 Representation of squares in number fields

The statements given below will be proved in Section 3.9.

Theorem 3.2.7. Assume Bombieri’s Conjecture 3.1.2 holds for surfaces.
Let K be a number field and {a1, . . . , a8} a set of eight elements in K. There
exists a finite (possibly empty) set E = E(K, (ai)i) of polynomials in K[x]
such that the following holds : for each polynomial f of the form

x2 + ax + b ∈ K[x],

if f(ai) are squares in K for each i then either f ∈ E, or f = (x + c)2 for
some c ∈ K.

This theorem is an extension of Theorem 0.5 in [Vo2]. The method used
to obtain this result is essentially an adaptation of the method by Vojta in
[Vo2].

It is an obvious but remarkable fact that, if one could find a number field
K and a sequence a = (a1, . . . , a8) of distinct elements of K such that the
set E(K, (ai)) is infinite, then one would automatically obtain a counterex-
ample to Bombieri’s Conjecture. On the other hand, showing finiteness for
E(K, (ai)) for some K and some sequence (ai) would give a new example of
a surface (over K) where Bombieri’s question has a positive answer. We are
not able to prove nor disprove the finiteness of the set E(K, (ai)) in any case.

From the finiteness of the sets E(K, (ai)) one can easily derive the fol-
lowing (see Section 3.9).

Corollary 3.2.8. Assume that Bombieri’s conjecture holds for surfaces de-
fined over Q. Let a1, a2, . . . be a sequence of integers without repeated terms.
There exists a constant M (depending on the sequence (ai)i) such that: if a
polynomial f = x2 + ax + b ∈ Q[x] satisfies the property “f(ai) is a square
in Z for i = 1, . . . ,M”, then f is of the form f = (x + c)2, for some c ∈ Z.

Observe that the dependence of M on the sequence cannot be dropped.
Consider for example the polynomial fN = x2−4(2N)!, where N is a positive
integer, and define

ai = i! +
(2N)!

i!
.

Then it is obvious that (ai)N
i=1 is a strictly decreasing sequence in Z and each

fN(ai) is a square in Z.
Note that, if in Corollary 3.2.8 we set an = n for each n, then we obtain

a positive answer to Büchi’s Problem for Z (under Bombieri’s Conjecture).
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3.2.4 Representation of squares for function fields and
for complex meromorphic functions

The geometric results in Section 3.7 will be used in Section 3.9 to prove the
following theorems, analogues to Theorem 3.2.1.

Theorem 3.2.9. Let F be a field of characteristic zero and C a non-singular
projective curve defined over F . Define the integer M = max{8, 4(g + 1)}
where g is the genus of C. Write K(C) for the function field of C and let
X be transcendental over K(C). Let P ∈ K(C)[X] be a monic polynomial
of degree two. If P (a) is a square in K(C) for at least M values of a ∈ F ,
then either P has constant coefficients or P is a square in K(C)[X].

Theorem 3.2.10. Write M for the field of meromorphic functions on C.
Let P ∈M[X] be a monic polynomial of degree two. If P (a) is a square in
M for at least 8 values of a ∈ C, then either P has constant coefficients or
P is a square in M[X].

These theorems give as a direct consequence a positive answer to Büchi’s
problem in the respective cases, but such a positive answer is not new since
it was proved in [Vo2] for both cases. Moreover, Büchi’s problem for this
kind of rings was solved recently by a new method in characteristic zero and
(large enough) positive characteristic in [SV].

3.3 Some results in p-adic Nevanlinna Theory

First we present the notation we use for the usual functions in p-adic Nevan-
linna Theory.

We will work over the field Cp with absolute value | · |p. Write Ap for the
ring of entire functions over Cp andMp for the field of meromorphic functions
over Cp. We denote by F+ the positive part of a function F whose image is
included in R, that is F+ = max{F, 0}. We adopt the following notation for
the standard functions in p-adic Nevanlinna theory, where f = h

g ∈ Mp is
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non-zero, and where g, h ∈ Ap are coprime:

B[r] = {z ∈ Cp : |z|p ≤ r}
n(r, h, 0) = number of zeros of h in B[r] counting multiplicity

n(r, f, 0) = n(r, h, 0)

n(r, f,∞) = n(r, g, 0)

N(r, h, 0) =

∫ r

0

n(t, h, 0)− n(0, h, 0)

t
dt + n(0, h, 0) log r

N(r, f, 0) = N(r, h, 0)

N(r, f, a) = N(r, f − a, 0)

N(r, f,∞) = N(r, g, 0)

|h|r = max
n≥0

|an|prn, where h(z) = a0 +
∑

n≥1

anz
n

|f |r =
|h|r
|g|r

m(r, f, a) = log+ 1

|f − a|r
m(r, f) = m(r, f,∞) = log+ |f |r

We recall to the reader that for each r > 0, the function | · |r : M→ R is
a non-archimedean absolute value satisfying |a|r = |a|p when a is constant.

We will need the following standard results from p-adic Nevanlinna The-
ory. For a general presentation of p-adic complex analysis, see for example
[Ro, Es]. For references on p-adic Nevanlinna Theory (in particular, for a
proof of the following results) see for example [ChY], [Ru] or the Chapter II
of [HY].

First we have the Logarithmic Derivative Lemma:

Lemma 3.3.1. If n is a positive integer and f ∈Mp then

∣∣∣∣
f (n)

f

∣∣∣∣
r

≤ 1

rn

where f (n) stands for the n-th derivative.

We will also need the Poisson-Jensen Formula:
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Theorem 3.3.2. Given f ∈Mp, there exists a constant C depending only
on f such that

log |f |r = N(r, f, 0)−N(r, f,∞) + C.

As a consequence of the Poisson-Jensen Formula, we get the First Main
Theorem:

Theorem 3.3.3. Let f ∈Mp be a non-constant meromorphic function and
a ∈ Cp. As r →∞ we have

m(r, f, a) + N(r, f, a) = m(r, f,∞) + N(r, f,∞) + O(1).

Finally, we state the Second Main Theorem:

Theorem 3.3.4. Let f ∈Mp be a non-constant meromorphic function and
let a1, . . . , aq ∈ Cp be distinct. Then, as r →∞ we have

q∑

i=1

m(r, f, ai) ≤ N(r, f,∞) + O(1).

3.4 p-adic Meromorphic Functions

In this section we prove Theorem 3.2.1.
The following equality will be used many times without mention within

this section:

N(r, f, x) = K +

∫ r

1

n(t, f, x)

t
dt, for large r. (3.1)

It will be used systematically in order to deduce inequalities (for large r)
about N when we know inequalities about n (the point is that the integral
is a linear and monotone operator).

In order to simplify the proof of Theorem 3.2.1, we actually will prove
the following equivalent result.

Theorem 3.4.1. Let h1, . . . , hM be elements of Mp such that at least one hi

is non-constant. Let a1, . . . , aM be M distinct elements of Cp. If there exist
f, g ∈Mp, with g non-zero, such that

h2
j = (aj + f)2 − g j = 1, . . . ,M (3.2)

then M ≤ 34.
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For the rest of this section, we will assume that we are under the hypoth-
esis of Theorem 3.4.1. Assuming M ≥ 35 we will obtain a contradiction.

First, we observe that

h2
i − h2

j = (ai − aj)(2f + ai + aj). (3.3)

Lemma 3.4.2. The function f is not constant.

Proof. If f is constant then so is ci = (ai + f)2. Note that since some hi is
non-constant, g is non-constant. Taking i, j and k such that ci, cj, and ck

are pairwise distinct constants, the following equality

(hihjhk)
2 = (ci − g)(cj − g)(ck − g)

gives a non-constant meromorphic parametrization of an elliptic curve over
Cp, which is impossible by a theorem of Berkovich (see [Ber]).

Lemma 3.4.3. Let x ∈ Cp be a pole of some hi. There exists an index k
depending on x such that for each i != k we have (simultaneously)

1. ordxhk ≥ ordxhi;

2. ordxf ≥ 2ordxhi;

3. ordxg ≥ 4ordxhi;

4. ordxhi = ordxhj for all j != k; and

5. ordxhi ≤ −1.

Moreover, for each i we have

min{ordxhi, 0} ≥
1

M − 1

∑

l

min{ordxhl, 0} (3.4)

and, there exists a positive constant K such that for large enough r and for
each i we have

N(r, hi,∞) ≤ 1

M − 1

∑

l

N(r, hl,∞) + K. (3.5)
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Proof. Let i0 be an index such that hi0 has a pole at x.
First suppose that all hi have the same order at x (hence negative). In

this case, Items (1), (4) and (5) hold trivially, Item (2) comes from Equation
(3.3), and Item (3) comes from Equation (3.2). Indeed for Item (3) we have

ordx(g) ≥ 2 min{ordx(hi), ordx(f + ai)}
= 2 min{ordx(hi), ordx(f)}
= 2 min{ordx(hi), 2ordx(hi)}
≥ 4ordxhi,

where the last inequality comes from Item (2).
The other case is when not all hi have the same order at x. Choose k

such that item (1) holds true. By Equation (3.3) for indices k and any i != k,
Item (4) holds true. If i0 = k then all hi have a pole at x (by maximality of
k), and if i0 != k then by Item (4), for all i != k, hi has a pole at x. Hence
Item (5) holds true. Items (2) and (3) for i != k follow as in the previous
case.

Finally, by Items (1), (4) and (5), and observing that ordxhk could be
positive, we have for each i

(M − 1) min{ordxhi, 0} =
∑

l %=k

min{ordxhl, 0} ≥
∑

l

min{ordxhl, 0}.

Summing for x ∈ B[r] we obtain

(M − 1)n(r, hi,∞) ≤
∑

l

n(r, hl,∞).

which gives the inequality (3.5), using Equation (3.1).

Lemma 3.4.4. The following inequality holds

M∑

n=1

log |hn|r +
1

M − 1

M∑

n=1

N(r, hn,∞) +
1

2
N(r, f,∞) +O(1) ≥ 0.

Proof. By the Second Main Theorem 3.3.4, we have for each i = 1, . . . ,M

−N(r, f,∞) +O(1) ≤ −
∑

j %=i

log+

∣∣∣∣∣
1

f + ai+aj

2

∣∣∣∣∣
r

≤
∑

j %=i

log

∣∣∣∣f +
ai + aj

2

∣∣∣∣
r

.
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Since by Equation (3.3) we have

h2
i − h2

j = 2(ai − aj)

(
f +

ai + aj

2

)
,

we deduce
−N(r, f,∞) +O(1) ≤

∑

j %=i

log
∣∣h2

i − h2
j

∣∣
r
.

If for a given r, ir is an index such that |hi|r is minimal, then

1

2

∑

j %=ir

log
∣∣h2

ir − h2
j

∣∣
r
≤

∑

j %=ir

log |hj|r

= C +
∑

j %=ir

(N(r, hj, 0)−N(r, hj,∞))

≤ C + N(r, hir ,∞) +
∑

n

(N(r, hn, 0)−N(r, hn,∞))

= C ′ + N(r, hir ,∞) +
∑

n

log |hn|r

≤ C ′′ +
1

M − 1

∑

n

N(r, hn,∞) +
∑

n

log |hn|r

where the first and second equalities are given by the Poisson-Jensen Formula
3.3.2, the third inequality is given by Lemma 3.4.3 (see Equation (3.5)), and
C, C ′, C ′′ are fixed constants (not depending on r nor on ir).

Finally we have

−1

2
N(r, f,∞) +O(1) ≤ 1

2

∑

j %=ir

log
∣∣h2

ir − h2
j

∣∣
r

≤
∑

log |hn|r +
1

M − 1

∑
N(r, hn,∞) + C ′′

for each r large enough, and the lemma is proven.

Lemma 3.4.5. The following inequalities hold:

n(r, f,∞) ≤ 2

M − 1

∑

n

n(r, hn,∞) (3.6)

and ∑

n

N(r, hn, 0) ≥ M − 3

M − 1

∑

n

N(r, hn,∞) +O(1).
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Proof. Observe that by Lemma 3.4.3 (Item (2) and Equation (3.4)) we have

(M − 1)n(r, f,∞) ≤ 2
∑

n(r, hj,∞),

hence
(M − 1)N(r, f,∞) ≤ 2

∑
N(r, hn,∞) +O(1).

The second formula comes immediately by Lemma 3.4.4 and the Poisson-
Jensen Formula 3.3.2.

The equations

h2
n + g = (an + f)2

2h′nhn + g′ = 2f ′(an + f)

are directly deduced by reordering and differentiating the one given in the
hypothesis. From this we deduce

(2h′nhn + g′)2 = 4f ′2(h2
n + g)

hence

g′2 − 4f ′2g = 4hn(hnf
′2 − h′2n hn − h′ng

′).

Writing

∆ = g′2 − 4f ′2g

∆n = hnf
′2 − h′2n hn − h′ng

′

we have
∆ = 4hn∆n. (3.7)

Lemma 3.4.6. If ∆ is not identically zero, then

N(r, ∆, 0) ≥ 1

2

∑
N(r, hn, 0)− 8

M − 1

∑
N(r, hn,∞) +O(1).

Proof. On the one hand, for a given x ∈ Cp suppose f has a pole at x and
hj(x) = 0 for some index j. Set l = ordx(hj) and m = ordx(f). Note that
ordx(g) = 2m because hj(x) = 0 (see Equation (3.2)). Write

hj = ul(z − x)l + ul+1(z − x)l+1 + · · · ,
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f = vm(z − x)m + vm+1(z − x)m+1 + · · ·

and

g = w2m(z − x)2m + w2m+1(z − x)2m+1 + · · ·

for the Laurent series of hj, f and g at x. Observe that

w2m = v2
m.

The first term of the Laurent series at x for respectively hjf ′2, h′2j hj and h′jg
′

is, respectively,

m2ulv
2
m(z − x)l+2m−2

l2u3
l (z − x)3l−2

and

2lmulv
2
m(z − x)l+2m−2

hence

ordx∆j = l + 2m− 2

since 2l != m. Therefore, we have

ordx∆ = 2(l + m− 1).

On the other hand, if x ∈ Cp is not a pole of f and is a zero of some hj,
then we have

ordx∆ ≥ ordx(hj)

because by Equation (3.2), g does not have a pole, hence ∆j does not have
a pole and we conclude by Equation (3.7).

Let Ar be the set of x ∈ B[r] such that f has not a pole at x and hj(x) = 0
for some index j, and let Br be the set of x ∈ B[r] such that f has a pole at
x and hj(x) = 0 for some index j. Observe that, by Equation (3.3), no three
of the hn can share a zero (we use it for the fifth inequality below). We have
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then

n(r, ∆, 0) ≥
∑

x∈Ar

ordx∆ +
∑

x∈Br

ordx∆

≥
∑

x∈Ar

max
hi(x)=0

ordx(hi) +
∑

x∈Br

max
hi(x)=0

2(ordx(hi) + ordx(f)− 1)

≥
∑

x∈Ar∪Br

max
hi(x)=0

ordx(hi) + 2
∑

x∈Br

max
hi(x)=0

(ordx(f)− 1)

=
∑

x∈Ar∪Br

max
hi(x)=0

ordx(hi) + 2
∑

x∈Br

(ordx(f)− 1)

≥
∑

x∈Ar∪Br

max
hi(x)=0

ordx(hi) + 4
∑

x∈Br

ordx(f)

≥ 1

2

∑

i

n(r, hi, 0)− 4n(r, f,∞)

≥ 1

2

∑

i

n(r, hi, 0)− 8

M − 1

∑
n(r, hi,∞)

where the last inequality comes from Lemma 3.4.5. The result follows.

Lemma 3.4.7. If ∆ is not identically zero, then

N(r,∆,∞) ≤ 8

M − 1

∑
N(r, hn,∞) +O(1).

Proof. Suppose that some x ∈ Cp is a pole of ∆. Then, by definition of ∆, it
is a pole of f or of g. If none of the hi has a pole at x then by Equation (3.3)
f does not have a pole, and by Equation (3.2), g does not have a pole, which
contradicts our hypothesis. Therefore, some hi has a pole at x. Take k as in
Lemma 3.4.3. For each index i != k we have (observing that ordx(hi) ≤ −1
and that if g′ = 0 then ordxh′ig

′ is infinite)

ordx∆ ≥ ordxhi + min{ordxhif
′2, ordxh

′2
i hi, ordxh

′
ig
′}

≥ ordxhi + min{7ordxhi, 5ordxhi, 7ordxhi}
= 8ordxhi.

Hence, using the Lemma 3.4.3 (Equation (3.4)) we have

ordx∆ ≥ 8

M − 1

∑

l

min{ordxhl, 0}.

36



3.4. p-adic Meromorphic Functions

Write Dr for the set of poles of ∆ in B[r]. We have

n(r,∆,∞) =
∑

x∈Dr

−ordx∆

≤ 8

M − 1

∑

x∈Dr

∑

l

max{−ordxhl, 0}

≤ 8

M − 1

∑

l

∑

x∈B[r]

max{−ordxhl, 0}

=
8

M − 1

∑

l

n(r, hl,∞).

and the result follows.

Lemma 3.4.8. For each r > 0 and each i we have

1. log |g|r ≤ max{2 log |hi|r, 0, 2 log |f |r}+ log max{|a2
i |r}; and

2. 2 log |hi|r ≤ max{2 log |f |r, 0, log |g|r}+ log max{|a2
i |r}.

Proof. Since

|2aif |r ≤ |ai|r|f |r ≤
|a2

i |r + |f 2|r
2

≤ max{|a2
i |r, |f 2|r}

we have

log |g|r = log |(f + ai)
2 − h2

i |r
≤ log

(
max{|h2

i |r, |f 2|r, |2aif |r, |a2
i |r}

)

≤ log
(
max{|h2

i |r, |f 2|r, |a2
i |r}

)

≤ max{2 log |hi|r, 0, 2 log |f |r}+ log max{|a2
i |r}.

The other inequality is proved in a similar way.

Lemma 3.4.9. 1. For each r > 0, there exists an index kr such that |hkr |r
is minimal.

2. There exists a positive constant Kf such that, for any r > 0 and for all
i != kr, we have

log |f |r ≤ max{0, 2 log |hi|r}+ Kf .
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3. There exists a positive constant Kg such that, for any r > 0 and for all
i != kr, we have

log |g|r ≤ max{0, 4 log |hi|r}+ Kg.

Proof. Item (1) is immediate since for each r, the set {|hi|r : i = 1, . . . ,M}
is finite. Let us prove Item (2). There exists a positive constant K ′ > 1 such
that for each r > 0, i and j, we have

|2f |r ≤ |2f + ai + aj|r + |ai + aj|r ≤ K ′ + |2f + ai + aj|r. (3.8)

On the other hand, by Equation (3.3) there exists a constant K ′′ > 1 such
that, for any r > 0, i != kr and j, we have

|2f + ai + aj|r =

∣∣∣∣
h2

i − h2
kr

ai − akr

∣∣∣∣
r

≤
∣∣∣∣

h2
i

ai − akr

∣∣∣∣
r

(by Item (1))

≤ K ′′|h2
i |r

hence by Equation (3.8)

|2f |r ≤ K ′′|h2
i |r + K ′ ≤ K ′′ max{|h2

i |r, 1}+ K ′.

Therefore, we have

log |f |r ≤ log(K ′′ max{|h2
i |r, 1}+ K ′)− log |2|r

≤ log(K ′′ max{|h2
i |r, 1}) + log K ′ + log 2− log |2|r

≤ max{2 log |hi|r, 0}+ Kf

with Kf is a positive constant greater than log K ′′ + log K ′ + log 2− log |2|r,
and where the second inequality comes from the fact that for all real numbers
x, y ≥ 1, we have log(x+y) ≤ log x+log y+log 2 (just write (1−x)(y−1) ≤ 0).

Finally, we prove Item (3). By Lemma 3.4.8 and Item (2), for each i != kr

we have

log |g|r ≤ max{2 log |hi|r, 0, 2 log |f |r}+ log max{|a2
i |r}

≤ max{2 log |hi|r, 0, 2 max{0, 2 log |hi|r}+ 2Kf}+ log max{|a2
i |r}

≤ max{2 log |hi|r + 2Kf , 2Kf , 4 log |hi|r + 2Kf}+ log max{|a2
i |r}

≤ max{0, 4 log |hi|r}+ Kg

where Kg is a fixed positive constant bigger than 2Kf + log max{|a2
i |r}.
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Lemma 3.4.10. If ∆ is not identically zero, then

log |∆|r ≤
6M − 2

M(M − 1)

∑
log |hn|r+

8

(M − 1)2

∑
N(r, hn,∞)−2 log r+O(1).

Proof. By the Poisson-Jensen Formula 3.3.2 and Lemma 3.4.3 (Equation
(3.5)) we have for r large enough and for each i

log |hi|r = N(r, hi, 0)−N(r, hi,∞) + C

≥ −N(r, hi,∞) + C

≥ − 1

M − 1

∑

n

N(r, hn,∞) + C ′

for some constant C and negative constant C ′. So we have

log |hi|r +
1

M − 1

∑

n

N(r, hn,∞)− C ′ ≥ 0. (3.9)

Given r > 0 take kr as in Lemma 3.4.9. Choose ir such that |hir |r is
minimal in {|hi|r : i != kr}, and note that

log |hir |r ≤
1

M − 1

∑

i%=kr

log |hi|r.

By Item (2) in Lemma 3.4.9, we have for each r large enough

log |f |r ≤ max{0, 2 log |hir |r}+ Kf

≤ max

{
0,

2

M − 1

∑

i%=kr

log |hi|r

}
+ Kf

≤(3.9) max

{
0,

2

M − 1

∑

i%=kr

log |hi|r+

2

M − 1

(
log |hkr |r +

1

M − 1

∑

i

N(r, hi,∞)− C ′

)}
+ Kf

≤ max

{
0,

2

M − 1

∑

i

log |hi|r +

2

(M − 1)2

∑

i

N(r, hi,∞)

}
− 2C ′

M − 1
+ Kf .
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Similarly, by Item (3) in Lemma 3.4.9 we have for each r large enough

log |g|r ≤ max

{
0,

4

M − 1

∑

i

log |hi|r +

4

(M − 1)2

∑

i

N(r, hi,∞)

}
− 4C ′

M − 1
+ Kg.

Hence, for large enough r we get

log |f |r ≤ max

{
0,

2

M − 1

∑

n

log |hn|r +
2

(M − 1)2

∑

n

N(r, hn,∞)

}
+O(1)

(3.10)

log |g|r ≤ max

{
0,

4

M − 1

∑

n

log |hn|r +
4

(M − 1)2

∑

n

N(r, hn,∞)

}
+O(1).

(3.11)

From Lemma 3.3.1 (Logarithmic Derivative Lemma) we have for large
enough r and each index n

|∆|r ≤ |hn|r max{|hnf
′2|r, |h′2n hn|r, |h′ng′|r} ≤

1

r2
|hn|2r max{|f |2r, |hn|2r, |g|r}.

By Lemma 3.4.8, we have

2 log |hn|r ≤ max{2 log |f |r, 0, log |g|r}+O(1),

hence, since ∆ is not the zero function

log |∆|r ≤ log

(
1

r2
|hn|2r

)
+ max{2 log |f |r, 0, log |g|r}+O(1).

Since this last expression is true for each n, we have

log |∆|r ≤
2

M

∑
log |hn|r−2 log r+max{2 log |f |r, 0, log |g|r}+O(1). (3.12)

Note that by equations (3.10) and (3.11) we have

max{2 log |f |r, 0, log |g|r} ≤ max

{
0,

4

M − 1

∑
log |hn|r +

4

(M − 1)2

∑
N(r, hn,∞)

}
+O(1)
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where the right-hand part is of the form max{0, A}+O(1), and, by Lemma
3.4.4, we have

A +
2

M − 1
N(r, f,∞) +O(1) ≥ 0.

Hence,

max{0, A}+O(1) = max

{
2

M − 1
N(r, f,∞), A+

2

M − 1
N(r, f,∞)

}
− 2

M − 1
N(r, f,∞)

≤
(

2

M − 1
N(r, f,∞) + A +

2

M − 1
N(r, f,∞) +O(1)

)

− 2

M − 1
N(r, f,∞)

and replacing A by its expression we get

max{2 log |f |r, 0, log |g|r} ≤
4

M − 1

∑
log |hn|r +

4

(M − 1)2

∑
N(r, hn,∞)

+
2

M − 1
N(r, f,∞) +O(1).

Therefore, by Equation (3.12), we find that log |∆|r is less than or equal
to (

2

M
+

4

M − 1

) ∑
log |hn|r − 2 log r+

4

(M − 1)2

∑
N(r, hn,∞) +

2

M − 1
N(r, f,∞) +O(1).

Finally, we bound N(r, f,∞) using Lemma 3.4.5 and the result follows.

Lemma 3.4.11. We have ∆ = 0.

Proof. Assume that ∆ is not identically zero. By the Poisson-Jensen Formula
3.3.2, we have

log |∆|r = N(r,∆, 0)−N(r, ∆,∞) +O(1).

Lemmas 3.4.6, 3.4.7 and 3.4.10 allow us to bound log |∆|r above and below,
obtaining

6M − 2

M(M − 1)

∑
log |hn|r +

8

(M − 1)2
I − 2 log r ≥

1

2
Z − 8

M − 1
I − 8

M − 1
I +O(1)
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where we write Z =
∑

N(r, hn, 0) and I =
∑

N(r, hn,∞). Using again the
Poisson-Jensen Formula 3.3.2 we have

∑
log |hn|r = Z − I +O(1).

Together with Lemma 3.4.5, it gives

−2 log r ≥
(

1

2
− 6M − 2

M(M − 1)

)
Z+

(
6M − 2

M(M − 1)
− 16

M − 1
− 8

(M − 1)2

)
I +O(1)

≥
((

1

2
− 6M − 2

M(M − 1)

)
M − 3

M − 1
− 10M2 − 2

M(M − 1)2

)
I+

(
1

2
− 6M − 2

M(M − 1)

)
O(1) +O(1)

≥
((

1

2
− 6M − 2

M(M − 1)

)
M − 3

M − 1
− 10M2 − 2

M(M − 1)2

)
I +O(1)

=
M2 − 35M + 8

2M(M − 1)
I +O(1).

Since

• −2 log r goes to −∞ as r goes to ∞,

• I +O(1) ≥ 0, and

• M2 − 35M + 8

2M(M − 1)
≥ 0 for M ≥ 35,

we obtain a contradiction.

As a number of methods have been developped for other analogues of
Büchi’s problem, at this point we may use various different techniques in
order to finish the proof of the theorem. We present the method from [PV1,
PV2] using elliptic curves, since by a theorem by Berkovich we know that
those are not parametrizable by meromorphic functions over Cp.

Since ∆ is the zero function, we have

g′2 = 4f ′2g. (3.13)
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3.5. p-adic Entire Functions

Hence there exists a meromorphic function u such that g = u2 and Equation
(3.13) becomes

4u′2u2 = 4f ′2u2.

Since g is non-zero by hypothesis, this implies u′2 = f ′2. Hence u = αf + b
for some α ∈ {−1, 1} and b ∈ Cp, and we obtain

h2
n = (an + f)2 − u2

= (an + f)2 − (αf + b)2

= (an + f)2 − (f + αb)2

= (an − αb)(an + αb + 2f).

Choosing three distinct indices i, j and k such that an−αb != 0 for n = i, j, k,
we obtain
(

hihjhk√
(ai − αb)(aj − αb)(ak − αb)

)2

= (ai+αb+2f)(aj+αb+2f)(ak+αb+2f).

Since f is not a constant (by Lemma 3.4.2), we obtain a non-constant
parametrization of the elliptic curve

Y 2 = (ai + X)(aj + X)(ak + X)

which is impossible by Berkovich’s Theorem. This finishes the proof.

3.5 p-adic Entire Functions

In this section we prove Theorem 3.2.3.
The purpose of this section is to prove Theorem 3.2.3. Up to some adap-

tations for the p-adic setting, the proof goes along essentially the same lines
as the solution of Büchi’s problem for C[z] using the method of Pheidas and
Vidaux (see for example [PV1] for the paper where this method was used by
first time, or [PPV] for a quite simplified exposition in the particular case
C[x], which is closer to the case of p-adic entire functions) and we include it
here just for the sake of completeness.

We prefer to avoid the use of Berkovich’s theorem and replace it by an
elementary argument on factorization.

In order to simplify the proof, we will prove the Theorem in the following
equivalent form:

43



3.5. p-adic Entire Functions

Theorem 3.5.1. Let hj ∈ Ap, j = 1, . . . ,M with at least one of them non-
constant, and let aj ∈ Cp be distinct for j = 1, . . . ,M . Assume we have
f, g ∈ Ap with f, g non-zero, such that h2

j = (aj + f)2 − g for j = 1, . . . ,M .
Then M ≤ 12.

We will assume M > 12 to obtain a contradiction.

Lemma 3.5.2. The function f is non-constant.

Proof. Suppose that f is constant. Then

(hi − hj)(hi + hj) = (ai − aj)(ai + aj + 2f)

also is constant for i != j, hence each

hi =
1

2
((hi − hj) + (hi + hj))

is constant, which contradicts the hypothesis.

For i != j we have

h2
i − h2

j =
(
(ai + f)2 − g

)
−

(
(aj + f)2 − g

)
= 2(ai − aj)f + (a2

i − a2
j)

hence, for each r we have

2 max
n

m(r, hn) ≥ m(r, h2
i − h2

j) = m(r, f) +O(1) (3.14)

and the equality g = (aj + f)2 − h2
j implies

m(r, g) ≤ 2 max{m(r, aj + f), m(r, hj)}+O(1)

≤ 4 max
n

m(r, hn) +O(1).
(3.15)

As in the previous section, we define

∆ = g′2 − 4f ′2g

∆n = hnf
′2 − h′n

2hn − h′ng
′

and these functions satisfy the same equation as in the previous section (see
Equation (3.7))

∆ = 4hn∆n.
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Lemma 3.5.3. The function ∆ is the zero function.

The point is that, if ∆ is not the zero function then we can apply to it
the function m(r, ·), and we will obtain a contradiction by bounding above
and below m(r,∆). We we will need the following three claims.

Claim 3.5.4. For each r large enough, we have

m(r, ∆) ≤ 6 max
n

m(r, hn)− 2 log r +O(1).

Proof of Claim 3.5.4. By definition of ∆ we have

m(r, ∆) = m(r, hn) + m(r, ∆n) +O(1)

≤ m(r, hn) + max{m(r, hnf
′2), m(r, h′n

2hn), m(r, h′ng
′)}+O(1)

In order to estimate an upper bound for this last expression, by the inequal-
ities (3.14) and (3.15) and Lemma 3.3.1 we obtain for each r large enough

m(r, hnf
′2) ≤ m(r, hn) + 2m(r, f)− 2 log r +O(1)

≤ 5 max
n

m(r, hn)− 2 log r +O(1)

m(r, h′n
2hn) ≤ m(r, hn) + 2m(r, hn)− 2 log r +O(1)

≤ 3 max
n

m(r, hn)− 2 log r +O(1)

m(r, h′ng
′) ≤ m(r, hn) + m(r, g)− 2 log r +O(1)

≤ 5 max
n

m(r, hn)− 2 log r +O(1)

Therefore, for each r large enough we have

m(r,∆) ≤ 6 max
n

m(r, hn)− 2 log r +O(1).

Claim 3.5.5. For each r large enough, we have

max m(r, hn) ≤ 1

M − 1

∑

n

m(r, hn) + O(1)

Proof of Claim 3.5.5. Given an r, if all the m(r, hn) are equal the result is
obvious, so let us assume that we have two indices s, t such that m(r, hs) is
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minimal, m(r, ht) is maximal and m(r, hs) != m(r, ht). For r large enough
and for all i != j we have

|2f |r = |ai + aj + 2f |r

because of Lemma 3.5.2 and the definition of | · |r, moreover, |2f |r > 1 for
large r. Write

C = log+ max
i%=j

|ai − aj|p

and note that this constant does not depend on r. Since

h2
i − h2

j = (ai − aj)(ai + aj + 2f)

we have for r large enough

m(r, f) ≤ m(r, h2
i − h2

j) ≤ m(r, f) + C.

On the one hand, by the strong triangle inequality of | · |r we have for each n

m(r, f) + C ≥ m(r, h2
t − h2

s) = 2m(r, ht) = 2 max
n

m(r, hn).

On the other hand, for each n != s we have

2m(r, hn) ≥ m(r, h2
n − h2

s) ≥ m(r, f).

adding these inequalities as long as n != s we get

2
∑

n

m(r, hn) ≥ 2
∑

n%=s

m(r, hn) ≥ (M − 1)m(r, f).

Therefore

2
∑

n

m(r, hn) ≥ (M − 1)m(r, f) ≥ (M − 1)(2 max
n

m(r, hn)− C).

Claim 3.5.6. For each r large enough, we have

1

2

∑

n

m(r, hn) ≤ m(r,∆) +O(1)
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Proof of Claim 3.5.6. Define

n(r) =
∑

|ρ|≤r

max
n

ordρhn

and note that this sum is always finite because the hn are entire. Since
4hn∆n = ∆ holds for each n and ∆ is not identically zero, we have ordρhn ≤
ordρ∆ for each n and each ρ, therefore n(r) ≤ n(r, ∆, 0).

Observe that no three of the hi can share a zero (if ρ is a common zero
of hi, hj, hk for distinct indices, then the polynomial (f(ρ) + X)2 − g(ρ) has
three roots, namely ai, aj, ak), hence

∑

n

n(r, hn, 0) ≤ 2n(r)

and we arrive to ∑

n

n(r, hn, 0) ≤ 2n(r,∆, 0)

hence ∑

n

N(r, hn, 0) ≤ 2N(r, ∆, 0) +O(1).

This inequality and Theorem 3.3.2 applied to ∆ (which is an entire function)
lead to ∑

n

m(r, hn) ≤ 2m(r,∆) +O(1).

Proof of Lemma 3.5.3. We suppose ∆ is not identically zero. We apply to it
m(r, ·) and use the bounds given in the above Claims to get:

2 log r +
1

2

∑

n

m(r, hn) ≤ 6

M − 1

∑

n

m(r, hn) +O(1)

which is a contradiction for M > 12. This proves that ∆ = 0.

From the equation ∆ = 0 we have

g′2 = 4f ′2g. (3.16)

By Lemma 3.5.2 we have that f is non-constant, hence the equation g′2 =
4f ′2g implies that g is a square in Mp, but g ∈ Ap implies that g is a square
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in Ap. Thus g = u2 for some u ∈ Ap and replacing in Equation (3.16) we
get u′2 = f ′2. Therefore there exists b ∈ Cp and α ∈ {−1, 1} such that
g = (αf + b)2, hence

h2
n = (an + f)2 − (αf + b)2

= (an + f)2 − (f + αb)2

= (an − αb)(an + αb + 2f).

Observe that this and Lemma 3.5.2 imply hn non-constant for all n such that
an != αb, and this is the case for al but at most one index m since the an are
pairwise distinct. Define

vn =
fn

an − αb

for each n != m, and note that each vi is non-constant. Take any two indices
i != j such that i, j != m. We have

(vi − vj)(vi + vj) = v2
i − v2

j = (ai + αb + 2f)− (aj + αb + 2f) = ai − aj

and this implies that vi − vj and vi + vj are constant, therefore each

vi =
1

2
((vi + vj) + (vi − vj))

is constant. This is the desired contradiction, and the proof of Theorem 3.5.1
is complete.

3.6 Undecidability Results

In this section we prove Theorem 3.2.4.
We will use the positive answer to Problems BP(Mp) and BP(Ap). First

we define the following Lz
2-formulas:

Bu[x, y] : ∃u1 . . . ∃u35

(
∧35

i=1P2(ui)
)
∧

(
∧34

i=2ui−1 + ui+1 = 2ui + 2
)

∧ x = u1 ∧ 2y + 1 = u2 − u1

Sq[x, y] : Bu[x, y] ∧ Bu[fzx, fzfzy]

Prod[x, y, w] : ∃u∃vP2(u) ∧ P2(v)∧
(Sq[x + y, u] ∧ Sq[x− y, v] ∧ u = v + 4w) .

Note that all the above formulas are positive existential.
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Next we define the following systems of equations:

Busys(a, b) :






q2
3 − 2q2

2 + q2
1 = 2

...

q2
35 − 2q2

34 + q2
33 = 2

q2
1 = b

q2
2 − q2

1 = 2a + 1

Sqsys(a, b) :

{
Busys(a, b)

Busys(za, z2b)

and

Prodsys(a, b, c) :






Sq(a, x2)

Sq(b, y2)

Sq(a + b, w2)

w2 = x2 + 2c + y2

where it is understood that, if we consider a system of equations built up
by several of these systems, then the unknowns in each of them are distinct.
For example, in the definition of Sqsys, since we use twice Busys, it is under-
stood that the variables qi in the first Busys are distinct from the variables qi

appearing in the second Busys.
Note that the system Prodsys(x2, y2, z2) (where x, y, z also are considered

as unknowns) is a system of diagonal quadratic equations with coefficients
in Z[z].

From the definition of the above formulas and systems of equations, it is
clear that given a, b, c ∈ R, where R = Ap or Mp, we have the following:

• R |= Bu[a, b] if and only if the system Busys(a, b) has a solution in R

• R |= Sq[a, b] if and only if the system Sqsys(a, b) has a solution in R

• R |= Prod[a, b, c] if and only if the system Prodsys(a, b, c) has a solution
in R.

Lemma 3.6.1. If a, b, c ∈ R, where R = Ap or R = Mp, then the following
statements are equivalent:

i. ab = c
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ii. R |= Prod[a, b, c]

iii. Prodsys(a, b, c) has a solution in R.

Proof. Because of the above discussion, it is enough to prove that item i is
equivalent to item ii. By Corollary 3.2.2 we have : R satisfies Bu[a, b] if and
only if b = a2 or a and b are constants. Thus, R satisfies Sq[a, b] if and only
if b = a2. Therefore, R satisfies Prod[a, b, c] if and only if c = ab.

Proof of Theorem 3.2.4. This is a consequence of the equivalence of items i
and ii in Lemma 3.6.1, and the fact that Prod[x, y, z] is a positive existential
Lz

2-formula.

Proof of Theorem 3.2.6. From Theorem 3.2.4 we obtain the non-existence of
an algorithm to solve any of the following problems:

1. Given a system

r∑

i=1

aikx
2
i +

s∑

j=1

bjkyj = ck, k = 1, . . . , t (3.17)

with all the aik, bjk, ck in Z[z], to decide whether or not the system has
a solution in Ap.

2. Given a system

r∑

i=1

aikx
2
i +

s∑

j=1

bjkyj = ck, k = 1, . . . , t (3.18)

with all the aik, bjk, ck in Z[z], and given two sets I ⊆ {1, . . . , r} and
J ⊆ {1, . . . , s}, to decide whether or not the system has a solution in
Mp satisfying xi(0) = 0 for each i ∈ I and yj(0) = 0 for each k ∈ J .

To prove item (1) of the theorem, consider the diagonal quadratic system

r∑

i=1

aikx
2
i +

s∑

k=1

bjk(u
2
j − v2

j ) = ck, k = 1, . . . , t. (3.19)

System (3.19) has a solution in Ap if and only if System (3.17) has, because
of the identity

x =

(
x + 1

2

)2

−
(

x− 1

2

)2

.
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In order to prove item (2) of the theorem, we cannot perform the same
substitution as before in order to eliminate the degree-one part, because a
technical problem arises with the vanishing conditions. Namely, if we replace
an unknown yj with condition yj(0) = 0 by (u2

j − v2
j ) as in the previous case,

then the vanishing condition becomes (u2
j − v2

j )(0) = 0, which is useless
because we want vanishing conditions on the unknowns, not on polynomial
expressions of the unknowns. To fix this problem, we will use again the
positive answer to Büchi’s problem in order to perform a substitution in such
a way that vanishing conditions on unknowns become vanishing conditions
on the new unknowns. We will obtain not one but several diagonal quadratic
systems, but this will be enough to prove the Theorem.

Consider the following 2|J | diagonal quadratic systems Sα indexed by
α ⊆ J :






r∑

i=1

aikx
2
i +

∑

j∈α

bjk(u
2
j2 − u2

j1 − 1) +
∑

1≤j≤s
j /∈J

bjk(w
2
j2 − w2

j1) = ck, k = 1, . . . , t

u2
j3 − 2u2

j2 + u2
j1 = 2, j ∈ α
...

u2
j35 − 2u2

j34 + u2
j33 = 2, j ∈ α

Prod(u2
j1, v

2
j , 1), j ∈ α

with conditions xi(0) = 0 for each i ∈ I and uj1(0) = 0 for each j ∈ α.
We make the following two obvious observations about functions in Mp:

(A) f(0) = 0 and f is constant if and only if f = 0.

(B) f(0) = 0 and f is non-constant if and only if f(0) = 0 and f is invert-
ible.

We will prove now that System (3.18) has a solution in Mp satisfying its
corresponding vanishing conditions if and only at least one of the Systems
Sα has a solution in Mp satisfying its vanishing conditions.

First, assume that System (3.18) has a solution xi = fi, yj = gj satisfying
the vanishing conditions and define

α = {j ∈ J : gj is non-constant}.

51



3.6. Undecidability Results

Then Sα has the following solution satisfying its vanishing conditions (by
Lemma 3.6.1):

xi = fi

ujl = gj

2 + l − 1 for j ∈ α

vj = 1
ujl

for j ∈ α

wj1 = gj−1
2 for 1 ≤ j ≤ s and j /∈ J

wj2 = gj+1
2 for 1 ≤ j ≤ s and j /∈ J.

Observe that the yj with j ∈ J − α have been replaced by 0 (observation
(A)).

Assume now that System Sα has the following solution satisfying its van-
ishing conditions:

xi = χi

ujl = µjl for j ∈ α
vj = νj for j ∈ α

wj1 = ωj1 for 1 ≤ j ≤ s and j /∈ J
wj2 = ωj2 for 1 ≤ j ≤ s and j /∈ J.

Then the following is a solution of System (3.18):

xi = χi

yj = 0 for j ∈ J − α

yj = µ2
j2 − µ2

j1 − 1 for j ∈ α

yj = ω2
j2 − ω2

j1 for 1 ≤ j ≤ s and j /∈ J.

It only remains to show that this solution satisfies the vanishing conditions
of System (3.18). Indeed, the condition xi(0) = 0 for i ∈ I holds because
it is the same vanishing condition on the xi as in Sα. For j ∈ J we have
yj(0) = 0, which is trivially true for j ∈ J −α. For j ∈ α we have µj1(0) = 0
(this is a condition on Sα) and µj1 is invertible (its inverse is ±νj). Therefore,
by observation (B) the function µj1 is non-constant. Observe that (µjl)35

l=1 is
a Büchi sequence with a non-constant term, hence, by Corollary 3.2.2 there
exists a non-cosntant γj such that µ2

jl = (γj + l)2. This implies that

yj = µ2
j2 − µ2

j1 − 1 = 2(γj + 1) = 2µj1

hence, using the condition µj1(0) = 0 for j ∈ α on Sα, we obtain yj(0) =
2µj1(0) = 0.
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3.7 Some geometric results

This section contains most of the geometric results that we will use in the
next two sections. The arguments given here essentially are adaptations of
the arguments given by Vojta in [Vo2]. For the sake of completeness, we will
perform most of the computations.

During the whole section, we assume that the base field is C, and we
write g(X) for the genus of the curve X.

Let S = (δ2, δ3, . . .) be a sequence in C∗ with pairwise distinct terms. Set
X2 = P2(C) and for n > 2 let Xn ⊂ Pn(C) be the algebraic set defined by
the equations

δ2x
2
i = δiδ2(δi − δ2)x

2
0 − (δi − δ2)x

2
1 + δix

2
2 (3.20)

as the index i ranges from 3 to n. If [x0 : · · · : xn] ∈ Xn, it is easy to see that
at most 2 of the xi can be zero, hence Xn ⊆ U0 ∪ U1 ∪ U2 where Ui is the
open set {xi != 0}.

Lemma 3.7.1. The variety Xn is a smooth surface in Pn, contains the lines

±x1 = ±x2 − δ2x0 = · · · = ±xn − δnx0 (3.21)

and has canonical sheaf OXn(n− 5). In particular, Xn is of general type for
n ≥ 6.

Proof. Observe that, for [x0 : · · · , xn] ∈ Xn ∩ U0 the matrix





(δ3 − δ2)x1 −δ3x2 δ2x3 0 · · · 0

(δ4 − δ2)x1 −δ4x2 0 δ2x4
. . . 0

...
...

...
. . . . . .

...
(δn − δ2)x1 −δnx2 0 0 · · · δ2xn




(3.22)

has rank n− 2. Indeed, there are 3 cases depending on the number of zeroes
among x3, . . . , xn:

1. No zero: trivial.

2. One zero: at least one of the first two columns has no zero.
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3. Two zeroes: suppose that xi = xj = 0 where 3 ≤ i < j ≤ n, then no
entry in the first two columns is zero. Therefore

∣∣∣∣
(δi − δ2)x1 −δix2

(δj − δ2)x1 −δjx2

∣∣∣∣ = δ2x1x2(δj − δi) != 0.

hence, Xn is nonsingular at each point in Xn ∩ U0. The verification that Xn

is nonsingular at each point in Xn ∩U1 and Xn ∩U2 is quite similar, but the
determinants in case (3) are

∣∣∣∣
−δiδ2(δi − δ2)x0 −δix2

−δjδ2(δj − δ2)x0 −δjx2

∣∣∣∣ = δ2δiδjx0x2(δj − δi) != 0

and
∣∣∣∣
−δiδ2(δi − δ2)x0 (δi − δ2)x1

−δjδ2(δj − δ2)x0 (δj − δ2)x1

∣∣∣∣ = δ2x0x1(δj − δi)(δj − δ2)(δi − δ2) != 0

respectively. Therefore Xn is a smooth surface in Pn.
The claim about the lines (3.21) is an easy computation (looking at U0 ∩

Xn).
Finally, since Xn is a complete intersection surface in Pn defined as the

intersection of n− 2 smooth hypersurfaces of degree 2, its canonical sheaf is

O(2(n− 2)− n− 1) = O(n− 5).

Definition 3.7.2. Define the trivial lines of Xn as the lines (3.21).

Observe that for n ≥ 3 the rational map

[x0 : · · · : xn] %→ [x0 : · · · : xn−1]

induces a finite morphism

πn : Xn → Xn−1

of degree 2 ramified along the curve Cn ⊂ Xn defined by xn = 0. This curve
is nonsingular. Indeed, if

[x0 : · · · : xn] ∈ Cn = Xn ∩ {xn = 0}
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then at most one of the x0, . . . , xn−1 can be zero and the remaining verifica-
tion can be performed as in the proof of Lemma 3.7.1 for cases (2) and (3)
since xn = 0, but adding the extra row (0, . . . , 0, 1) to each matrix.

Define φn = π3 ◦ · · · ◦ πn. We note that the image of Cn in X2 via φn is

δnδ2(δn − δ2)x
2
0 − (δn − δ2)x

2
1 + δnx

2
2 = 0. (3.23)

Definition 3.7.3. Let X be a smooth surface over C and let L be an invert-
ible sheaf on X. Take a section

ω ∈ H0(X,L⊗ S2(Ω1
X)).

Let Y ⊂ X be a curve with normalization i : Ỹ → Y . We say that Y is
ω-integral if

i∗ω ∈ H0(Ỹ , i∗(L)⊗ S2(Ω1
Ỹ
))

vanishes identically on Ỹ .

On U0 ⊂ P2 = X2 define

ω = x1x2dx1 ⊗ dx1 + (δ2
2 − x2

1 − x2
2)dx1 ⊗ dx2 + x1x2dx2 ⊗ dx2.

Note that, after the change of variables y0 = x0/x1 and y2 = x2/x1, on
U0 ∩ U1, we have

ω =
1

y5
0

(
δ2
2y0y2dy0 ⊗ dy0 + (1− δ2

2y
2
0 − y2

2)dy0 ⊗ dy2 + y0y2dy2 ⊗ dy2

)

hence ω extends to a section

ω2 ∈ H0(X2,OX2(5)⊗ S2(Ω1
X2

)).

Lemma 3.7.4. Write [x0 : x1 : x2] for homogeneous coordinates on P2 = X2.
The only ω2-integral curves on X2 are

1. x0 = 0, x1 = 0, and x2 = 0

2. the four trivial lines

3. the conics δ2c(c− δ2)x2
0 − (c− δ2)x2

1 + cx2
2 = 0 for c != 0, δ2.

Moreover, if f : C → X2(C) is a non-constant holomorphic map satisfying
f ∗ω2 = 0 then its image is contained in one of these curves.
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Proof. It is easy to see that curves of type (1) and (2) are ω2-integral. Let’s
show that curves of type (3) are ω2-integral. If we look at the affine chart
U0, on a curve of type (3) we have

(c− δ2)x1dx1 = cx2dx2

hence

ω2 =

(
c2x3

2

(c− δ2)2x1
+

cx2

(c− δ2)x1
(δ2

2 − x2
1 − x2

2) + x1x2

)
dx2 ⊗ dx2

=
(
c2x2

2 + c(c− δ2)(δ
2
2 − x2

1 − x2
2) + (c− δ2)

2x2
1

) x2dx2 ⊗ dx2

(c− δ2)2x1

=
(
δ2
2c(c− δ2)− δ2(c− δ2)x

2
1 + δ2cx

2
2

) x2dx2 ⊗ dx2

(c− δ2)2x1

= δ2

(
δ2c(c− δ2)− (c− δ2)x

2
1 + cx2

2

) x2dx2 ⊗ dx2

(c− δ2)2x1
= 0.

Conversely, let Y be an ω2-integral curve on X2 not of type (1) or (2).
We will show that Y is of type (3). Let P ∈ Y be a regular point of Y not
in a line of type (1) nor (2). As Y is regular at P , in some neighborhood
of P one can assume that one affine coordinate is function of the other, say
x1 = x1(x2). Since Y is ω2-integral, we get a quadratic ordinary differential
equation for x1. Hence there are 2 local solutions at P . But exactly 2 curves
of type (3) pass through P . Therefore, Y is locally of type (3) on a dense set
of points, and so Y is of type (3).

A similar computation proves the assertion about holomorphic maps.

Observe that the image of Cn in X2 is ω2-integral (see Equation (3.23)).
Write ω′n = φ∗nω2 and note that

ω′n ∈ H0(Xn,OXn(5)⊗ S2(Ω1
Xn

))

because π∗nOXn−1(1) = OXn(1) for each n ≥ 3.

Lemma 3.7.5. Let n ≥ 6 be an integer. The only ω′n-integral curves on Xn

are

1. the pull-backs via φn of the coordinate axes on X2 to Xn

2. the trivial lines
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3. the pull-backs via φn of the conics δ2c(c− δ2)x2
0 − (c− δ2)x2

1 + cx2
2 = 0

for c != 0, δ2.

These curves are nonsingular and the only one with genus ≤ 2n−3 are the
trivial lines, with genus 0. Moreover, if h : C → Xn(C) is a non-constant
holomorphic map satisfying h∗ω′n = 0 then the image of h is contained in one
of these curves.

Proof. Let Y ⊆ Xn be a ω′n-integral curve. Write

Z = φn(Y ) and Y ′ = φ∗n(Z).

Note that Z is ω2-integral. Hence we have 3 cases by Lemma 3.7.4.
Suppose that

Z = {xj = 0} ⊆ X2

is a coordinate axe. Then

Y ′ = Xn ∩ {xj = 0}

is nonsingular by a verification similar to the one done for Cn. Since Z meets
all the curves φ(Ci) for i = 3, . . . , n and they form the branch divisor, Y ′ is
connected. Hence Y ′ = Y and Y is nonsingular. Note that

φn|Y : Y → Z

has degree 2n−2 and is ramified at 2n−2(n− 2) points, hence

g(Y ) = 2n−3(n− 4) + 1

by the Hurwitz formula.
Now suppose that Z is a trivial line in X2. Replacing the value of x2 in

terms of x1 in the defining equations of Xn we obtain that Y is a trivial line,
with genus 0.

Finally suppose that Z is a curve of type (3) in Lemma 3.7.4. By the
same argument as in the first case, Y ′ is connected. One can show that Y ′ is
nonsingular by a direct computation (on the affine chart U0 we add the row

((c− δ2)x1,−cx2, 0, . . . , 0)

in 3.22, and for U1, U2 the computation is similar) therefore Y = Y ′. Consider
the map φn|Y : Y → Z. This map induces a morphism ψn : Y → Z. If Y lies
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above one of the curves Ci then deg(ψn) = 2n−3 and if Y does not lie above
any Ci then deg(ψn) = 2n−2. Anyway, φn is ramified at least in

(n− 3) · 4 · 2n−4 = 2n−2(n− 3)

points and g(Z) = 0, thus for n ≥ 6 by the Hurwitz formula we have

g(Y ) > −2n−2 + 2n−3(n− 3) = 2n−3(n− 5) ≥ 2n−3.

The assertion about holomorphic maps follows from taking f = φn ◦ h in
Lemma 3.7.4 and noting that f is not constant since φn is finite, and

f ∗ω2 = h∗ψ∗nω2 = h∗ω′n = 0.

Lemma 3.7.6. Let π : X ′ → X be a finite morphism of smooth projective
surfaces over C, ramified along a curve Y ⊂ X ′. Let L be a invertible sheaf
on X, and take a section

ω ∈ H0(X,L⊗ S2(Ω1
X)).

If π(Y ) is ω-integral, then

π∗ω ∈ H0(X ′, π∗L⊗ S2(Ω1
X′))

vanishes identically on Y .

Proof. This is a particular case of [Vo2] Lemma 2.10.

We recall to the reader that ω′n = φ∗nω2.

Lemma 3.7.7. Define ω′2 = ω2. The sections ω′n determine sections

ωn ∈ H0(Xn,OXn(7− n)⊗ S2(Ω1
Xn

))

such that each ωn-integral curve is a ω′n-integral curve. Moreover, the ωn-
integral curves are the same as the ω′n-integral curves, with the only possible
exception of ω′-integral curves lying over C3, . . . , Cn.
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Proof. By induction. The case n = 2 is clear. Assume it for n = m− 1 with
m > 2. Note that πm(Cm) does not lie over any of the curves C3, . . . , Cm−1

because they have different images in X2, hence πm(Cm) is ωm−1-integral by
Lemma 3.7.5 and induction hypothesis. Consider the section

π∗mωm−1 ∈ H0(Xm, π∗mOXm−1(7− (m− 1))⊗ S2(Ω1
Xm

))

= H0(Xm,OXm(7− (m− 1))⊗ S2(Ω1
Xm

))

(recall that π∗nOXn−1(1) = OXn(1)). By Lemma 3.7.6 we have that π∗mωm−1

vanishes identically on Cm, thus π∗mωm−1 determines a global section ωm in

OXm(7−m)⊗ S2(Ω1
Xm

)

by taking

ωm =
1

xm
π∗mωm−1.

Call Um the open set of Xm obtained by deleting the curves lying over any of
the C3, . . . , Cm. The sections ω′m and ωm agree on Um up to a non-vanishing
factor, therefore the ω′m-integral curves and the ωm-integral curves are the
same on Um. A curve lying over some Ci is of type (3) in Lemma 3.7.5 (see
Equation 3.23), hence it is ω′m-integral, and we are done.

Corollary 3.7.8. For n ≥ 6, the only ωn-integral curves with genus ≤ 2n−3

on Xn are the trivial lines, with genus 0. Moreover, if h : C → Xn(C) is a
non-constant holomorphic map such that h∗ωn = 0 then the image of h lies
in a trivial line.

Proof. From Lemma 3.7.5 and Lemma 3.7.7 we deduce the first part of the
Lemma, and the fact that the image of h lies in a curve with genus > 2n−3

or in a trivial line. Use Picard’s Theorem to conclude.

Theorem 3.7.9. For n ≥ 8, the only curves of genus 0 or 1 on Xn are the
trivial lines.

Proof. Let Y ⊆ Xn be a curve of genus 0 or 1 and write i : Ỹ → Y for its
normalization. On the one hand, the curve Ỹ has genus 0 or 1, hence KỸ has
non-positive degree. On the other hand, the sheaf i∗OXn(7−n) has negative
degree because n ≥ 8. Therefore,

i∗OXn(7− n)⊗K⊗2
Ỹ

has no nonzero global section on Ỹ , hence i∗ωn vanishes identically on Ỹ .
From this we deduce that Y is a ωn-integral curve with genus ≤ 1 on Xn,
and we are done by Corollary 3.7.8.
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3.8 Correspondence between polynomials and
points

We understand that, given a sequence δ2, δ3, . . . of distinct non-zero elements
in K/Q, the surfaces Xn are defined by Equation (3.20).

Lemma 3.8.1. Fix a sequence (a1, a2, . . . an) in K/Q, with n ≥ 3 and pair-
wise distinct ai. Set δi = ai − a1 for i ≥ 2. There is an injective map from
the set of monic polynomials f ∈ K[x] of degree two satisfying that f(ai) is
a square for i = 1, . . . , n, to the set

Xn(K) ∩ {x0 != 0}.

The map is
j(f) = [1 :

√
f(a1) : · · · :

√
f(an)]

(for a fixed choice of square roots) and has the property that f is a square in
K[x] if and only if j(f) lies in a trivial line of Xn.

Proof. Take a polynomial

f = x2 + ax + b ∈ K[x]

with the property that

f(a1) = b2
1, . . . , f(an) = b2

n

are squares in K, then

δ2b
2
i = (a2 − a1)f(ai) = (a2 − a1)(a

2
i + uai + v)

= (ai − a1)(a2 − a1)(ai − a2) · 1− (ai − a2)(a
2
1 + ua1 + v)+

(ai − a1)(a
2
2 + ua2 + v)

= δiδ2(δi − δ2)1
2 − (δi − δ2)b

2
1 + δib

2
2

(3.24)

Therefore, for each polynomial

f = x2 + ux + v ∈ K[x]

with the property that f(a1), . . . , f(an) are squares in K, we have that

j(f) ∈ Xn(K) ∩ {x0 != 0}.
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Now we check injectivity. Given a point

p = [1 : b1 : · · · : bn] ∈ Xn(K) ∩ {x0 != 0},

define

fp = x2 +
b2
2 − b2

1 − a2
2 + a2

1

a2 − a1
x +

a1a2(a2 − a1)− a1b2
2 + a2b2

1

a2 − a1
∈ K[x]

The polynomial fp is the only monic polynomial of degree two satisfying
fp(a1) = b2

1 and fp(a2) = b2
2. Moreover, after a standard computation we get

δ2fp(a1 + δi) = δiδ2(δi − δ2)− (δi − δ2)b
2
1 + δib

2
2

and, since
p ∈ Xn(K) ∩ {x0 != 0},

we obtain
δ2fp(a1 + δi) = δ2b

2
i .

Therefore, we have fp(ai) = b2
i for each i. The uniqueness of fp proves that

j is injective.
Assume that

j(g) = [1 : b1 : · · · : bn]

lies in a trivial line for some

g = x2 + ux + v ∈ K[x].

Thus we have an equation of the kind ±b2 − δ2 = ±b1, say

ε′b2 = εb1 + a2 − a1

for ε, ε′ ∈ {1,−1}. Therefore, we have

b2
2 = b2

1 + 2ε(a2 − a1)b1 + (a2 − a1)
2

and we get
(

b2
2 − b2

1 − a2
2 + a2

1

a2 − a1

)2

− 4

(
a1a2(a2 − a1)− a1b2

2 + a2b2
1

a2 − a1

)
= 4b2

1(ε
2 − 1) = 0

So, using the above definition of fp, we have

g = fj(g) =
(
x +

u

2

)2

.
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3.9 Number and function fields, meromor-
phic functions

We use the same notation as in Section 3.7. First we prove Theorem 3.2.7.

Proof. We follow the notation of Section 3.7. For i = 2, . . . , 8 set δi = ai−a1

and note that X2, . . . , X8 are defined over K. If Conjecture 3.1.2 holds then
there exists a proper Zariski closed subset Z ⊆ X8 such that all the K-
rational points of X8 belong to Z. Given an irreducible curve Y ⊆ Xn, if
Y (K) is dense in Y (C) then Y is defined over K and, by Faltings’ Theorem, Y
has genus at most 1. Therefore we can take Z as the union of a finite number
of curves on X8 with genus 0 or 1, up to a finite number of K-rational points.
We conclude by Theorem 3.7.9 and Lemma 3.8.1.

Let us prove Corollary 3.2.8.

Proof. Since the set E(Q, (ai)i) is finite, it is enough to show that a monic
polynomial f ∈ Z[z] which is not a square, is such that f(n) is a square at
most for a finite number of n ∈ Z. Indeed, the graph of

y =
√

f(x)

is asymptotic to the graph of y = |x|, and hence has no integer point for
large enough |x|.

The next proposition will be useful to prove Theorem 3.2.9.

Proposition 3.9.1. Let n ≥ 8. If Y ⊆ Xn is a curve, its normalization is
i : Ỹ → Y and g(Ỹ ) < n−3

4 , then Y is an ωn-integral curve.

Proof. Let i : Ỹ → Y be the normalization map. We have

i∗ωn ∈ H0(Xn, i
∗O(7− n)⊗K⊗2

Ỹ
).

As deg i∗OXn(1) ≥ 1, for n ≥ 8 we get

deg
(
i∗OXn(7− n)⊗K⊗2

Ỹ

)
= (7− n) deg i∗OXn(1) + 4g(ỹ)− 4

≤ 7− n + 4g(Ỹ )− 4

= 4g(Ỹ ) + 3− n < 0.

Therefore, i∗ωn is zero in Ỹ .
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Now we present the proof of Theorem 3.2.9.

Proof. We can assume F = C. Suppose P has some non-constant coefficient
and

P (ai) = h2
i , i = 1, . . . ,M

for some ai ∈ C and hi ∈ K(C). Using Lemma 3.8.1 with K = K(C), one
can verify that

h = [1 : h1 : . . . : hM ]

defines a non-constant morphism h : C → XM , where we consider δi = ai−a1

in the definition of XM . Since C is a complete variety we obtain that im(h) is
algebraic. Let Y be an irreducible curve containing im(h), since h is dominant
on Y , we conclude that h factors through Ỹ . By Riemann-Hurwitz Formula,
we have

g(Ỹ ) ≤ g(C) ≤ M

4
− 1 <

M − 3

4
hence Y is a ωM integral curve by the previous Lemma. Finally, Lemma 3.7.8
implies that im(h) is contained in a trivial line, and the conclusion follows
from Lemma 3.8.1.

Before proving Theorem 3.2.10 we need to fix some notation in complex
Nevanlinna theory. We refer the reader to the notes [Vo3] on Diophantine
Approximation and Complex Nevanlinna Theory, where Vojta gives a concise
and self-contained introduction to this topic. We follow the notation used
there.

Let X be a smooth projective variety over C. For each divisor D ∈
Div(X) and for each holomorphic map f : C → X whose image is not
contained in the support of D, we denote by

TD,f : R+ → R

the Nevanlinna height function associated to D and f . Moreover, one can
define (up to a bounded term as r varies) a Nevanlinna height function for line
sheaves by letting TL,f = TD,f , where D ∈ Div(X) can be any divisor such
that L = O(D) and the image of f is not contained in D. There is a formal
analogy between these height functions and the ones produced by the Weil
Height Machine in the context of heights for algebraic points on varieties.
Indeed, this is part of a deep formal analogy between Nevanlina Theory for
holomorphic maps and Diophantine Approximation; see for example [O] or
[Vo1].
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We need the following result:

Theorem 3.9.2 (See [Vo2] Prop. 6.1). Let X be a complex non-singular
projective variety, f : C → X an holomorphic curve, d > 0 an integer, L a
line sheaf on X, ω a global section of

L∨ ⊗ SdΩ1
X ,

and A an ample line sheaf on X. If f ∗ω is not identically zero, then there
exists a set U ⊆ R+ of finite Lebesgue measure such that for any r /∈ U we
have

TL,f (r) ≤ O(log TA,f (r)) + o(log r).

Proof of Theorem 3.2.10. Let P ∈M[X] be a monic second degree polyno-
mial, with some non-constant coefficient, which is not a square in M[X], and
assume that there exists a1, a2, . . . , a8 ∈ C such that P (ai) is a square in M
for each i, say √

P (ai) = hi ∈M.

Since P has some non-constant coefficient, some of the hi is non-constant.
By Lemma 3.8.1 we have that

h = [1 : h1 : · · · : h8]

does not belong to a trivial line of X8(M), that is, the image of the non-
constant holomorphic map h : C → X8(C) is not contained in the trivial
lines.

Now take L = O(1). Since L is the line sheaf associated to a hyperplane
divisor on X8, it is very ample. Note that

O(1)∨ 3 O(−1)

and consider the section ω8 of

O(−1)⊗ S2Ω1
X8

.

Taking
L = A = O(1),

f = h, d = 2 and ω = ω8 in Theorem 3.9.2 we conclude that h∗ω8 = 0 because
h is non-constant. By Corollary 3.7.8, the image of h must be contained in
the trivial lines, a contradiction.
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Chapter 4

Uniform Definability and
Undecidability in Classes of
Structures

This is joint work with Thanases Pheidas and Xavier Vidaux.

4.1 Introduction

It is well known that a system of Diophantine equations has a complex so-
lution if and only if it has a solution modulo infinitely many primes (see
[Nav]). Since there is an algorithm to solve the former problem, there is also
an algorithm to decide whether an arbitrary system of diophantine equations
has a solution in the finite field Fp for infinitely many primes p. In this work
we show that the situation is completely different if we replace the fields
Fp by rings of functions of positive characteristic and consider analogous
diophantine problems. For example, we show that the following problems
are undecidable: decide whether or not a system of diophantine equations
together with conditions of the form “x is non constant”, for some of the
unknowns x, has a solution in Fp[z] for

1. some odd prime p,

2. all odd primes p,

3. infinitely many odd primes p,
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4. all but possibly a finite number of odd primes p,

5. all primes p of the form 6k + 5, etc.

Indeed we prove such very general uniform undecidability results for large
classes of subrings of function fields of curves (of large enough characteristic) -
for example, for the class of all polynomial rings of odd positive characteristic.

There seems to be rather few results of this kind in the bibliography,
but there are several results on asymptotic (un)decidability : given a class
of structures, to decide whether or not a given formula is true for all but
finitely many of them. For example, in [CHr], Chatzidakis and Hrushovski
prove that a certain class of differential fields, each of them separately having
a decidable theory, has an asymptotic undecidable theory. On the other
hand, Hrushovski [Hr] and Macintyre [Mac] (independently) show that the
class of algebraically closed fields in positive characteristic, together with
the Frobenius map, is asymptotically decidable. Other results of the same
flavour can be found in [AxK12, AxK3, Ax, Rum].

In this work, we will be interested in positive existential theories, be-
cause of the obvious connection with Hilbert’s tenth problem, but the gen-
eral method that we develop is straightforward adaptable to decidability
questions about full theories.

On the way, we define positive existentially the relation “y is a ps-th
power of x” in a class of algebraic function fields whose fields of constants
are algebraic over Fp, for p large enough with respect to the genus.

Hilbert’s tenth problem (the tenth in the famous list that Hilbert gave
at the International Conference of Mathematicians in Sorbonne, in 1900) was:

to find a process according to which one can determine in a finite number of
steps whether a polynomial equation with integer coefficients has or does not
have integer solutions.

The problem was answered in 1971 when Y. Matijasevich, based on work
of J. Robinson, M. Davis and H. Putnam, proved that no such ‘process’ (in
modern terminology: algorithm) exists - and all this was built on the founda-
tional work of K. Goedel and A. Turing who laid the necessary foundations
in Logic. Later various authors asked similar questions for rings other than
the integers (starting with J. Denef and L. Lipshitz). One such question is
the following: What if we replace the integers by polynomials, say in one
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variable, with coefficients in a finite field Fq, with q = pn elements, where
p is the (prime) characteristic. The problem was answered by J. Denef in
[De1] and [De2], negatively again. In the modern terminology of Logic the
result is phrased The positive existential theory of a ring F [z] of polynomials
of the variable z over a field F , in the language Lz = {0, 1, +, ·, z}, is unde-
cidable. In this problem the considered polynomial equations are those with
coefficients in the natural image of Z[z] in F [z].

Later, a large number of similar results (mostly of a negative nature)
were established. The general flavor of these results is: if in place of Z in
Hilbert’s tenth problem we substitute a global ring or field, such as a ring
of polynomials or rational functions (or a finite extension), all the existing
results are negative (the positive existential theory is undecidable); almost
always in the language Lz or an extension of it by a finite list of symbols for
certain elements of the structure. In contrast, in local domains, such as a field
of p-adic numbers or power series, the results tend to be positive (decidable
existential theory, even decidable first order theory). But there are many
open problems, for example the question asked for C(z), the field of rational
functions with complex coefficients (or coefficients in any algebraically closed
field) and the field of formal power series over any reasonable field of positive
characteristic (e.g. over a finite field).

In order to state our results, we need to introduce a few notation. All
languages considered will be first order languages. Also, the word class will
always refer to a non-empty class of structures over a common language.

Notation 4.1.1. 1. We consider 0 to be a natural number.

2. All languages considered will be first order and equalitarian.

3. If L is a language, we will denote by FL (respectively F e
L, F

pe
L ) the

set of (respectively existential, positive existential) L-sentences, and if
M is an L-structure TL(M) (respectively T e

L, T pe
L ) will stand for the

(respectively existential, positive existential) L-theory of M.

4. If U is an L-structure and X is a subset of L, we will denote by UX the
L"X-structure in which we forget the interpretation of the symbols of
X. If U is a class of such L-structures, we will denote by UX the class
of corresponding L" X-structures.

5. If U is an L-structure and X is a set of symbols which are not in L
and which have a given interpretation in U, we will denote by UX the
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corresponding L ∪X-structure. If U is a class of such L-structures we
will denote by UX the corresponding class of L ∪X-structures.

6. All classes of structures are by default non-empty.

7. We define the following languages:

(a) LA = {0, 1, +, ·} is the language of rings;

(b) Lz = LA ∪ {z}, where z is a symbol of constant;

(c) Lz,ord = Lz ∪ {ord}, where ord is a unary predicate symbol;

(d) LT = LA ∪ {T}, where T is a unary predicate symbol;

(e) L∗T = {0, 1, +, |, R, T}, where | and R are binary relation symbols;

(f) L∗,+ = {0, 1, +, R}.

(g) L∗ = {0, 1, +, pos, R}, where pos is a unary relation symbol inter-
preted in Z as: “pos(x) if and only if x is non-negative”. We will
freely write x ≥ 0 when working over this language.

8. For each prime p, consider the following equivalence relation |p over Z:

x |p y if and only if there exists s ∈ Z such that y = ±xps.

We will refer to it as p-divisibility and denote its restriction to the
natural numbers by the same symbol.

9. Let Dp be the L∗T -structure (Z; 0, 1, +, |, |p, Z " {−1, 0, 1}) and

D = {Dp : p is prime}.

10. Let Np be the L∗,+-structure (N; 0, 1, +, |p) and

N = {Np : p is prime}.

11. Let Zp be the L∗-structure (Z; 0, 1, +,≥ 0, |p) and

Z = {Zp : p is prime}.
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12. All function fields will be considered as structures over Lz,ord, where z
is interpreted as a local parameter at a prime divisor p of the field over
its field of constants, and ord(x) will be interpreted as “the valuation
of x at p is non-negative”. The symbol z will just be the variable z in
the case of a rational function field F (z), and in this case ord(x) will
be interpreted as “the order of x at 0 is non-negative”.

13. Any subring B of a rational function field F (z), whose elements are
regular at 0, will be considered as an Lz-structure, where the symbol
z is interpreted as the variable z, or, in the case that B is a ring of
polynomials F [z], it will also be considered as an LT -structure, where
T (x) will be interpreted as “x is non-constant”.

Definition 4.1.2. Let L be a first order language, X be a non-empty proper
subset of L, and let U be a class of L-structures. We will say that a symbol
α ∈ X is uniformly L " X-definable in UX (or in U if there is no ambi-
guity), if there exists an L " X-formula which defines the interpretation of
α in each element of U . If moreover the formula is existential, respectively
positive existential, then we will say uniformly existentially L"X-definable,
respectively uniformly positive existentially L " X-definable (L " X-uped),
instead of just uniformly L" X-definable.

If the symbol α has the same name ‘x’ across its interpretations in ele-
ments of U , we will say that ‘x’ is uniformly L" {α}-definable. Also we may
say that the family of interpretations of α is uniformly definable in U instead
of saying that α is.

Let us give a few trivial examples to illustrate the definition:

• With the language {R, ·} and the class of all groups (where R(x) is
interpreted as “x is in the center” and the symbol · is interpreted as
the group law), the formula ∀y(xy = yx) uniformly {·}-defines R in
the class of all groups.

• With the language {e, ·} and the class of all groups (where e is inter-
preted as the identity element and · is interpreted as the group law),
the formula ∃y(x · y = y) uniformly positive existentially {·}-defines e
in U over the language {·}. So we shall say that the identity element
is {·}-uped in the class of all groups.
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Another elementary example is given by the following lemma which we
will prove in Section 4.2.

Lemma 4.1.3. The relation != is Lz-uped in the class of all polynomial rings
over fields, where z is interpreted as the variable.

Moret-Bailly in [MB] gives very general criteria for positive existential
(un)definability of the relation != in rings.

As a non-trivial example, we prove the following proposition in Section
4.2.

Proposition 4.1.4. Consider the language

L = {0, +,≤, R2}

and the structures
Cr = (Z; 0, +,≤, P r

2 )

where P r
2 (x) stands for “x is a square and r does not divide x”. The relation

≤ is {0, +, R2}-uped in the class U of all structures Cr with r ≥ 2.

Let us give an example where we do not have uniformity. Consider the
language L = LA ∪ {α}, where α is a symbol of constants. Consider the
L-structures Mk = (Z; 0, 1, +, ·, k), where α is interpreted as k in each Mk.
The formula x = k defines k over LA in each Mk, but there is no formula
that uniformly LA-defines α in the set {Mk : k ∈ Z}: such a formula ϕ(x)
would LA-define 2 in M2

{α} and 3 in M3
{α}, which is absurd as these two

structures are the same (the ring of integers). Note that with this example,
it is enough to consider two distinct structures. Next proposition shows that
one can have uniformity in each finite subfamily of a family of structures but
not in the whole family. The proof will be given in Section 4.2.

Proposition 4.1.5. Let C be the set of all finite fields Fp of prime character-
istic p. The relation “to be a square” is {0, 1, +}-uped in any finite subfamily
of C, but there is no infinite subfamily of C where it is {0, 1, +}-uped. Hence,
in particular, multiplication is not {0, 1, +}-uped in C.

A highly relevant result can be found in [CDM], where it is shown that
there is no formula in the language of rings that defines Fq in Fq2 for all but
finitely q (here q is any power of any prime).
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We will now present one of the main tools that will allow us to obtain
several uniform definitions. We first define a relation that has often been a
key point to codify the integers in rings of functions of positive characteristic
(see for example, by chronological order, [De2], [Ph1], [Ph2], [KR], [S1], [PZ1],
[S2], [Ei] and [ES]).

Definition 4.1.6. Let RA be the equivalence relation defined on A by:

RA(x, y) if and only if there exists s ∈ N such that either y = xps
or x = yps

,

where p is the characteristic of A. For short we will say that “there exists
s ∈ Z such that y = xps

.

In order to show that the above relation is uped in several classes of
structures, we need to introduce Büchi’s problem.

Let A be a commutative ring with unit and of positive characteristic
p > 2. Let C be a subring of A. If M ≥ 3, let us call an M-term Büchi se-
quence for (A, C) a sequence of M elements of A, not all in C, whose second
difference of squares is the constant sequence (2).

Büchi’s Problem for Rings of Characteristic p > 2:
BP(A, C, M) Is it true that for all N ≥ M , any N-term Büchi sequence (xn)
of (A, C) satisfies

x2
n = (x + n)ps+1, n = 1, . . . , N,

for some x ∈ A and some non-negative integer s?

Notation 4.1.7. If BP(A, C, M) has a positive answer for some M then we
will denote by M0(A, C) the least such M .

Note that M0(A, C), if it exists, is always at most the characteristic p of A
(as if there exists an M greater than p then the Büchi sequence is p-periodic;
see [PPV]).

We prove:

Theorem 4.1.8. If BP(A, C, M) has a positive answer then there exists a
positive existential LA-formula ϕM0(A,C)(x, y) with the following properties:

1. If RA(x, y) holds then A satisfies ϕM0(A,C)(x, y); and
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2. if either xy or x + y is not in C then: RA(x, y) holds if and only if A
satisfies ϕM0(A,C)(x, y).

In the cases relevant to this work, Büchi’s problem is known to have a
positive answer when (A, C, M) is

1. (F [z], F, 14) for any field F of characteristic p ≥ 17;

2. (F (z), F, 18) for any field F of characteristic p ≥ 19;

3. (K, F, 312g + 169) for any function field of a curve K of genus g, with
field of constants F , and of characteristic p ≥ 312g + 169.

For a reference, see [PV1] and [PV2] for Items 1 and 2, and [SV] for Item
3.

In order to uniformly define the relation RA in some classes of structures,
we need to introduce the following definition.

Definition 4.1.9. Let us call Büchi class any class C of pairs of rings such
that there exists an integer M so that BP(A, C, M) has a positive answer
for any (A, C) in the class. If C is a Büchi class, we denote by M(C) the
maximum of the set

{M0(A, C) : (A, C) in the class C}

and by C̄ the class of structures A such that (A, C) is in C for some C (so C̄
is the projection on the first component).

Note that M(C) may be greater than some of the characteristics of the A
in C̄ but this can happen for at most a finite number of characteristics.

Theorem 4.1.10. Let C be a Büchi class such that C is a field for each
pair (A, C) in the class. Suppose that for each pair (A, C) in the class C,
A is both an LT -structure and an Lz-structure, where T (x) is interpreted as
“x is transcendental over C” and z is a symbol of constant interpreted by
an element of A transcendental over C. There exist a positive existential
LT -formula ϕT

C (x, y) and a positive existential Lz-formula ϕz
C(x, y) with the

following properties:

1. ϕT
C (x, y) uniformly defines RA in C̄ (hence the collection of relations

RA is LT -uped in C̄); and
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2. ϕz
C(x, y) uniformly defines RA in C̄ (hence the collection of relations RA

is Lz-uped in C̄).

Here are some known Büchi classes where Theorem 4.1.10 applies:

1. Any non-empty subclass of the class of pairs (F [z], F ) where F [z] is a
polynomial ring over a field F of characteristic at least 17.

2. Any non-empty subclass of the class of pairs (F (z), F ) where F (z) is a
rational function field over a field F of characteristic at least 19.

3. Given an integer g0 ≥ 0, any non-empty subclass of the class of pairs
(A, C) where A is a function field of a curve of genus g ≤ g0 and of
positive characteristic at least 312g +169, with C the field of constants
of A.

Theorem 4.1.10 is enough for our purposes but, for sake of completeness,
we prove an analogous result for a relation weaker than RA, but which can
be applied in more general classes.

Theorem 4.1.11. Let C be a Büchi class. For each pair (A, C) in the class
C, suppose that A is an LT -structure where T (x) is interpreted as “x /∈ C”
and C has the following properties:

• for all x ∈ A, if 2x ∈ C then x ∈ C; and

• for all x ∈ A, if x2 ∈ C then x ∈ C.

Let RC
A be the relation defined by

RA(x, y) holds, and either x or y is not in C.

There exists a positive existential LT -formula ψT
C (x, y) with the following

property: ψT
C (x, y) uniformly defines RC

A in C̄ (hence the collection of re-
lations RC

A is LT -uped in C̄).

Notation 4.1.12. We will denote by Ω any class of Lz,ord, %=-structures such
that there exists a Büchi class C of pairs (K, C), where K is a function field
of a curve of genus at most some fixed integer g0 and C is the constant field
of K, such that for each Lz,ord, %=-structure M in Ω, there exists a pair (K, C)
in C such that:
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• the base set M of M is a subring of K and contains C;

• M contains some local parameter ξ at some prime divisor p;

• z is interpreted as ξ;

• ord(x) is interpreted as “the order of x at p is non-negative”;

• != is interpreted as usual.

Note that in the above notation, since there can be more than one choice
of ξ for a pair (K, C), several Lz,ord, %=-structures M may correspond to the
same pair (K, C) in the Büchi class. Note also that Theorem 4.1.10 applies
to the class of pairs (A, C) where A ranges in Ω and is seen as a ring.

Next theorem gives uniform definitions in other types of classes of struc-
tures.

Theorem 4.1.13. Multiplication is uniformly positive existentially

1. L∗,+-definable in N = {(N; 0, 1, +, |p) : p is prime};

2. L∗-definable in Z = {(Z; 0, 1, +,≤, |p) : p is prime}; and

3. L∗T -definable in D = {(Z; 0, 1, +, |, |p, Z " {−1, 0, 1}) : p is prime}.

Before stating our main results, we need to introduce the following defi-
nition.

Definition 4.1.14. Consider two languages L and L′. Let M be an L-
structure and U be a class of L′-structures. Let G be a set of L-sentences and
G ′ a set of L′-sentences. We will say that (G, M) is uniformly encodable in
(G ′,U) if there exists an algorithm A that, given a formula F ∈ G, returns a
formula A(F ) ∈ G ′ such that the following are equivalent:

• M satisfies F .

• Any structure U in U satisfies A(F ).

• There exists a structure U in U that satisfies A(F ).

Remark 4.1.15. Let A be an algorithm that uniformly encodes a pair (G, M)
in a pair (G ′,U), where G is a set of sentences over a language L and G ′ is
a set of sentences over a language L′.
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1. For any non-empty subset G0 of G, the algorithm A uniformly encodes
(G0, M) in (G ′,U).

2. For any set G ′0 of L′-sentences that contains G ′, the algorithm A uni-
formly encodes (G, M) in (G ′0,U).

3. For any non-empty subclass U0 of U , the algorithm A uniformly encodes
(G, M) in (G ′,U0).

4. For any language L′′ = L′ ∪ X, with L′ ∩ X = ∅, the algorithm A
uniformly encodes (G, M) in (G ′,UX), no matter the interpretation of
the elements of X given in the structures UX of UX .

5. For any language L′′ = L " X != ∅, if the set of L′′-formulas G ′′
which are in G is non-empty, then the algorithm A uniformly encodes
(G ′′, MX) in (G ′,U).

Uniform encodability can be used to show very strong undecidability re-
sults in the following way (the proof will be given in Section 4.3).

Theorem 4.1.16. Suppose that a pair (G, M) is uniformly encodable in a
pair (G ′,U) and that there is no algorithm to decide whether or not a formula
F in G is true in M. Let C be a non-empty collection of non-empty subclasses
of U . There is no algorithm to solve the following problem:

(P) Given F ∈ G ′, decide whether or not there exists a class V
in the collection C such that every structure U in V satisfies F .

Theorem 4.1.17. The pair (Fpe
LA

, N) is uniformly encodable in

1. (Fpe
L∗ ,Z);

2. (Fpe
L∗,+ ,N ); and

3. (Fpe
Lz,ord,$=

, Ω) (where Ω is any class as defined in Notation 4.1.12).

4. (Fpe
L , Ω) with

(a) L = Lz,ord if != is Lz,ord-uped in Ω.

(b) L = Lz, %= if ord is Lz, %=-uped in Ω.

(c) L = Lz if != and ord are Lz-uped in Ω.
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In the following corollary, we specify some classes Ω for which we do have
uniform definition of != or ord (for Item 1, we use Lemma 4.1.3).

Corollary 4.1.18. The pair (Fpe
LA

, N) is uniformly encodable in the pairs

1. (Fpe
Lz

, C̄), where C is any Büchi class of pairs (A, C) where C is a field
and A is a polynomial ring over C (in particular for the class of all
polynomial rings of characteristic at least 17).

2. (Fpe
Lz,ord

, C̄), where C is any Büchi class of pairs (A, C) where C is a
field and A is a rational function field over C (in particular for the
class of all rational function fields of characteristic at least 19).

3. (Fpe
Lz,ord

, C̄), where C is any Büchi class of pairs (A, C) where C is a field
and A is a function field of a curve of genus at most some fixed integer
g0, with constant field C (in particular for the class of all such function
fields of genus at most g0 whose characteristic is at least 312g + 169,
where g is the genus of the function field).

Theorem 4.1.19. The pair (Fpe
LA

, Z) is uniformly encodable in

1. (Fpe
L∗ ,Z);

2. (Fpe
L∗T

,D);

3. (Fpe
LT

, C), where C is the class of all polynomial rings over a field of odd
positive characteristic, where T (x) is interpreted in each structure as
“x is non-constant”.

Actually, the proof of Item 3 works (with only notational changes) in a
similar way to prove that the pair (FLA , Z) is uniformly encodable in (FLA , C),
where C is the class of all polynomial rings over a field of odd positive char-
acteristic.

We obtain the following corollary from Theorem 4.1.16 (choosing suitably
the class C of subclasses of U).

Corollary 4.1.20. Let L and U be such that the conclusion of Theorems
4.1.17 or 4.1.19 hold and suppose that U is infinite. There is no algorithm
to decide whether or not a positive existential L-sentence is true for (for
example):

1. some U in U (this item does not require U to be infinite),
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2. all U in U ,

3. infinitely many U in U ,

4. all but possibly finitely many U in U ,

5. each structure in a given subclass of U .

4.2 Examples of (non-)uniform definitions

The proof of Lemma 4.1.3 is an easy adaptation of the proof of the analogous
result over the integers (which we got from a talk by A. Shlapentokh).

Proof of Lemma 4.1.3. Consider the following positive existential Lz-formula

ϕ %=(t) : ∃x, u, v((zu− 1)((z + 1)v − 1) = tx).

We prove that ϕ %=(t) is satisfied in a polynomial ring F [z], where F is a field,
if and only if t is distinct from 0. First note that it is clear that if the formula
is satisfied then t is not 0 (since neither z nor z + 1 is invertible).

Suppose that t is non-zero. Since F [z] is a unique factorization domain,
we can write t as t0t1 in such a way that z does not divide t0 and z + 1 does
not divide t1. By Bézout’s identity, there exist polynomials u, xu, v and xv

such that zu + t0xu = 1 and (z + 1)v + t1xv = 1. Therefore, we have

(zu− 1)((z + 1)v − 1) = t0xut1xv = txuxv,

hence we can choose x = xuxv for the formula to be satisfied.

Proof of Proposition 4.1.5. Let X be a non-empty finite set of prime numbers
and let q be its maximum. The quantifier free {0, 1, +}-formula

q−1∨

i=0

x = i2

is satisfied in Fp if and only if x is a square, for each p in X.
Suppose that ϕ(x) is a positive existential {0, 1, +}-formula that defines

the relation “x is a square” in Fp for all primes p in an infinite set X. The
formula ϕ(x) is logically equivalent to a formula of the form

∃y1 . . . ∃yn

r∨

i=1

Li(x, y1, . . . , yn)
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where each Li is a formal system of linear equations. Hence, for each p ∈ X,
the set of x such that ϕ(x) is true in Fp, namely, the set of squares in Fp, is
the union of the projections on the variable x of the zero locus Hp

i of each
Li. Each Hp

i is an affine linear subspace of Fn+1
p or the empty set. Since the

projection Kp
i of each Hp

i on x is an affine linear subspace of Fp, it is either
the whole of Fp, a point or the empty set. From now on assume that p is
bigger than 2. Since there are p+1

2 squares in Fp, none of the Kp
i can be the

whole of Fp (as the union of the Kp
i is the set of squares in Fp). Hence the

number r of disjunctions in the formula ϕ is at least p+1
2 , which is absurd.

The rest of this section is dedicated to the proof of Proposition 4.1.4. If
A is a set of non-negative integers, then we define

A(n) = |A ∩ {1, 2, . . . , n}|

and

σ(A) = inf
n>0

A(n)

n
.

The function σ is known as the Shnirel’man density. If n ≥ 2 and A, A1, . . . , An

are sets of positive integers, we will write

n∑

i=1

Ai =

{
n∑

i=1

αi : αi ∈ Ai

}

and nA is the sum of n copies of A.
The two following fundamental results on Shnirel’man density can be

found in [Na, Chapter 11, Section 3].

Lemma 4.2.1. [Na, Lemma 11.2] If A and B are sets of non-negative inte-
gers such that 0 ∈ A ∩ B, σ(A) > 1

2 and σ(B) > 1
2 then A + B is the set of

non-negative integers.

Theorem 4.2.2. [Na, Theorem 11.2] If A1, . . . , At are sets of non-negative
integers containing 0, then we have

1− σ

(
t∑

i=1

Ai

)
≤

t∏

i=1

(1− σ(Ai)).
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By a theorem of Linnik, given any set B of non-negative integers with
σ(B) > 0, the set A = {x2 : x ∈ B} is a basis of finite order, that is, each
positive integer is a (uniformly) bounded sum of elements in A. We want to
show that the bound is the same for certain family of sets B.

Theorem 4.2.3. Let u ≥ 2 be an integer, and

C(u) = {n ∈ Z : u $ n}.

Each non-negative integer is the sum of at most 5940 squares of elements in
C(u).

Using this result (proven below), Proposition 4.1.4 follows easily:

Proof of Proposition 4.1.4. By Theorem 4.2.3, the following positive existen-
tial {0, +, R2}-formula uniformly defines the relation x ≥ 0 in the class of
structures Cr (which is enough to prove the result):

φ(x) : ∃x1, . . . , x5940

5940∧

i=1

(R2(xi) ∨ xi = 0) ∧ x =
5940∑

i=1

xi

where we recall that R2(x) is interpreted as “x is a square and r does not
divide x” in Cr.

We need two lemmas before we can prove Theorem 4.2.3.

Lemma 4.2.4. Let d, k be positive integers, let

Ai = {zi + 1, . . . , zi + k}

for 1 ≤ i ≤ d be sets of k consecutive integers and let

Bi = {zi + 1, . . . , zi + k − 1}

(take Bi empty if k = 1). Suppose that we have a set U ⊆ Rd satisfying the
following:

(1) U is non-empty,

(2) U is convex,

(3) πi(U) = πi(H i
zi+1 ∩ U) for 1 ≤ i ≤ d, where πi : Rd → Rd−1 deletes the

i-th coordinate and H i
x ⊆ Rd is the hyperplane xi = x.
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Then we have

(k − 1)d|U ∩
d∏

i=1

Ai| ≤ kd|U ∩
d∏

i=1

Bi|.

Proof. We fix k ≥ 1. Up to translation by the vector (z1, . . . , zd) we can
assume zi = 0 for each i, hence

Ai = A = {1, . . . , k}

and
Bi = B = {1, . . . , k − 1}

for each i. Define
1d = (1, . . . , 1)

and observe that 1d belongs to U (otherwise U would be empty by the hy-
pothesis (3)). Let ad ≥ 1 be a real number such that

(1, . . . , 1, ad) ∈ U

(this is possible because 1d ∈ U) and such that, if

(1, . . . , 1, l) ∈ U

for l ∈ A then ad ≥ l (this can be done because U is convex).
The proof goes by induction on d. Observe that for d = 1 the set U is just

an interval containing 1, thus the desired inequality clearly holds. Assume
that the result is true for d = n− 1 ≥ 1 and consider a set U ⊆ Rn satisfying
the hypotheses. For the rest of the proof, the set Hn

x will be considered inside
Rn. It is easy to see that, for any x ∈ [1, an] the set

Ux = πn(U ∩Hn
x ) ⊆ Rn−1

satisfies the hypotheses of the Lemma with d = n− 1 and z = 0, hence

(k − 1)n−1|An−1 ∩ Ux| ≤ kn−1|Bn−1 ∩ Ux|.

For x ∈ A we have

πn(Hn
x ∩ An ∩ U) = An−1 ∩ Ux

hence
|Hn

x ∩ An ∩ U | = |An−1 ∩ Ux|
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and similarly for x ∈ B we have

|Hn
x ∩Bn ∩ U | = |Bn−1 ∩ Ux|.

In particular, for x ∈ B (hence also x ∈ A), we have

(k − 1)n−1|Hn
x ∩ An ∩ U | ≤ kn−1|Hn

x ∩Bn ∩ U |. (4.1)

The hypothesis (2) and (3) on U implies

πn (Hn
k ∩ An ∩ U)× A ⊆ An ∩ U

which gives us

|Hn
k ∩ An ∩ U | ≤ 1

k
|An ∩ U |. (4.2)

Using the Inequalities (4.1) and (4.2) we obtain:

(k − 1)n|An ∩ U | = (k − 1)
∑

x∈A

(k − 1)n−1|Hn
x ∩ An ∩ U |

= (k − 1)n|Hn
k ∩ An ∩ U |+

(k − 1)
∑

x∈B

(k − 1)n−1|Hn
x ∩ An ∩ U |

≤ (k − 1)n 1

k
|An ∩ U |+ (k − 1)

∑

x∈B

kn−1|Hn
x ∩Bn ∩ U |

= (k − 1)n 1

k
|An ∩ U |+ (k − 1)kn−1|Bn ∩ U |

hence
(k(k − 1)n − (k − 1)n)|An ∩ U | ≤ (k − 1)kn|Bn ∩ U |

and we obtain finally

(k − 1)n|An ∩ U | ≤ kn|Bn ∩ U |.

Let d and k be positive integers, and r a positive real number. We let

Ld(r) = {v = (v1, . . . , vd) ∈ Zd : ‖v‖2 ≤ r, vi > 0 for 1 ≤ i ≤ d}
Ld,k(r) = {v = (v1, . . . , vd) ∈ Zd : ‖v‖2 ≤ r, vi > 0, k $ vi for 1 ≤ i ≤ d}.
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Lemma 4.2.5. We have

kd|Ld,k(r)| ≥ (k − 1)d|Ld(r)|.

Proof. Let U = D(0, r) be the d-dimensional closed euclidean ball of radius
r. Take integers zi ≥ 0 congruent to 0 modulo k for 1 ≤ i ≤ d such that

(z1 + 1, . . . , zd + 1) ∈ U,

(if this is not possible - for r being too small - then the conclusion follows).
Write z = (z1, . . . , zd) and define the sets Ai = Ai(z) and Bi = Bi(z) as in
Lemma 4.2.4. It is clear that, as z ranges over all the possible choices then
the sets

U ∩
d∏

i=1

Ai(z)

form a partition of Ld(r) and the sets

U ∩
d∏

i=1

Bi(z)

form a partition of Ld,k(r). For each fixed z, let

Uz = U ∩ {(x1, . . . , xd) : xi ≥ zi for each i}.

Note that
∣∣∣∣∣U ∩

d∏

i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣Uz ∩
d∏

i=1

Ai

∣∣∣∣∣ and

∣∣∣∣∣U ∩
d∏

i=1

Bi

∣∣∣∣∣ =

∣∣∣∣∣Uz ∩
d∏

i=1

Bi

∣∣∣∣∣

and note also that the hypothesis in Lemma 4.2.4 are satisfied for Uz, Ai(z)
and Bi(z). The result follows.

Proof of Theorem 4.2.3. Let r(n) be the number of ordered 6-tuples of inte-
gers (x1, . . . , x6) such that

n =
∑

x2
i ,

and let r′(n) be the number of ordered 6-tuples of integers having their non-
zero coordinates in C(u) and satisfying the same condition. Write

R(n) =
n∑

k=0

r(k) and R′(n) =
n∑

k=0

r′(k).
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Observe that R(n) is the number of integer points in the 6-dimensional
closed euclidean ball B(0,

√
n) of radius

√
n.

If z ∈ R6 define the box centered at z as the closed ball of radius 1/2 in
the ∞-norm centered at z and write it Bz. Observe that, if V is a set of N
integer points in R6, then

N = Vol

(
⋃

z∈V

Bz

)
.

Given n > 0 define

I(n) = Z6 ∩B(0,
√

n)

and

I ′(n) = {v ∈ In : u does not divide the nonzero coordinates of v}

hence we have

R(n) = |I(n)| = Vol




⋃

z∈I(n)

Bz





and

R′(n) = |I ′(n)| = Vol




⋃

z∈I′(n)

Bz





Moreover, decomposing I(n) and I ′(n) in lower dimensional parts we have

R(n) = 1 +
6∑

d=1

2d

(
6

d

)
|Ld(

√
n)|

and

R′(n) = 1 +
6∑

d=1

2d

(
6

d

)
|Ld,u(

√
n)|,

where
(
6
d

)
counts the number of non-zero components and 2d the distribution
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4.2. Examples of (non-)uniform definitions

of the signs. Hence, by Lemma 4.2.5 we get

R′(n) = 1 +
6∑

d=1

2d

(
6

d

)
|Ld,u(

√
n)|

≥ 1 +
6∑

d=1

(
u− 1

u

)d

2d

(
6

d

)
|Ld(

√
n)|

≥
(

u− 1

u

)6

R(n).

We have

B

(
0,
√

n−
√

6

2

)
⊆

⋃

z∈I(n)

Bz (4.3)

since if

||v||2 ≤
√

n−
√

6

2

then the nearest lattice point to v is at a distance at most
√

6/2. Therefore,
we have

R(n) ≥ Vol

(
B

(
0,
√

n−
√

6

2

))
=

π3

6

(
√

n−
√

6

2

)6

which gives a lower bound that will allow us to conclude.

R′(n) ≥
(

u− 1

u

)6 π3

6

(
√

n−
√

6

2

)6

.

Let us now look for an upper bound. Given n ≥ 1, let m(n) be the
number of integers k in {0, 1, . . . , n} satisfying r′(k) = 0 and write X(n) for
the set of these integers. Note that

• r′(0) = 1 != 0,

• for n > 0 we have r(n) < 40n2 (see [Na, Theorem 14.6]) and

• r′(n) ≤ r(n).
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4.2. Examples of (non-)uniform definitions

Therefore, we have the following upper bound for n ≥ 1:

R′(n) ≤ 1 +
∑

1≤k≤n
k/∈X(n)

r(k)

< 1 + 40
∑

1≤k≤n
k/∈X(n)

k2

≤ 1 + 40
n∑

k=m(n)+1

k2

= 1 + 40

(
2n3 + 3n2 + n

6
− 2m(n)3 + 3m(n)2 + m(n)

6

)

Set
S = {x2 : x ∈ C(u)} ∪{ 0}

and A = 6S. Since m(n) = n− A(n), we use for n ≥ 1 the upper and lower
bounds obtained for R′(n) to get

40

(
2n3 + 3n2 + n

6
− 2(n− A(n))3 + 3(n− A(n))2 + n− A(n)

6

)
+ 1 >

(
u− 1

u

)6 π3

6
(
√

n−
√

6/2)6.

Working out the left hand side one obtains

40

3
A(n)3 − 20(2n + 1)A(n)2 +

20(6n2 + 6n + 1)

3
A(n) + 1 >

(
u− 1

u

)6 π3

6
(
√

n−
√

6/2)6.

Let σn be such that A(n) = σnn. Note that 0 < σn ≤ 1 (recall that n ≥ 1
and 1 ∈ A). Since u ≥ 2 we have

(
u− 1

u

)6 π3

6
> 0.08,

hence for n > 3
40

3
σn(σ2

n − 3σn + 3)n3 + 20σn(2− σn)n2 +
20σn

3
n + 1 >

0.08

(
√

n−
√

6

2

)6

.
(4.4)
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4.3. Uniform encodings

If for some n ≥ 500 we have σn ≤ 0.0014 then the above inequality
and elementary calculus gives a contradiction. Hence σn > 0.0014 for each
n ≥ 500. On the other hand, as 1 ∈ A we have

σn ≥
1

499
> 0.0014

for n = 1, 2, . . . , 499. Note that these bounds are far from being optimal, but
they are enough for our purposes.

This proves that σn > 0.0014 for each n ≥ 1. Therefore we have σ(A) ≥
0.0014 and Theorem 4.2.2 implies

σ(495A) ≥ 1− (1− 0.0014)495 > 0.5.

By Lemma 4.2.1,
5940S = 990A = 2(495A)

is the set of non-negative integers.

4.3 Uniform encodings

4.3.1 Proof of Theorem 4.1.16 and Corollary 4.1.20

Proof of Theorem 4.1.16. Suppose that under the hypothesis of the theorem
there exists an algorithm A to solve Problem (P), and let B be the algorithm
that uniformly encodes (G, M) in (G ′,U). Let us show that the algorithm
obtained by first applying B and then A decides whether or not a formula in
G is satisfied by M (which is absurd). Let F be a formula in G and apply A
to the output G of F after applying B.

• if the answer is YES then there exists a non-empty class V in the
collection C such that every structure U in V satisfies G. In particular,
there exists at least one structure in U satisfying G. Therefore, M
satisfies F (by definition of uniform encodability).

• if the answer is NO then for each class V in the non-empty collection C,
there exists at least one structure U in V not satisfying G. In particular,
there exists at least one structure in U not satisfying G. Therefore, M
does not satisfy F (by definition of uniform encodability).
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4.3. Uniform encodings

Proof of Corollary 4.1.20. We list by item the collection C needed to apply
Theorem 4.1.16. The collection C consists respectively of:

1. all classes containing exactly one structure in U ;

2. the class U

3. all infinite subclasses of U ,

4. all cofinite subclasses of U ,

5. the given subclass of U .

4.3.2 Techniques for uniform encodings

Following Cori and Lascar [CL] we recall the following notation and defini-
tions.

Notation 4.3.1. 1. If U is an L-structure, then for each symbol α of L,
we will write αU for the interpretation of α in U.

2. Let f : U → W be a morphism of L-structures. We will say that f
is an L-monomorphism if for each relation symbol R we have: for all
x1, . . . , xn ∈ U

RU(x1, . . . , xn) holds if and only if RW(f(x1), . . . , f(xn)) holds.

3. An L-isomorphism is an L-monomorphism which is onto.

Note that sometimes L-monomorphisms are called L-embeddings.

Definition 4.3.2. Let U be an L-structure and L′ be a language. Suppose
that there exists a bijection f : L →L ′ which sends symbols of constants to
symbols of constants, and for each natural number n ≥ 1, symbols of n-ary
relations to symbols of n-ary relations, and symbols of n-ary functions to
symbols of n-ary functions. Let U′ be the L′-structure with same base set as
U and where each symbol f(α) from L′ is interpreted by αU. Given U and
f : L→L ′ as above, we will refer to U′ as to the (U, f)-induced L′-structure.
Moreover, in this context, we will denote by AL′

L the algorithm that transforms
a formula over L into a formula over L′ (simply using the bijection f). Note
that for every formula F over L, we have: U satisfies F if and only if U′

satisfies AL′
L (F ).
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4.3. Uniform encodings

Proposition 4.3.3. Let α ∈ L be uniformly L " X-definable in a class U
of L-structures. There exists an algorithm Aα

X that, given an L-sentence F ,
returns an L" X-sentence Aα

X(F ) such that U satisfies F if and only if UX

satisfies Aα
X(F ) for all structures U ∈ U . Moreover, if α is (respectively,

positive) existentially definable and F is (respectively, positive) existential
then Aα

X(F ) is (respectively, positive) existential.

Proof. In each L-sentence F , replace α by the formula that defines it uni-
formly.

Notation 4.3.4. 1. If A and B are two algorithms such that the set of
outputs of B is included in the set of inputs of A, we will denote by
A ◦ B the algorithm that first applies B and then A.

2. Let α1, . . . ,αn ⊂ L be uniformly L " X-definable in a class U of L-
structures. We will denote by

Aα1,...,αn
X

the algorithm Aα1
X ◦ · · · ◦Aαn

X .

Proposition 4.3.5. Let G, G ′ and G ′′ be sets of sentences over L, L′ and
L′′ respectively. Let M be an L-structure, U a class of L′-structures and V
a class of L′′-structures. Let (VU) be a partition of V indexed by a subclass
Uind of U . If

• (G, M) is uniformly encodable in (G ′,U) by an algorithm A; and

• there exists an algorithm B such that for each U in Uind, the pair (G ′, U)
is uniformly encodable in (G ′′,VU) by B

then (G, M) is uniformly encodable in (G ′′,V) by the algorithm B ◦A.

Proof. We may visualize the statement schematically as

(G, M)
A−→ (G ′,U) ⊇ (G ′,Uind)

B−→
(
G ′′,

⋃

U∈U

VU

)
= (G ′′,V)

and observe that by Item 3 of Remark 4.1.15, A uniformly encodes (G, M)
in (G ′,Uind). Let F be an L-sentence.
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4.3. Uniform encodings

Let us prove that if M satisfies F then each V in V satisfies B(A(F )).
Since V is in V , it is in some VU, for some U in Uind. Since M satisfies F and
(G, M) is uniformly encodable in (G ′,U) by A, U satisfies A(F ), and since
(G ′, U) is uniformly encodable in (G ′′,VU) by B, V satisfies B(A(F )).

Let us prove that if V satisfies B(A(F )) for some V in V then M satisfies
F . Let U in U be such that V is in VU. Since V satisfies B(A(F )), also U
satisfies A(F ), hence M satisfies F .

We see from the proof that the above proposition actually requires only
a covering of V instead of a partition.

We now describe the general strategy that we will use several times in
order to uniformly encode the natural numbers in classes of structures. De-
pending on the class in which we want to encode we will sometimes need two
steps.

One step encoding process. Let M be a L̄-structure. In order to prove
that a pair (Fpe

L̄ , M) is uniformly encodable in a pair (Fpe
L ,U) we will en-

large the language L by a set of symbols X = {α1, . . . ,αn} and consider an
interpretation of each element of X in each U ∈ U so that

1. it is easy to prove that (Fpe
L̄ , M) is uniformly encodable in (Fpe

L∪X ,UX),
say by an algorithm A; and

2. each α in X is uniformly positive existentially L-definable in U .

From Item 2 we can apply Proposition 4.3.3, and we will then be able to
conclude by using Item 2 of Remark 4.1.15 since

Aα1,...,αn
X (Fpe

L∪X)

is included in Fpe
L . Schematically, we perform (with some obvious abuses of

notation):

(Fpe
L̄ , M)

A−−→ (Fpe
L∪X ,UX)

Aα1,...,αn
X−−−−−→ (Aα1,...,αn

X (Fpe
L ),U) ⊆ (Fpe

L ,U)

and we deduce that the algorithm A0 = Aα1,...,αn
X ◦ A uniformly encodes

(Fpe
L̄ , M) in (Fpe

L ,U).

Two steps encoding process. Let M be a L̄-structure. Suppose that we
have an algorithm A0 given by the “one step encoding process” to uniformly
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4.3. Uniform encodings

encode (Fpe
L̄ , M) in a pair (Fpe

L ,U) and that we want to encode it in another
pair (Fpe

L′ ,V), for some class V of L′-structures. Assume that we can find a
partition (VU) of V indexed by a subclass Uind of U (note that by Item 1 of
Remark 4.1.15, A0 uniformly encodes (Fpe

L̄ , M) in (Fpe
L ,Uind)). In order to

apply Proposition 4.3.5, we need to find an algorithm B such that for each
U ∈ Uind, (Fpe

L , U) is uniformly encodable in (Fpe
L′ ,VU) by B. We then need to

enlarge the language L′ by a set of symbols Y = {β1, . . . , βn} and consider
an interpretation of each element of Y in each V ∈ V so that we can easily
find an algorithm B′ such that

1. for each U ∈ Uind, (Fpe
L , U) is uniformly encodable in (Fpe

L′∪Y ,VU) by B′;
and

2. each β in Y is uniformly positive existentially L′-definable in V .

At this point, the algorithm B is the composition

Aβ1,...,βn
Y ◦ B′.

We will then be able to conclude using Item 2 of Remark 4.1.15 since

Aβ1,...,βn
Y (Fpe

L′∪Y )

is included in Fpe
L′ . So the composition B ◦ A0 uniformly encodes (Fpe

L̄ , M)
in (Fpe

L′ ,V). Schematically we obtain:

(Fpe
L̄ , M)

A0−−−→ (Fpe
L ,U) ⊇ (Fpe

L ,Uind)

B′−−→
(
Fpe
L′∪Y ,

⋃

Uind

VY
U

)
Aβ1,...,βn

Y−−−−−→ (Aβ1,...,βn
Y (Fpe

L′∪Y ),V) ⊆ (Fpe
L′ ,V)

and we deduce that the algorithm

Aβ1,...,βn
Y ◦ B′ ◦A0

uniformly encodes (Fpe
L̄ , M) in (Fpe

L′ ,V).

In order to find the algorithm B′ in the above process, we will need the
following lemmas. They are certainly well known, but we decided to include
them as we could not find a reference with the precise statements we needed.
Let us introduce first some notation.
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4.3. Uniform encodings

Notation 4.3.6. Given a map f : X → Y , we will denote by

• ∼f the equivalence relation on X defined by: a ∼f b if and only if
f(a) = f(b);

• Xf the quotient set X
∼f

;

• πf the canonical projection

πf : X → Xf ;

• f̄ the unique map
f̄ : Xf → Y

such that f̄ ◦ πf = f ; and

• if R is an n-ary relation on X then Rf will denote the n-ary relation
on Xf defined by: Rf (πf (x1), . . . ,π(xn)) if and only if there exist u1 ∈
πf (x1), . . . , un ∈ πf (xn) such that R(u1, . . . , un).

Lemma 4.3.7. Let X and Y be sets together with n-ary relations R on X
and S on Y . Let f : X → Y be a function. If the function f satisfies:

1. if R(x1, . . . , xn) holds then S(f(x1), . . . , f(xn)) and

2. if S(f(x1), . . . , f(xn)) holds then Rf (πf (x1), . . . ,πf (xn)),

then the relation Rf satisfies:

Rf (x̄1, . . . , x̄n) holds if and only if S(f̄(x̄1), . . . , f̄(x̄n)) holds

for all x̄1, . . . , x̄n ∈ Xf .

Proof. We need only to prove the implication from left to right. Let

x̄1, . . . , x̄n ∈ Xf

and suppose that
Rf (x̄1, . . . , x̄n)

holds. By definition of Rf , there exist

u1 ∈ x̄1, . . . , un ∈ x̄n
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such that
R(u1, . . . , un)

holds. By Condition 1,
S(f(u1), . . . , f(un))

holds, and since f = f̄ ◦ π,

S(f̄(ū1), . . . , f̄(ūn))

holds, hence also
S(f̄(x̄1), . . . , f̄(x̄n))

holds.

Definition 4.3.8. Let f : U → W be a morphism of structures over a lan-
guage L. We will say that f is relation-onto if for every relation symbol R
of L we have: for all x1, . . . , xn ∈ U, if W satisfies R(f(x1), . . . , f(xn)) then
there exist u1 ∼f x1, . . . , un ∼f xn such that U satisfies R(u1, . . . , un).

Note that the condition of being relation-onto does not need to be checked
for the equality (as it is trivially satisfied).

Definition 4.3.9. Given a morphism of L-structures f : U → W, where U
has base set U , the quotient L-structure Uf is defined as follows:

• the base set of Uf is Uf ;

• for each function symbol h (including constant symbols), the interpre-
tation of h in Uf is given by:

hUf (x̄1, . . . , x̄n) = hU(x1, . . . , xn);

• for each relation symbol R, the interpretation of R in Uf is given by:
RUf (x̄1, . . . , x̄n) holds if and only if there exist u1 ∈ x̄1, . . . , un ∈ x̄n

such that RU(u1, . . . , un) holds.

Proposition 4.3.10. Let f : U → W be a morphism of L-structures. We
have:

1. The quotient structure Uf is indeed an L-structure.

2. The canonical map πf : U → Uf is a L-morphism.
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3. The induced map f̄ : Uf → W is an injective L-morphism.

4. The morphism f is relation-onto if and only if f̄ is a L-monomorphism.

5. The morphism f is onto and relation-onto if and only if f̄ is a L-
isomorphism.

Proof. The proof is easy and left to the reader (it comes from Lemma 4.3.7).

The following lemma is well known.

Lemma 4.3.11. Let U be an L-structure, 9 a binary relation symbol, and
T, the theory of the equality for the symbol 9. The quotient structure U/ 9U

is an L-structure which satisfies T, (hence it is a equalitarian structure) and
is elementarily equivalent to U.

Proposition 4.3.12. Let L0 be a first order language. Let U0 be a class
of L0-structures and W be an L0-structure. Assume that for each structure
U ∈ U0 there exists a morphism fU : U → W which is onto and relation-
onto. Let L1 be a language that contains L0 and, given an interpretation for
each symbol of L1 " L0 in each structure U of U0, we denote by U1 the new
structure, and U1 denotes the class of L1-structures U1. If the collection of
relations ∼fU is uniformly definable by an L1-formula ϕ(a, b) in U1, then the
algorithm A which does the following:
In any L0-sentence F, for each relation symbol R (including the
symbol of equality) that occurs in F, replace R(x1, . . . , xn) by

∃u1, . . . , un

(
n∧

i=1

ϕ(ui, yi) ∧R(u1, . . . , un)

)
;

uniformly encodes (FL0 , W) in (FL1 ,U1). Moreover,

• if the formula ϕ(a, b) is existential then A uniformly encodes (F e
L0

, W)
in (F e

L1
,U1);

• if the formula ϕ(a, b) is positive existential then A uniformly encodes
(Fpe

L0
, W) in (Fpe

L1
,U1).
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Proof. Let us show that the algorithm A uniformly encodes (FL0 , W) in
(FL1 ,U1) (the same algorithm works analogously for the two other cases).
By Proposition 4.3.10, Item 5, for each U in the class U0, W satisfies F if
and only if UfU satisfies F . Let us define the L0-structure UfU by

• the base set of UfU is the base set of U;

• function symbols are interpreted in UfU as in U;

• for each relation symbol R (including the equality) of L0,

RUfU (x1, . . . , xn)

holds if and only if there exists u1, . . . , un ∈ U such that u1 ∼fU x1, . . . ,
un ∼fU xn and RU(u1, . . . , un) holds.

In particular, the symbol of equality is interpreted in UfU as the relation ∼fU .
By Proposition 4.3.10, Item 2, the L0-structure UfU satisfies the theory of
equality T=. By Lemma 4.3.11, the structure UfU satisfies F if and only if
UfU satisfies F . Therefore, UfU satisfies F if and only if U1 satisfies A(F ).

4.4 Case of integers

4.4.1 Some general uniform definitions in N and D
In this section we will show in particular that squaring powers of a prime is
uniformly positive existentially definable in N and in D - see Notation 4.1.1,
Items 8, 9, and 10.

When working with the structures Np, the string ‘a ≤ b’ stands for

∃c(b = a + c).

Notation 4.4.1. 1. for each prime number p we define

P>
p = {ph : h ∈ N} P±

p = {±ph : h ∈ N}

P>
p,0 = {ph : h ∈ N>0} P±

p,0 = {±ph : h ∈ N>0}

Lemma 4.4.2. The formula P (n) = R(1, n) uniformly positive existentially
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4.4. Case of integers

1. L∗,+-defines the collection of sets P>
p in N (hence in particular P>

p is
L∗,+-uped in N );

2. L∗T -defines the collection of sets P±
p in D (hence in particular P±

p is
L∗T -uped in D).

Proof. This comes immediately from the definitions.

Lemma 4.4.3. The formula

P ε
0 (n) :

{
R(1, n) ∧ (n ≥ 2) if ε is >

R(1, n) ∧ T (n) if ε is ±

uniformly positive existentially

1. L∗,+-defines the collection of sets P>
p,0 in N if ε is > (hence P>

p,0 is
L∗,+-uped in N ).

2. L∗T -defines the collection of sets P±
p,0 in D if ε is ± (hence P±

p,0 is L∗T -
uped in D).

Proof. This comes immediately from the definitions.

Lemma 4.4.4. Consider the positive existential formula

θ̄ε
P (m, n) : P ε

0 (m) ∧ P ε
0 (n) ∧R(m− 1, n−m)

over L∗,+ if ε is >, and over L∗T if ε is ±. For each prime p, we have

1. Np satisfies θ̄>
P if and only if m, n ∈ P>

p,0 and n = m2; and

2. Dp satisfies θ̄±P if and only if m, n ∈ P±
p,0 and

• either n = m2; or

• p = 2 and (m, n) ∈ {(−2,−8), (2,−2), (4,−2), (4,−8)}; or

• p = 3 and (m, n) = (3,−3).

Proof. We leave to the reader the verification of the implications from the
right to the left. Suppose that θ̄ε

P is satisfied in Dp or Np (depending on ε).
There exist integers r, s, 2 such that r > 0 and s > 0 and there exist ρ, σ, λ
in {−1, 1} (or = 1 if working in Np) so that

m = ρpr n = σps n−m = λp%(m− 1).
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4.4. Case of integers

By direct substitution we obtain

σps − ρpr = λp%(ρpr − 1)

and deduce
σps + λp% = ρpr(λp% + 1)

which implies that 2 is positive (looking at the latter equation modulo p).
Write the above equation as

σps = ρpr − λp% + ρλpr+% (4.5)

and consider it over the ring Zp of p-adic integers (or simply as an equation
written in base p).

In the case of Np, Equation (4.5) gives

ps + p% = pr + pr+%. (4.6)

Since the right-hand side has two non-zero p-adic digits (for some choice of
digits containing 1), we have either s = r and 2 = r + 2, or s = r + 2 and
2 = r. But the former case is impossible since r > 0. Hence s = 2r and we
deduce that n = m2.

Let us come back to the general case of integers. Note that by Equation
(4.5), if ρ = λ then σ = λρ = 1 and s = 2r, hence n = m2.

If p ≥ 3 then, since the coefficients lie between −1 and 1 and since
r + 2 > max{r, 2}, we deduce, from the uniqueness of the p-adic expansion,
choosing for example representative “digits” within

D =

{
−p− 1

2
, . . . ,

p− 1

2

}
,

that r = 2. Therefore, we have

σps = (ρ− λ)pr + λρp2r (4.7)

and if ρ = λ then σ = λρ = 1 and s = 2r, hence n = m2. If ρ is distinct
from λ then p must be 3 since otherwise the right-hand side would have two
non-zero digits while the left-hand side has only one. Equation (4.7) becomes

σ3s = 2ρ3r − 32r
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hence
σ3s−r = 2ρ− 3r

which implies s = r (looking at the equation modulo 3). Therefore we have

σ = 2ρ− 3r

which can happen only if σ = −1, ρ = 1 and r = 1, hence (m, n) = (3,−3).
Suppose that p = 2. Note that if r = 2 and ρ = λ then we conclude that

n = m2 as before.
Case ρ = −λ. Equation (4.5) becomes

2r+% + σ2s = ρ(2r + 2%). (4.8)

If σ = 1 then ρ = 1, which gives

2r+% + 2s = 2r + 2%.

Since r+2 > max{r, 2}, by the uniqueness of the 2-adic expansion with digits
{0, 1}, we have r = 2, hence

22r + 2s = 2r+1.

Hence s = 2r and 22r+1 = 2r+1, which is impossible since r > 0.
Therefore, σ = −1. If ρ = −1 then Equation (4.8) becomes

2r+% + 2r + 2% = 2s,

which gives r = 2 (again by uniqueness), hence

22r + 2r+1 = 2s

and we deduce that 2r = r + 1, hence r = 1 and s = 3, which corresponds
to the pair (m, n) = (−2,−8). If ρ = 1 then Equation (4.8) becomes

2r+% = 2s + 2r + 2%,

which implies (again by uniqueness of the expansion) that either s = r, or
s = 2, or r = 2.

• If s = r then 2r+% = 2r+1 + 2%, hence r + 1 = 2, hence 22r+1 = 2r+2 and
r = 1. This case corresponds to the pair (m, n) = (2,−2).
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4.4. Case of integers

• If s = 2 then 2r+s = 2s+1 + 2r, hence s + 1 = r, hence 22s+1 = 2s+2 and
s = 1. This case corresponds to the pair (m, n) = (4,−2).

• If r = 2 then 22r = 2s + 2r+1, hence s = r + 1, hence 22r = 2r+2 and
r = 2. This case corresponds to the pair (m, n) = (4,−8).

Case ρ = λ and r != 2. Equation (4.5) becomes

σ2s = ρ2r − ρ2% + 2r+%. (4.9)

If ρ = 1 then
σ2s = 2r − 2% + 2r+% > 2r > 0,

hence σ = 1. Therefore, we have

2s + 2% = 2r + 2r+%,

which we know from the analysis of Equation (4.6) that it has no solution
unless 2 = r.

Corollary 4.4.5. There exists a positive existential formula

1. θ>
P (m, n) that uniformly L∗,+-defines the collection of sets {(ph, p2h) : h ∈

N} in N (hence squaring in P>
p is L∗,+-uped in N ).

2. θ±P (m, n) that uniformly L∗T -defines the collection of sets {(±ph, p2h) : h ∈
N} in D (hence squaring in P±

p is L∗T -uped in D).

Proof. Choose

θ>
P (m, n) : θ̄>

P (m, n) ∨ (m = 1 ∧ n = 1),

for Item 1 and

θ±P (m, n) : ((m = 1∨m = −1)∧n = 1)∨(θ̄±P (m, n)∧n != −2∧n != −3∧n != −8)

for Item 2.

Remark 4.4.6. Corollary 4.4.5 allows us to write in our formulas terms like
a2, a4, a8,. . . whenever a is an element of Pp, Pp,0, P+

p or P+
p,0.
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4.4.2 Multiplication uniformly in N and Z
In this section we will first prove Item 1 of Theorem 4.1.13 and then deduce
Item 2 from it.

Lemma 4.4.7. The collections of sets

Mp = {(n, pa, npa) : n ≥ 0 and a ≥ 0}

are L∗,+-uped in N .

Proof. Following the strategy of the second author in [Ph1, Section 2], we
show that the following formula ϕ(x, y, z)

P>(y) ∧ z ≥ x ∧R(x, z) ∧R(x + 1, z + y) ∧R(x + y, z + y2)

is true in Np if and only if (x, y, z) ∈ Mp.
If z = xy and y = pa for some non-negative integer a, then we have

• z ≥ x;

• z = xpa;

• z + y = xpa + pa = pa(x + 1); and

• z + y2 = xpa + p2a = pa(x + y),

hence Np satisfies ϕ(x, y, z).
Suppose that Np satisfies ϕ(x, y, z). There exist integers a, α, β, γ such

that a ≥ 0 and
y = pa (4.10)

z = pαx (4.11)

z + y = pβ(x + 1) (4.12)

z + y2 = pγ(x + y). (4.13)

First note that if x = 0 then z = 0 and we are done, hence we suppose that x
is positive. From z = pαx, z ≥ x and x ≥ 1 we deduce that α is non-negative.
Also we have β and γ non-negative (since from Equation (4.12) we have

x + 1 ≤ z + y = pβ(x + 1)
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4.4. Case of integers

and from Equation (4.13) we have x + y ≤ z + y2 = pγ(x + y)).
From Equation (4.11), (4.12) and (4.13) we obtain

x(pα − pβ) = pβ − pa (4.14)

and from Equation (4.10), (4.11) and (4.13) we obtain

x(pα − pγ) = pa+γ − p2a. (4.15)

Let us prove that if two elements of {a, α, β, γ} are equal then z = xy.

• If a = α then we conclude from Equations (4.10) and (4.11).

• If a = β then we conclude that α = β from Equation (4.14) and x > 0.

• If a = γ then we conclude that α = γ from Equation (4.15) and x > 0.

• If α = β then we conclude that a = β from Equation (4.14) and x > 0.

• If α = γ then we conclude that a = γ from Equation (4.15) and x > 0.

• If β = γ then from Equations (4.14) and (4.15) we have pβ − pa =
pa+β − p2a, hence pβ(1− pa) = pa(1− pa), hence either a = β, in which
case we can conclude as above, or a = 0 and β > 0. In the latter
case, from Equation (4.14) we obtain x(pα − pβ) = pβ − 1 > 0, hence
α > β > 0, which is impossible since p does not divide pβ − 1.

From now on, we may suppose that a, α, β, and γ are pairwise distinct.
From Equation (4.14), we have

α > β if and only if β > a (4.16)

hence either α > β > a or α < β < a. Similarly, from Equation (4.15), we
have

α > γ if and only if γ > a (4.17)

hence either α > γ > a or α < γ < a. So we have four possible orders:

1. α > β > γ > a;

2. α > γ > β > a;

3. α < β < γ < a; or
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4. α < γ < β < a.

From Equations (4.14) and (4.15) we have

(pα − pγ)(pβ − pa) = (pα − pβ)(pγ − pa)pa. (4.18)

Hence the orders 2 and 4 are impossible (otherwise the left-hand side would
have smaller absolute value than the right-hand side). In case of order num-
ber 1, the valuation at p in Equation (4.18) gives

γ + a = β + 2a,

hence
γ = β + a > γ + a,

which is absurd. In case of order number 3, we obtain

α + β = α + γ + a,

hence
β = γ + a > β + a,

which is absurd.

Next corollary proves Item 1 of Theorem 4.1.13.

Corollary 4.4.8. Multiplication is L∗,+-uped in N .

Proof. The proof is identical to the proof of [Ph1, Lemma 3] using Lemma
4.4.7 instead of [Ph1, Lemma 2].

Next corollary proves Item 2 of Theorem 4.1.13.

Corollary 4.4.9. Multiplication is L∗-uped in Z.

Proof. Let µ(x, y, z) be a positive existential L∗,+-formula that uniformly
defines multiplication z = xy in N (it exists from Corollary 4.4.8). Let
µ̄(x, y, z) be the L∗-formula obtained from µ by replacing (syntactically) all
occurences of the form ∃u (where u is a variable) by ∃u ≥ 0. The (positive
existential) L∗-formula

µ1(x, y, z) = µ̄(x, y, z) ∧ x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0
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uniformly defines the set

{(x, y, z) : z = xy and x, y, z ≥ 0}

in Z. The (positive existential) L∗-formula

µ2(x, y, z) =
∨

ε∈{−1,1}3
ε1x ≥ 0 ∧ ε2y ≥ 0 ∧ ε3z ≥ 0 ∧ µ1(ε1x, ε2y, ε3z)

uniformly defines {(x, y, z) : z = xy} in Z.

4.4.3 Multiplication uniformly in D
In this section we prove Item 3 of Theorem 4.1.13.

Lemma 4.4.10. There is a positive existential L∗T -formula CO(x) that de-
fines uniformly the collection of sets

COp = {n ∈ Z : p $ n}

in D (hence the sets COp are L∗T -uped in D).

Proof. Consider the formula

∃m(P±
0 (m) ∧ n|m− 1).

If n ∈ COp, then we can take m = pϕ(|n|), since by Euler’s theorem we know
that pϕ(|n|) is congruent to 1 mod n.

Conversely, if the formula is satisfied in some Dp, then there exists k ∈ Z
such that nk = m− 1. Since p divides m, it does not divide n.

The next lemma defines squaring uniformly in each COp.

Lemma 4.4.11. The collection of sets
{
(n, n2) : n ∈ COp

}

is L∗T -uped in D. More precisely, for any integer prime p we have: n =
m2 with m, n ∈ COp if and only if Dp satisfies the following L∗T -formula
θCO(m, n)

CO(m) ∧ CO(n) ∧ ∃a(P±
0 (a) ∧m|a2 − 1 ∧ n|a2 − 1 ∧ a8 −m | a16 − n).
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Proof. If n = m2 and m, n ∈ COp we have two cases; if |m| = n = 1 then any
a ∈ P±

p,0 works, and if T (m) then n > 2 and we can choose a = pφ(m)φ(n)/2,
where φ stands for Euler’s function (recall that φ(n) is even for n > 2).

Suppose that Dp satisfies θCO(m, n) for some m, n ∈ COp. Since a ∈ P±
p,0

we have a ≥ 2. Since m and n divide a2 − 1, we have |m| < a2 and |n| < a2.
Since a8 −m divides

a16 − n = a18 −m2 + m2 − n,

we have:

1. a8 −m divides m2 − n;

2. |m2 − n| < a4 + a2 (since |m| < a2 and |n| < a2); and

3. |a8 −m| > a8 − a2 (since |m| < a2).

By 1, we have that either m2 − n = 0 or |a8 −m| ≤ |m2 − n|. For the sake
of contradiction, suppose that the latter is true. Then we have

a8 − a2 < |a8 −m| ≤| m2 − n| < a4 + a2

hence, since a ≥ 2 we get

a8 < a4 + 2a2 < a4 + a4 < a8

which is impossible. Therefore m2 = n.

Lemma 4.4.12. The collection of sets

{(x, y, z) : z = xy and x ∈ COp and y ∈ P±
p }

is L∗T -uped in D. More precisely, for any integer prime p, we have: x =
mn with m ∈ COp and n ∈ P±

p , if and only if Dp satisfies the formula
ρCP (m, n, x)

(n = −1 ∧m = −x) ∨ (n = 1 ∧m = x)∨
(
CO(m) ∧ P±

0 (n) ∧ ∃a, b(θCO(m, a) ∧ θ±P (n, b) ∧ θCO(m + n, a + 2x + b))
)
.

Proof. Note that if p does not divide m and n ∈ P±
p,0 then p does not divide

m + n, and note that (m + n)2 = a + 2mn + b.
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We are now ready to show that squaring is L∗T -uped in D.

Lemma 4.4.13. For any integer prime p and for any m, n ∈ Z the following
holds: n = m2 if and only if Dp satisfies

∃a, b, u, v(P (a) ∧ P (b) ∧ CO(u) ∧ CO(v) ∧ ρCP (u, a,m)∧
ρCP (v, b, n) ∧ θ±P (a, b) ∧ θCO(u, v))

Proof. Choose

a = pordpm and u =
m

a
and do the same for n.

It is standard to define multiplication using squaring: for any m, n, h ∈ Z
the following holds:

h = m · n if and only if (m + n)2 = m2 + 2h + n2.

Hence multiplication is L∗T -uped in D and Item 3 of Theorem 4.1.13 fol-
lows.

4.5 Pell equations uniformly

If x and a are polynomials in z, we will denote by x(a) the composition x◦a.
Let us first remind some known facts about Pell equations.

Theorem 4.5.1. Let F be a field of characteristic p != 2 and let z be a
variable. Let a ∈ F [z] " F . Any solution (X, Y ) = (x, y) in F [z] of the
equation

X2 − (a2 − 1)Y 2 = 1 (4.19)

is of the form (x, y) = (±xn(a), yn(a)) where the pairs (xn(z), yn(z)) are
defined by

xn(z) +
√

z2 − 1yn(z) =
(
z +

√
z2 − 1

)n

(4.20)

by separating rational and irrational parts over F (z).
Moreover, for any m, n ∈ Z we have

1. xm+n(a) = xm(a)xn(a)− (a2 − 1)ym(a)yn(a);

2. ym+n(a) = xm(a)yn(a) + xn(a)ym(a);
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3. The integer m divides in Z the integer n if and only if the polynomial
ym(a) divides in F [z] the polynomial yn(a);

4. If p != 0 then for any s ∈ Z we have: n = ±mps if and only if xn(a) =
xps

m(a).

5. yn(a) is non constant if and only if n /∈ {−1, 0, 1}.

Proof. See [PZ1].

Theorem 4.5.1 tells us essentially that the structure of the set of solutions
of the Pell equation (4.19) does not depend on the parameter a, not only as a
group, but also as a structure with the relation of divisibility and the function
that takes ps-th powers.

Notation 4.5.2. We consider the following two groups:

1. (Z×µ2,⊕), where µ2 is the multiplicative group with two elements, has
its law defined by

(m, v)⊕ (n, w) = (wm + vn, vw).

2. If F is a field of characteristic p != 2, then

Σa(F ) ⊆ F [z]× F [z]

denotes the set of solutions of

X2 − (a2 − 1)Y 2 = 1,

where a ∈ F [z] " F . It is well known that the operation

(x, y)⊕ (x′, y′) = (xx′ − (a2 − 1)yy′, xy′ + x′y)

defines a group law on Σa(F ).

Let us define the class Q as the set

{Qp : p is prime}

where the L∗T -structures Qp are defined as follows

• the base set is Z× µ2;
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• 0 is interpreted as (0, 1);

• 1 is interpreted as (1, 1);

• + is interpreted as ⊕;

• (u, v) | (x, y) is interpreted as “u divides x”;

• R((u, v), (x, y)) is interpreted as “u |p x;

• T ((u, v)) is interpreted as “u is not in {−1, 0, 1}”.

Let β be a unary predicate symbol interpreted in each L∗T -structure Qp

as

βQp((v1, v2)) if and only if v2 = 1.

Lemma 4.5.3. The symbol β is L∗T -uped in Q by

ζ(v) : ∃w(v = w + w ∨ v = w + w + 1)

Proof. The formula ζ(v) is satisfied in Qp if and only if there exist w1 ∈ Z
and w2 ∈ µ2 such that

(v1, v2) = 2(w1, w2) = (2w1w2, 1)

or

(v1, v2) = 2(w1, w2) + (1, 1) = (2w1w2 + 1, 1),

and the latter happens if and only if v2 = 1.

It is well known that Σa(F ) is isomorphic to the additive group Z × Z
2Z .

We will use this fact in the following form:

Lemma 4.5.4. The map

ξa,F : Z× µ2 → Σa(F )
(n, ε) %→ (εxn, yn).

is an isomorphism of groups.
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Notation 4.5.5. Let F be a field of characteristic p != 2 and a ∈ F [z]
non-constant. We consider the following L∗T -structure

Ga(F ) =
(
Σa(F ); (1, 0), (a, 1),⊕, |, R̃, T̃

)

where

• (x, y) | (u, v) means “y divides v”;

• R̃((x, y), (u, v)) means “there exists s ∈ Z such that xps
= u”

• T̃ (x, y) means “y is not a constant”.

Lemma 4.5.6. For any field F of characteristic p != 2, and for each a ∈
F [z] " F , the L∗T -structures Ga(F ) and Qp are isomorphic through ξa,F .

Proof. It is an immediate consequence of Theorem 4.5.1.

Notation 4.5.7. Consider the LA-formula

δ(α, v, w) : v2 + (α2 − 1)w2 = 1

and note that it is satisfied in F [z] if and only if the pair (v, w) is a solution
of the Pell equation with parameter α.

Lemma 4.5.8. If α is interpreted as a non-constant element of F [z] then
the positive existential LA-formula

η(α, v, w) : δ(α, v, w)∧ (∃x, y(δ(α, x, y)∧ (v = x2− (α2− 1)y2 ∧w = 2xy)∨
(v = (x2 − (α2 − 1)y2)α− (α2 − 1)2xy ∧ w = x2 − (α2 − 1)y2 + 2αxy))).

is satisfied in F [z] if and only if (u, v) is a solution of the Pell equation with
parameter α and u = xn for some integer n.

Proof. This is trivial from Lemmas 4.5.3 and then 4.5.6.

Lemma 4.5.9. For each ε in {±1}, let us consider the following positive
existential LA-formula ∆ε(α, x, x′):

η(εx, εx′) ∧ ∃y, y′, y1, y2(δ(α, εx, y) ∧ δ(α, εx′, y′)∧
δ(εx, εx′, y1) ∧ δ(εx + 1, εx′ + 1, y2))
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and write
∆(α, x, x′) :

∨

ε∈{±1}

∆ε(α, x, x′).

Whenever α is assigned a non-constant element of F [z], the formula ∆(α, x, x′)
is satisfied in F [z] if and only if RF [z](x, x′) holds (see Definition 4.1.6).

Proof. Note that ∆1 is analogous to the formula of Lemma 2.4 in [PZ1].

4.6 The relation “y is a ps-th power of x”

In this section, we prove Theorems 4.1.8, 4.1.10 and 4.1.11.

Lemma 4.6.1. Let A be a commutative ring with unit. Let x, y ∈ A such
that y = xps

for some non-negative integer s. Write

x2
n = (x− 1 + n)ps+1,

where n = 1, . . . ,M for some integer M ≥ 2. We have

xy = x2
1 and x + y = x2

2 − x2
1 − 1.

Proof. Let us show that the second equation holds. We have:

x + y = x + xps

= xps+1 + x + xps
+ 1− xps+1 − 1

= (x + 1)(xps
+ 1)− xps+1 − 1

= (x + 1)(x + 1)ps − xps+1 − 1

= (x + 1)ps+1 − xps+1 − 1

= x2
2 − x2

1 − 1

which proves the lemma.

Proof of Theorem 4.1.8. Suppose that Büchi’s problem has a positive answer
for a triple (A, C, M) and write M0 = M0(A, C), so that we have: any M-
term Büchi sequence (xn) of (A, C), with M ≥ M0, is of the form

x2
n = (f + n)ps+1

for some non-negative integer s and f ∈ A.
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Consider the following formulas from the language of rings

ϕ0(x1, . . . , xM0 , x, y) : ∆(2)(x2
1, . . . , x

2
M0

) = (2) ∧xy = x2
1∧x+y = x2

2−x2
1−1,

ϕ1(x, y) : ∃x1 . . . ∃xM0ϕ0(x1, . . . , xM0 , x, y)

and
ϕM0(x, y) : ϕ1(x, y) ∨ ϕ1(y, x).

For short, we might write

“there exists s ∈ Z such that y = xps
”

instead of “ there exists s ∈ N such that either y = xps
or x = yps

”.
Let us prove Item 1 of Theorem 4.1.8. Let x, y ∈ A be such that RA(x, y)

holds. By definition of RA we have y = xps
for some integer s. If s ≥ 0, taking

xn ∈ A such that x2
n = (x− 1 + n)ps+1 the formula ϕM0(x, y) is satisfied in A

by Lemma 4.6.1. Analogously if s ≤ 0 then by taking x2
n = (y − 1 + n)p−s+1

the formula ϕ1(y, x) is true in A by Lemma 4.6.1.
Let us prove Item 2 of Theorem 4.1.8 (note that one implication comes

directly from Item 1). Let x, y ∈ A be such that A satisfies ϕM0(x, y) and
xy or x + y is not in C. On the one hand, if xy is not in C then x2

1 is not
in C. On the other hand, if x + y is not in C then x2

2 − x2
1 − 1 is not in C,

hence one of x2
1 and x2

2 is not in C. Therefore, the sequence (x1, . . . , xM0)
is a Büchi sequence with at least one term non-constant and by hypothesis,
there exists f ∈ A such that

x2
n = (f + n)ps+1

for some non-negative integer s. Therefore we have a system of equations in
x and y {

xy = (f + 1)ps+1

x + y = (f + 2)ps+1 − (f + 1)ps+1 − 1

whose unique solutions are

(x, y) = (f + 1, (f + 1)ps
) and (x, y) = ((f + 1)ps

, f + 1)

(the verification is easy and is left to the reader). Hence either y = xps
or

x = yps
, i.e. RA(x, y) holds.
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Proof of Theorem 4.1.10. Within this proof, “transcendental” will always
mean “transcendental over C”, and “algebraic” will always mean “algebraic
over C”.

The positive existential formula from the language LT = {0, 1, +, ·, T}

ϕT
C (x, y) : ((T (xy) ∨ T (x + y)) ∧ ϕM(C)(x, y))∨

∃u∃v((T (uv) ∨ T (u + v)) ∧ ϕM(C)(ux, vy) ∧ ϕM(C)(u, v))

uniformly defines RA in C over LT .
Indeed, if RA(x, y) holds then there exists an integer s such that y = xps

.
If either xy or x + y is transcendental then A satisfies

(T (xy) ∨ T (x + y)) ∧ ϕM(C)(x, y),

by Theorem 4.1.8. If none of xy and x + y is transcendental then choose u
transcendental and v = ups

if s ≥ 0, or choose v transcendental and u = vp−s

if s < 0. For these choices of u and v, A satisfies

(T (uv) ∨ T (u + v)) ∧ ϕM(C)(ux, vy) ∧ ϕM(C)(u, v).

Suppose now that A satisfies ϕT
C (x, y). If A satisfies

(T (xy) ∨ T (x + y)) ∧ ϕM(C)(x, y)

then RA(x, y) holds by Theorem 4.1.8. If not then there in particular both
of xy and x+y are algebraic, hence both of x and y are algebraic. Also there
exist u, v ∈ A such that

• uv or u + v is transcendental (hence u or v is transcendental);

• there exists r ∈ Z such that v = upr
(by Theorem 4.1.8 and the previous

item); and

• A satisfies ϕM(C)(ux, vy).

Note that the first and second items imply that both u and v are transcen-
dental.

Suppose that x or y is not 0 (otherwise RA(x, y) holds trivially).
Case 1: If uxvy or ux + vy is transcendental then, by the third item and
Theorem 4.1.8, there exists s ∈ Z such that vy = (ux)ps

, hence none of x
and y is 0 and

upr
y = (ux)ps

,
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which implies
yupr−ps

= xps

and therefore, r = s (since u is transcendental but none of x and y is tran-
scendental nor 0). Hence RA(x, y) holds.

Case 2: If both uxvy and ux + vy are algebraic then both ux and vy are
algebraic, hence they are 0 (since u and v are transcendental but x and y are
algebraic), which contradicts the fact that x or y is non-zero.

This finishes the proof of Item 1 of Theorem 4.1.10.
Let us prove Item 2, namely, let us prove that the positive existential

formula ϕz
C(x, y) from the language Lz = {0, 1, +, ·, z}

ϕz
C(x, y) : ϕM(C)(x, y) ∨ ∃u(ϕM(C)(z, u) ∧ (ϕM(C)(zx, uy) ∨ ϕM(C)(ux, zy)))

uniformly defines RA in C over Lz.
Suppose first that RA(x, y) holds. There exists an integer s such that

y = xps
. If s ≥ 0, then by taking u = zps

the formula ϕM(C)(zx, uy) holds
in A by Theorem 4.1.8. If s ≤ 0, then by taking u = zp−s

the formula
ϕM(C)(ux, zy) holds in A by Theorem 4.1.8.

Suppose now that A satisfies ϕz
C(x, y). If xy or x + y is transcendental

then as A satisfies ϕM(C)(x, y) we are done by Theorem 4.1.8. So suppose
that both xy and x + y are algebraic (hence both x and y are algebraic).

Suppose that A satisfies

∃u(ϕM(C)(z, u) ∧ ϕM(C)(zx, uy))

(the other case is done similarly). Since A satisfies ϕM(C)(z, u) and z is
transcendental (hence zu or z + u is transcendental), by Theorem 4.1.8,
there exists an integer r such that

u = zpr
(4.21)

and in particular u is transcendental. Note that if both x and y are 0 then
we are done. So we may assume that one of the two is non-zero.

Case 1: If uy +zx or uyzx is transcendental, as A satisfies ϕM(C)(zx, uy),

there exists an integer k such that uy = (zx)pk
by Theorem 4.1.8. In par-

ticular, none of x and y is 0. By Equation (4.21) we have zpr
y = (zx)pk

,
hence

zpr−pk
y = xpk
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which implies k = r (since x and y are algebraic and non-zero and z is
transcendental) and the result follows.

Case 2: If both uy + zx and uyzx are algebraic then both uy and zx are
algebraic, which is impossible since u and z are transcendental, x and y are
algebraic, and at least one of x or y is non-zero.

Proof of Theorem 4.1.11. Consider the positive existential LT -formulas

ψ1(x, y) : ∃x1 . . . ∃xM(C)

(
(T (x2

1) ∨ T (x2
2 − x2

1 − 1)) ∧ ϕ0(x1, . . . , xM(C), x, y)
)
.

and
ψT
C (x, y) : ψ1(x, y) ∨ ψ1(y, x)

where ϕ0 is defined at the beginning of this section (note that we have re-
placed M0 by M(C) in the definition of ϕ0).

Let x, y ∈ A be such RC
A(x, y) holds. By definition of RC

A we have y = xps

for some integer s. As in the proof of Theorem 4.1.8, if s ≥ 0, taking xn ∈ A
such that

x2
n = (x− 1 + n)ps+1

the formula
ϕ0(x1, . . . , xM(C), x, y)

is satisfied in A by Lemma 4.6.1. Analogously if s ≤ 0 then by taking

x2
n = (y − 1 + n)p−s+1

the formula
ϕ0(x1, . . . , xM(C), y, x)

is true in A by Lemma 4.6.1. Let us show that with these elections of the
xn, the structure A satisfies

T (x2
1) ∨ T (x2

2 − x2
1 − 1).

Suppose that it is not the case (i.e. x2
1 and x2

2 − x2
1 − 1 are in C) and that

s ≥ 0. By Lemma 4.6.1, xy = x2
1 and

x + y = x2
2 − x2

1 − 1

are in C, hence
x2 + y2 = (x + y)2 − 2xy
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is in C and we deduce that

(x− y)2 = x2 + y2 − 2xy

is in C. By hypothesis on C, it follows that x− y ∈ C, hence also

2x = (x + y) + (x− y)

is in C and
2y = (x + y)− (x− y)

is in C. Therefore, again by hypothesis on C, x and y are in C, which gives a
contradiction. Hence A satisfies ψ1(x, y). Similarly, if s ≤ 0 then A satisfies
ψ1(y, x). Hence A satisfies ψT

C (x, y).
Suppose that A satisfies ψT

C (x, y). Since the sequence (x1, . . . , xM(C)) is a
Büchi sequence with either x2

1 or x2
2 not in C, hence either x1 or x2 is not in

C, and since C is a Büchi class, there exists f ∈ A such that

x2
n = (f + n)ps+1

for some non-negative integer s. We conclude as in the proof of Theorem
4.1.8.

4.7 Uniform encoding of the natural numbers

In this section we will prove Theorem 4.1.17.
Let us call an algorithm identity algorithm if it returns the input data.

Proof of Item 1 of Theorem 4.1.17. We want to prove that the pair (Fpe
LA

, N)
is uniformly encodable in the pair (Fpe

L∗ ,Z). Following the strategy described
in Section 4.3, we will follow the “One step encoding process” for natural
numbers, for the language L = L∗, the class U = N and where the set X is
{·}.

The following algorithm A uniformly encodes (Fpe
LA

, N) in (Fpe
L∗∪X ,ZX)

(hence Item 1 of the process is fullfiled): given a sentence F in Fpe
LA

, replace
each occurrence in F of ∃x by ∃x ≥ 0 (or more formally “∃x(pos(x)∧” and
taking care of where should close the parenthesis). It is clear that F is true
in (N; 0, 1, +, ·) if and only if A(F ) is true in (Z; 0, 1, +, ·,≥ 0, |p).

By Corollary 4.4.9, multiplication is L∗-uped in the class Z, hence also
Item 2 is fulfilled.
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4.7. Uniform encoding of the natural numbers

Proof of Item 2 of Theorem 4.1.17. We want to prove that the pair (Fpe
LA

, N)
is uniformly encodable in the pair (Fpe

L∗,+ ,N ). Following the strategy de-
scribed in Section 4.3, we will follow the “One step encoding process” for
natural numbers, for the language L = L∗,+, the class U = N and where the
set X is {·}. Item 1 of the process comes trivially in this case: the required
algorithm to uniformly encode (Fpe

LA
, N) in

(Fpe
L∗,+∪X ,NX)

is the identity algorithm, because a formula in Fpe
LA

is true in (N; 0, 1, +, ·) if
and only if it is true in NX

p = (N; 0, 1, +, ·, |p). Item 2 asks for multiplication
to be L∗,+-uped in the class N , but this is Item 1 of Theorem 4.1.13.

Proof of Item 3 of Theorem 4.1.17. We want to prove that the pair (Fpe
LA

, N)
is uniformly encodable in the pair

(Fpe
Lz,ord,$=

, Ω)

where Ω has been defined in Notation 4.1.12. We will follow the “two steps
encoding process” for natural numbers, where

• L = L∗ and U = N

• A0 is the algorithm that uniformly encodes (Fpe
LA

, N) in (Fpe
L∗,+ ,N )

• L′ = Lz,ord, %= and V = Ω

• Uind = {Np : p ∈ P}, where P is the set of primes for which there exists
at least one structure in Ω of characteristic p.

• Ω is partitionned into subclasses ΩNp where ΩNp is the class of all
structures in Ω of characteristic p.

• Y is the set of symbols {R, S}

• R is interpreted in each Lz,ord, %=-structure U of Ω by the relation RU

defined by “RU(x, y) if and only if there exists an integer s such that
y = xps

”, where p is the characteristic of U

• S(x, y) is interpreted in each U in Ω as “ordp(x) = ordp(y)” (recalling
that to each structure in Ω is associated exactly one local parameter z
at a prime divisor p - see Notation 4.1.12)
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We will apply Proposition 4.3.12 for each prime number in P . Fix such
a prime p. Following the notation of Proposition 4.3.12, consider:

• L0 = {1, z, ·, R}

• L1 = L0 ∪ {S}

• Up
0 = Ω∗,reg

Np
is the class of L0-structures with base set {f ∈ U : f !=

0 and ordp(f) ≥ 0} as U ranges among the base sets of structures of
characteristic p in Ω, and where R is interpreted as RU restricted to
U " {0}. Note that there can be more than one structure in U0 with a
given base set (depending on the choice of the local parameter).

• Up
1 is the class of L1-structures obtained from Up

0 when interpreting
S(x, y) by “ordp(x) = ordp(y)”.

• Wp is the (Np, j)-induced L0-structure, where j : L∗,+ → L0 is the
bijection

α 0 1 + R
j(α) 1 z · R

• For each U in Up
0 , let fU : U → Wp be the map that sends x ∈ U to its

order at p.

Let us prove that the hypothesis of Proposition 4.3.12 are satisfied. First,
fU is trivially a morphism for each U in Up

0 , and it is onto because in each
structure in Up

0 we have only regular functions.
Let us prove that fU is relation-onto. Let x1, x2 ∈ U be such that

ordp(x1) |p ordp(x2).

Taking
u1 = zordp(x1) and u2 = zordp(x2),

we have u1 ∼fU x1 and u2 ∼fU x2 and RU(u1, u2) holds.
The collection of relations ∼fU is trivially L1-uped in Up

1 . Therefore, we
can apply Proposition 4.3.12 to obtain the algorithm Ap = A that actually
does not depend on p.

At this point we have the algorithms A0, AL0

L∗,+ and A.
Let A′ be the algorithm that transforms an L1-sentence into a sentence

over the language Lz,ord, %= ∪ Y by replacing each occurrence of the form Qx,

115



4.8. Uniform encoding of Z in the language LT

where Q is a quantifier, by Qx != 0. It is clear that for each L1-sentence F
and for each U in the class Up

1 , the corresponding structure in ΩY
Np

satisfies
A′(F ) if and only if U satisfies F .

In order to conclude, it is now enough to give uniform positive existential
Lz,ord, %=-definitions of the elements of Y = {R, S} in the class Ω.

For the symbol R, this is Item 2 of Theorem 4.1.10. The positive exis-
tential formula

∃u, v(x = uy ∧ y = vx ∧ ord(u) ∧ ord(v))

uniformly Lz,ord, %=-defines S in the class Ω.
Schematically, following the “two steps encoding process”, we performed:

(Fpe
LA

, N)
A0−→ (Fpe

L∗,+ ,N ) ⊇ (Fpe
L∗,+ , {Np : p ∈ P})

AL0
L∗,+−−−→ (Fpe

L0
, {Wp : p ∈ P})

A−→
(
Fpe
L1

,
⋃

p∈P

Ω∗,reg
Np

)
A′
−−→

(
Fpe
Lz,ord,$=∪Y ,

⋃

p∈P

ΩY
Np

)
AR,S

Y−−−→ (Fpe
Lz,ord,$=

, Ω)

Proof of Item 4 of Theorem 4.1.17. This comes immediately from Proposi-
tion 4.3.3 and Item 4 of Theorem 4.1.17.

4.8 Uniform encoding of Z in the language LT

In this section we will prove Theorem 4.1.19.

Proof of Item 1 of Theorem 4.1.19. We want to prove that (Fpe
LA

, Z) is uni-
formly encodable in (Fpe

L∗ ,Z). We proceed as in the proof of Item 2 of Theo-
rem 4.1.17 (following the “one step encoding process”) with L = L∗, U = Z
and X = {·}. Multiplication is L∗-uped in the class Z by Item 3 of Theorem
4.1.13.

Proof of Item 2 of Theorem 4.1.19. We prove that (Fpe
LA

, Z) is uniformly en-
codable in (Fpe

L∗T
,D). Follow the “one step encoding process”) with L = L∗T ,

U = D and X = {·}. Multiplication is L∗T -uped in the class D by Item 2 of
Theorem 4.1.13.
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Proof of Item 3 of Theorem 4.1.19. We prove that (Fpe
LA

, Z) is uniformly en-
codable in (Fpe

LT
, C), where C is the class of all polynomial rings over a field

of odd positive characteristic.
We will first follow the “two steps encoding process” to uniformly encode

(Fpe
LA

, Z) in (Fpe
L∗T

,Q), with

• L = L∗T and U = D

• A0 is the algorithm that uniformly encodes (Fpe
LA

, Z) in (Fpe
L∗T

,D)

• L′ = L = L∗T and V = Q

• Uind = U

• Q is partitionned into one-element subsets {Qp}

• Y has only one symbol β

• β is interpreted in each L∗T -structure Qp of Q as “β((u, v)) if and only
if v = 1”.

Note that β is L∗T -uped in Q by Lemma 4.5.3. In this context B′ is
the algorithm that transforms each occurrence of Qx in an L∗T -sentence by
Qx(βx)∧ (with the usual abuse of notation). Schematically, we have:

(Fpe
LA

, Z)
A0−−−→ (Fpe

L ,D) = (Fpe
L ,Dind)

B′−−→
(
Fpe
L∪Y ,

⋃

p

{Qp}Y

)
Aβ

Y−−→ (Aβ
Y (Fpe

L∪Y ),Q) ⊆ (Fpe
L ,Q).

We will now use Proposition 4.3.5 with

• G = Fpe
LA

and M = Z

• G ′ = Fpe
L∗T

and U = Q

• G ′′ = Fpe
LT

and V = C

• Uind = U

• C is partitioned into subclasses CQp , where CQp is the class of all poly-
nomial rings of characteristic p.
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In order to conclude we need to find an algorithm B such that for each
Qp ∈ Q, the pair (Fpe

L∗T
, Qp) is uniformly encodable in (Fpe

LT
, CQp). Fix a

prime p and let
F = Q1u1 . . . QnunG(u1, . . . , un)

be an L∗T -sentence in normal prenex form (in our case we need only to con-
sider existential quantifiers, but the whole proof actually goes through when
universal quantifiers are allowed).

Write G1, . . . , Gm the atomic formulas that appear in F and let us de-
scribe the algorithm (following the syntax as in Cori and Lascar [CL]):

1. Term by term substitution of constants and function symbols.
In each term of G, formally replace (in the following order)

(a) each occurrence of 0 by (1, 0);

(b) each occurrence of 1 by (α, 1), for some new (fixed) variable α;

(c) each ui by (vi, wi), for some new (fixed) variables vi and wi;

(d) each string of the form (x, y) + (x′, y′) by

(xx′ − (α2 − 1)yy′, xy′ + x′y)

until the whole term becomes a single pair.

Call G0 the word resulting from G, and G1
0, . . . , G

m
0 the words resulting

from the corresponding atomic formulas G1, . . . , Gm.

2. Substitution of the relation symbols: first component:

(a) In G0, delete any of the G1
i (and its corresponding connective if

any) where appears | or T .

(b) Replace each pair by its first component.

(c) Replace each R(x, x′) by the formula ∆(α, x, x′) from Lemma 4.5.9
and write

G1(α, u1, . . . , un, v1, . . . , vn)

the resulting LT -formula.

3. Substitution of the relation symbols: second component:

(a) In G0, delete any of the G1
i (and its corresponding connective if

any) where appears R.
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(b) Replace each pair by its second component.

(c) Replace each x | y by ∃t(y = tx) (and don’t do anything to T )
and write

G2(α, u1, . . . , un, v1, . . . , vn)

the resulting LT -formula.

4. Define B(F ) as

Q1u1Q1v1 . . . QnunQnvn∃α
(

T (α) ∧G1 ∧G2 ∧
n∧

i=1

δ(α, ui, vi)

)

Observe that one of G1 and G2 must be non-empty: if no relations except
equality appear in G, then we did not delete anything, and if a relation that
is not equality appears in G then it can be deleted only in one of G1 or G2.

The algorithm B works thanks to Lemma 4.5.6.
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Chapter 5

Conclusión - Conclusion

5.1 Conclusión

A continuación presentamos una lista de problemas que aparecen de forma
natural a ráız del presente trabajo.

Con respecto al Caṕıtulo 3:

1. Bajar las cotas en los Teoremas 3.2.3 y 3.2.1.

2. Estudiar el problema de representacion de cuadrados por polinomios
de segundo grado sobre

(a) el campo de las funciones meromorfas p-ádicas sobre un disco; o

(b) algún anillo de funciones meromorfas p-ádicas en caracteŕıstica
positiva.

3. Consideremos el siguiente enunciado: “Dados A anillo conmutativo
unitario, un entero k ≥ 2 y un conjunto S ⊆ A, si un polinomio f ∈
A[X] de grado k representa potencias k-ésimas para demasiados valores
de X en S, entonces f es una potencia k-ésima, salvo un conjunto
pequeño de excepciones”. Convertir este enunciado en algo preciso
(dependiendo del caso) y estudiarlo en algunos anillos A (por ejemplo:
si A es un anillo de polinomios, S es su campo base y k ≥ 3, o A es un
anillo de funciones análiticas etc.).
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4. Sea K/Q un campo de números. Fijamos ocho elementos a1, . . . , a8 de
K y definimos el conjunto E ⊆ K[X] de polinomios mónicos de segundo
grado f ∈ K[X] que no son cuadrados pero sus valores en los ai son
cuadrados. Demuestre o refute: E es finito. Si la afirmación fuera
cierta para alguna elección de K y de los ai, entonces se obtendŕıa un
nuevo ejemplo no-trivial donde la pregunta de Bombieri tiene respuesta
positiva. Por otro lado, si la afirmación es falsa para alguna elección
de K y de los ai entonces tendŕıamos un contra-ejemplo a la conjetura
de Bombieri-Lang.

Con respecto al Caṕıtulo 4:

1. Encontrar una clase de campos de funciones racionales de caracteŕıstica
positiva, con infinitas caracteŕısticas distintas, y donde el orden se
puede definir uniformemente sobre el lenguaje Lz (o mostrar que no
existe tal clase).

2. Bajar las cotas sobre las caracteŕısticas.

3. Demuestre o refute que existe una definición uniforme para la multipli-
cación sobre la clase de estructuras Fp sobre el lenguaje {0, 1, +, P2},
donde P2(x) se interpreta en cada Fp por “x es un cuadrado” (al pare-
cer no es dif́ıcil mostrar que no existe una definición positiva existencial
- ver la demostración de la Proposición 4.1.5 en la Sección 4.2).

4. Extender los resultados sobre el śımbolo “!=” en el Lema 4.1.3 a clases
más amplias de anillos de funciones algebraicas.

5.2 Conclusion

Here is a short list of problems which naturally arise from this work.

With respect to Chapter 3:

1. Lower the bounds in Theorems 3.2.3 and 3.2.1.

2. Study the problem of representation of squares by degree two polyno-
mials over

(a) the field of p-adic meromorphic functions over a disc; or
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(b) some ring of p-adic meromorphic functions in positive character-
istic.

3. Consider the following statement: “Given a commutative unitary ring
A, an integer k ≥ 2 and a subset S ⊆ A, if a polynomial f ∈ A[X]
of degree k represents a k-th power for too many values of X in the
set S, then f itself is a k-th power, up to a small set of exceptions”.
Make the statement precise (depending on the case) and study it for
some rings A (for example: if A is a ring of polynomials, S is its ring
of constants and k ≥ 3, or A is a ring of analytic functions, and so on).

4. Let K/Q be a number field, take eight elements a1, . . . , a8 of K and
define the set E ⊆ K[X] of monic second degree polynomials f ∈
K[X] that are not squares but take square values at the ai’s. Prove
or disprove: E is finite. If one would prove this for some choice of K
and the ai’s, then one would obtain a new non-trivial example where
Bombieri’s question has a positive answer. If one would disprove it for
some choice of K and the ai’s, then one would get a counter-example
to Bombieri-Lang conjecture.

With respect to Chapter 4:

1. To find a class of rational function fields in positive characteristic, with
infinitely many distinct characteristics, where we can define uniformly
the order over the language Lz (or show that there is no such class).

2. Lower the bounds on the characteristic.

3. Prove or disprove that there is a uniform definition of multiplication for
the class of structures Fp over the language {0, 1, +, P2}, where P2(x) is
interpreted in each Fp by “x is a square” (it does not seem too difficult
to prove the non-existence of a positive existential definition - see the
proof of Proposition 4.1.5 in Section 4.2).

4. Extend the result about != in Lemma 4.1.3 to bigger classes of rings of
algebraic functions.
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[Ei] K. Eisenträger, 2003-Hilbert’s tenth problem for algebraic function
fields of characteristic 2, Pacific Journal of Mathematics, 210-2 261-
281 (2003).
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