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Introducción

En este trabajo, estudiamos algunas propiedades aritméticas de los anillos de funciones
enteras y sus consecuencias en definibilidad y decidibilidad en lógica. Antes de poder
enunciar nuestros resultados, es necesario introducir algunas notaciones y un poco de
vocabulario.

Sea F un campo ultramétrico completo el cual es algebraicamente cerrado. Sea
p ≥ 0 la caracteŕıstica de F. Denotamos por En el anillo de las funciones enteras en las
n variables x1, . . . , xn sobre F. El campo de fracciones de En será denotado porMn y
lo llamaremos el campo de las funciones meromorfas en varias variables. Recordamos
que cada función meromorfa no nula, puede ser representada como un cociente f0/f∞
de funciones enteras coprimas. Módulo multiplicación por una constante, las funciones
enteras f0 y f∞ están determinadas de manera única por f . Decimos que f0 es la función
de ceros de f y que f∞ es la función de polos de f . El conjunto de las funciones enteras
irreducibles que dividen a f será denotado por supp(f) y lo llamaremos el soporte de
zeros de f , o simplemente el soporte de f . Cuando F es de caracteŕıstica p positiva, el
ı́ndice de ramificación de f de una función meromorfa no constante f es el mayor entero
m tal que f = gp

m
para algún g ∈Mn. El ı́ndice de ramificación de f será denotado

por u(f). Cuando p = 0, escribimos u(f) = 0 para cualquier función meromorfa no
constante. Finalmente, cuando n = 1, recordamos que dos funciones meromorfas f y g
comparten un valor b cuando f−1(b) = g−1(b).

Un teorema muy conocido de R. Nevanlinna (por ejemplo, ver [Hay1, Theorem
2.6]) establece que dos funciones meromorfas no constantes, en una variable compleja,
las cuales comparten cinco valores distintos, deben ser idénticas. El teorem análogo
para funciones meromorfas globales sobre un campo no-Arquimediano (completo y al-
gebraicamente cerrado) de caracteŕıstica cero fue demostrado por W. W. Adams y E.
G. Straus [AdSt]. El caso de caracteŕıstica positiva fue resuelto por A. Boutabaa and
A. Escassut [BoEs] (con una hipótesis adicional). Más precisamente, en esta tesis lla-
maremos Teorema de Adams-Straus-Boutabaa-Escassut (Teorema AS-BE) al siguiente
enunciado:

Sean f y g dos funciones meromorfas sobre un campo ultramétrico com-
pleto, el cual es algebraicamente cerrado. Adicionalmente, cuando F es de
caracteŕıstica positiva, asumimos que f y g tienen el mismo ı́ndice de ram-
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ificación. Si f y g comparten cuatro valores distintos, entonces f y g son
idénticas. Si más aun, f y g son funciones enteras, entonces es suficiente
que f y g compartan dos valores para asegurar que son idénticas.

El Teorema AS-BE es generalizado para funciones enteras en la sección 3.4, y luego
para funciones meromorfas en la sección 4.3. 1

Teorema 1. Sean f y g funciones enteras no constantes sobre Fn tales que u(f) = u(g).
Si existen dos valores distintos a, b ∈ F tales que

supp(f − a) = supp(g − a) and supp(f − b) = supp(g − b),

entonces f = g.

Una pregunta natural que surge en caracteŕıstica positiva es cuan diferentes pueden
ser f y g si en el Teorema 1, la condición u(f) = u(g) no se satisface. El siguiente
corolario da una respuesta a esta pregunta.

Corolario 2. Asumimos que F es de caracteŕıstica positiva. Sean f y g dos funciones
enteras no constantes sobre Fn, las cuales satisfacen u(f) ≥ u(g). Sea M = u(f) −
u(g). Si existen dos valores distintos a y b en el subcampo finito Fpu(g) de F, los cuales
satisfacen

supp(f − a) = supp(g − a) and supp(f − b) = supp(g − b),

entonces f = gp
M

.

Notamos que cuando u(f) = u(g), el resultado anterior es simplemente el Teorema
1.

Ahora, enunciamos los resultados análogos para funciones meromorfas.

Teorema 3. Sean f y g dos funciones enteras no constantes sobre Fn, las cuales sat-
isfacen u(f) = u(g). Si existen cuatro valores a1, a2, a3, a4 ∈ F tales que

supp(f − ai) = supp(g − ai)

para cada i ∈ {1, 2, 3, 4}, entonces f = g.

La demostración del siguiente corolario es similar a la demostración del Corolario 2
(al final de la Sección 3.4), usando el Teorema 3 en lugar del Teorema 1.

1Agradecemos a Julie Tzu-Yueh Wang por señalarnos que el caso de varias variables puede obten-
erse del caso de una variable. De cualquier manera, nuestro enfoque proporciona una demostración
uniforme, en el sentido que la demostración misma no depende del número de variables, y por tanto,
puede considerarse como una demostración alternativa.
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Corolario 4. Asumimos que F es de caracteŕıstica positiva. Sean f y g dos funciones
meromorfas no constantes tales que u(f) ≥ u(g). Sea M = u(f) − u(g). Adicional-
mente, cuando p es dos o tres, asumimos u(g) > 1. Si existen cuatro valores distintos
a1, a2, a3, a4 en el campo finito Fpu(g) que satisfacen

supp(f − ai) = supp(g − ai)

para cada i = 1, 2, 3, 4, entonces f = gp
M

.

Nuestra principal motivación detrás de este resultado viene de una conjetura clásica
de la teoŕıa de números, conocida como la Conjetura de Erdös-Woods, la cual (infor-
malmente) establece lo siguiente:

Existe un entero positivo N tal que cada entero k está completamente
determinado por la lista de los divisores primos de k y sus N sucesores
x+ 1, . . . , x+N .

El siguiente corolario puede pensarse como un análogo de la Conjetura de Erdös-
Woods sobre el anillo de las funciones enteras ultramétricas (ver [Vs, Theorem 2] para
un análogo polinomial, el cual inspiró parte de esta tesis).

Teorema 5. Dadas dos funciones enteras f y g, si existen dos constantes a, b ∈ F y
un polinomio de grado uno ` ∈ F[x1, . . . , xn] tal que

• supp(f) = supp(g),

• supp(f + a) = supp(g + a),

• supp(f + `) = supp(g + `) and

• supp(f + `+ b) = supp(g + `+ b),

entonces f = g.

El resultado anterior tiene implicaciones en aspectos de la lógica de las funciones
enteras en cualquier caracteŕıstica. En la sección 4.3 se demuestra una versión mero-
morfa del Teorema 5 (ver Corolario 4.3.4), con consecuencias análogas en lógica. No
obstante, tales consecuencias pueden ser obtenidas directamente del Teorema 3, por lo
que las omitiremos.

En este trabajo, usaremos L para denotar el lenguaje de primer orden {S, S∗,⊥},
donde S y S∗ son dos śımbolos de función unaria y ⊥ es un śımbolo de relación binaria
(para una breve introdcucción a las nociones básicas de la lógica de predicados de primer
orden, ver Sección 3.1). Denotamos por Ω la clase de anillos de funciones enteras en
un número arbitrario de variables, sobre un campo ultramétrico arbitrario completo
y algebraicamente cerrado. Por anillo de funciones enteras, siempre nos referimos a
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un anillo de la clase Ω. Cada anillo de funciones enteras será considerado como una
estructura sobre L , donde ⊥ es interpretado como la relación de coprimalidad, y los
śımbolos de funciones S y S∗ son interpretados como las operaciones S(x) = x + 1 y
S∗(x) = x+X, respectivamente, donde X denota cualquier variable independiente del
anillo.

Como consequencia del Teorema 5, deducimos el siguiente corolario..

Corolario 6. La relación de igualdad es uniformemente L -definible en la clase Ω.

Inspirados por el caso polinomial, resuelto por M. Vsemirnov en [Vs], demostramos
el siguiente resultado.

Teorema 7. Sea E cualquier anillo de funciones enteras de caracteŕıstica positiva. La
teoŕıa elemental de 〈E ;⊥, S, S∗〉 es indecidible.

Estos resultados dan respuestas a preguntas análogas a tópicos clásicos estudiados,
en particular, por Julia Robinson y Alain Woods para el caso de números enteros - Ver
Sección 3.2 para más detalles.

Regresamos ahora a algunos tópicos del análisis no-Arquimediano, los cuales están
relacionados con la Teoŕıa de Distribución de Valores. Este es el contenido del caṕıtulo
4. A pesar de los avances realizados en el análisis no-Arquimediano en varias variables,
algunas herramientas necesarias para probar algunos resultados de esta tesis, o bien no
hab́ıan sido desarrolladas o no eran lo suficientemente convenientes (especialmente para
la teoŕıa de los valores ramificados y sus aplicaciones). En lugar de seguir el enfoque
propuesto por W. Cherry y Z. Ye [ChYe] (ver tambien [Kh]), donde se definen las fun-
ciones de conteo de ceros y polos a travez de una recta general, optamos por proponer un
enfoque más al estilo Grothendieck definiendo la noción de punto irreducible (el cual es
una clase de equivalencia de funciones enteras irreducibles). Dicha noción nos permitió
obtener una definición bastante natural del concepto general de divisor asociado a una
función entera en varias variables. La ventaja de este enfoque es la facilidad con que nos
permite deducir las fórmulas clásicas de la teoŕıa de la Nevanlinna al estilo de Boutabaa
y Escassut [BoEs] (las cuales son válidas en el caso de una variable y en cualquier carac-
teŕıstica). En la Sección 4.2, reproducimos la teoŕıa ultramétrica de Nevanlinna. Nada
es realmente nuevo en esta sección, la cual incluimos (con demostraciones detalladas)
con el proposito de ser auto-contenidos y porque no pudimos hallar en la literatura los
resultados escritos de esta forma (al estilo de Boutabaa y Escassut) y con tal generalidad
(en cualquier caracteŕıstica)2. Estos resultados son precisamente los que necesitamos y
que usaremos en las secciones que siguen y cuyo contenido describimos a continuación.

2Julie Tzu-Yueh Wang nos ha mencionado un art́ıculo de Cherry y Toropu [ChTo]. Demuestran que
el análogo de la n-conjetura – una versión generalizada de la conjetura ABC propuesta por Browkin y
Brzezinski – para funciones enteras ultramétricas, es cierta. Para n = 3, su teorema es equivalente al
corolario de nuestro Segundo Teorema Principal truncado con 3 targets – ver Corolario 4.2.9
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Antes de proceder, es necesario introducir algunas definiciones y notaciones. Recor-
damos que en el caso de una variable, M(F) denota el campo de las funciones mero-
morfas sobre F yM(d(a, r−)) denota el campo de las funciones meromorfas en el disco
sin borde d(a, r−), con centro en a y radio r. Notaciones análogas son usadas para
funciones análiticas usando la letra A en lugar deM. Añadimos a estas notaciones un
ı́ndice b para referirnos a funciones acotadas, y u para referirnos a las no-acotadas.

En [EsOj], Alain Escassut y Jacqueline Ojeda consideran la noción de valor per-
fectamente ramificado para funciones en M(F) o en M(d(a, r−)) (ver [Cha] para el
caso complejo). Esta noción está estrechamente relacionada con el valor excepcional de
Picard [Es3, Hay2]. A continuación recordamos dicha noción.

Dada una función meromorfa sobre F o en d(a, r−), decimos que b ∈ F es
un valor perfectamente ramificado para f cuando el conjunto de los ceros
simples de f − b es finito. Si f − b no tiene ceros simples, decimos que b es
un valor perfectamente ramificado para f .

Extendemos esta definición para funciones meromorfas globales en varias variables.
Recordamos que la noción de parte libre de cuadrado de una función entera está bien
definida (es el producto de los factores irreducibles cuya multiplicidad es uno).

Definición 8. Dada una función meromorfa no constante f ∈Mn, diremos que b ∈ F
es un valor perfectamente ramificado para f si la parte libre de cuadrados de la función
de ceros de f − b es un polinomio. También, diremos que b es un valor totalmente
ramificado para f si la parte libre de cuadrados de f − b es una constante.

Con esta definición, extendemos algunos de los resultados obtenidos en [EsOj] para
funciones meromorfas globales en varias variables y en cualquier caracteŕıstica. En la
Sección 4.4, demostramos el siguiente teorema.

Teorema 9. Dada una función meromorfa no constante f la cual satisface u(f) = 0,
se tiene:

1. f tiene a lo más tres valores perfectamente ramificadoss;

2. si f es trascendental, entonces tiene a lo más cuatro valores perfectamente rami-
ficados;

3. si f es trascendental y su función de polos es un polinomio, entonces tiene a lo
más un valor perfectamente ramificado;

4. si f es un polinomio, entonces tiene a lo más un valor totalmente ramificado.

En [EsRi] junto con Alain Escasssut, usamos el análogo del Teorema 9 en el caso de
una variable y caracteŕıstica cero (previamente obtenido en [EsOj]) para analizar ciertas
ecuaciones funcionales. Algunos de los resultados obtenidos en [EsRi], son presentados
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en esta tesis en el caso más general de varias variables y en cualquier caracteŕıstica
- ver Sección 4.5. Recordamos que el exponente caracteŕıstico de F se define como p
cuando p es positivo, y como 1 cuando p es cero. A lo largo de esta tesis, el exponente
caracteŕıstico será denotado por q.

Corolario 10. Sean m y d dos enteros mayores a 1, ambos coprimos con q, y sean
P,Q,R ∈ F[x1, . . . , xn] tres polinomios no nulos. La ecuación funcional

Pfd −Qgm = R

en las variables f y g, no admite soluciones trascendentales en En.

Teorema 11. Sea m ≥ 2 un entero coprimo con q. Sea h ∈ En una potencia m-ésima
y Q ∈ F[X1, . . . , Xn], ambos no nulos. La ecuación funcional

gm = hfm +Q

en las variables f y g no admite soluciones trascendentales sobre En. Más aun, si h es
trascendental, entonces no admite soluciones.

El resto de los resultados obtenidos en [EsRi] tratan con funciones anaĺıticas en una
variable, sobre discos sin borde. La razón por la cual no pudimos generalizar estos
resultados a varias variables fue porque no pudimos resolver el problema de Lazard
[La] en este contexto3. Las demostraciones de los siguientes teoremas están dadas en
la Sección 4.6. Antes de establecer dichos resultados, recordamos que la caracteŕıstica
residual del campo ultramétrico F, es la caracteŕıstica de su campo residual.

Teorema 12. Asumimos que F tiene caracteŕıstica cero. Fijamos a ∈ F y ρ ∈ R>0.
Sean m ∈ Z≥2. Sean h ∈ A(d(a, ρ−)) y w ∈ Ab(d(a, ρ−)) ambos no nulos. La ecuación
funcional

gm = hfm + w

en las variables f y g no admite soluciones en Au(d(a, ρ−)) en cualquiera de los sigu-
ientes casos:

• Si m es coprimo con la caracteŕıstica resdual de F y h no tiene ceros en d(a, ρ−);

3Recordamos que en el caso de una variable (con F esfericamente completo), Lazard [La] demostró
que dado un divisor de un disco sin borde (esto es, una sucesión de elementos del disco, con multi-
plicidades, cuya sucesión de valores absolutos tiende al radio del disco), existe una función anaĺıtica
en ese disco cuyos ceros – contando multiplicidades – son los preescritos por el divisor. Hasta donde
sabemos, este problema es abierto en el caso de varias variables. Nuestra definición de divisor, dada
en la Sección 4.1, nos permite resolver este problema de una manera bastante sencilla – ver Teorema
4.1.4.

12
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• si m y la caracteŕıstica residual de F son iguales a 2, y para cada x ∈ d(a, ρ−) se
tiene

|h(x)− h(0)| < 1

2
|h(0)|;

• si m es coprimo con la caracteŕıstica resdual de F y cada cero de h tiene orden
de multiplicidad divisible por m. Más aun, si también asumimos que h es no
acotada, entonces la ecuación funcional no tiene solución.

Teorema 13. Asumimos que F tiene caracteŕıstica cero. Fijamos a ∈ F y ρ ∈ R>0.
Sean n,m ∈ Z≥2 tales que max{n,m} ≥ 3. Dados h,w ∈ Ab(d(a, ρ−)), la ecuación
funcional

gn = hfm + w

en las variables f y g no admite soluciones en Au(d(a, ρ−)).

La versión en una variable del Corolario 10 se obtuvo como un intento para hallar
las soluciones f y g en A(F) de la ecuación funcional de Pell

f 2 − (h2 − 1)g2 = 1, (1)

donde h es una función entera no constante arbitraria, pero fija. Nuestra motivación
general viene del hecho que si las soluciones son lo suficientemente buenas, entonces
se puede obtener un resultado de indecidibilidad bastante fuerte. Si por ejemplo, se
puede probar que todas las soluciones son polinomios en h, entonces la teoŕıa positivo
existencial de A(F), en el lenguaje LT de anillos junto con un predicado T para “x es
una función no constante”, seŕıa indecidible. L. Rubel formuló un pregunta que necesita
este lenguaje para poder formularse. En [Ru], él demostró que un anillo de funciones
anaĺıticas complejas en el disco unitario, abierto o cerrado, tiene teoŕıa existencial
decidible sobre LT . Para una discusión sobre este lenguaje, ver [PhZa3].

Cuando h es un polinomio no constante, el Corolario 10 reduce el problema de
resolver la ecuación (2) al caso polinomial, el cual fue resuelto por T. Pheidas y K. Zahidi
en [PhZa, Lem 2.2]. Se sabe bastante de este problema cuando h = z es la variable
independiente del anillo A(F). Primero, J. Denef usó las soluciones polinomiales de la
ecuación (2) para obtener resultados de indecidibilidad para anillos de polinomios (en
cualquier caracteŕıstica). Sobre un anillo de funciones enteras ultramétricas, todas las
soluciones son polinomiales (este es un resultado de L. Lipshitz y T. Pheidas [LiPh] en
el caso de caracteŕıstica cero – también ver [Vi] para una demostración del resultado de
indecidibilidad, usando curvas eĺıpticas en lugar de ecuaciones de Pell –, y N. Garćıa-
Fritz y H. Pasten [GaPa] cuando la caracteŕıstica es positiva y distinta de dos – en
caracteŕıstica dos, ellos resuelven una ecuación análoga que ajusta mejor sus propositos
para obtener los resultados de indecidibildad en los que están interesados). Cuando h
es trascendental, aun no se sabe si las soluciones son polinomios en h. Para surveys

13
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más generales sobre el décimo problema de Hilbert, ver [PhZa2], [Po] y [Koe], y el libro
[Sh].

En la Sección 4.5, también demostramos el siguiente corolario del Teorema 9 (inspi-
rados por un resultado de N. Garćıa-Fritz - ver [Ga]).

Corolario 14. Sean f y g funciones enteras coprimas tales que ∇
(
f
g

)
6= 0. Existen a

lo más tres valores de λ en F tales que la función entera

f + λg

es una potencia en En (esto es que puede ser escrita como hk para algun h ∈ En y algún
k ∈ Z≥2).
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Introduction

In this work, we study some arithmetical properties of rings of ultrametric entire func-
tions and their consequences in definability and decision problems in mathematical
logic. Before we state our results, we need to introduce some basic vocabulary and
notation.

Let F be a complete ultrametric field which is algebraically closed. Let p ≥ 0 be the
characteristic of F. We denote by En the ring of entire functions in the n variables x1,
. . . , xn over F. The fraction field of En will be denoted byMn and referred to as the field
of meromorphic functions in several variables. Recall that each non-zero meromorphic
function f can be represented as a quotient f0/f∞ of coprime entire functions. Up to
multiplication by a constant, the entire functions f0 and f∞ are uniquely determined
by f . We say that f0 is the function of zeros of f , and that f∞ is the function of poles
of f . The set of irreducible entire functions dividing f0 is denoted by supp(f) and is
called the support of zeros of f , or simply the support of f . When the characteristic
p is positive, the ramification index of a non-constant meromorphic function f is the
largest integer m such that f = gp

m
for some g ∈Mn. The ramification index of f will

be denoted by u(f). When p = 0, we set u(f) = 0 for any non-constant meromorphic
function f . Finally, when n = 1, we recall that two meromorphic functions f and g
share a value b if f−1(b) = g−1(b).

A well known theorem of R. Nevanlinna (see for example [Hay1, Theorem 2.6])
states that two non-constant meromorphic functions of a complex variable which share
five distinct values must be identical. The analogous theorem for global meromorphic
functions over a non-Archimedean (complete and algebraically closed) field of char-
acteristic zero was proven by W. W. Adams and E. G. Straus [AdSt]. The positive
characteristic case was solved by A. Boutabaa and A. Escassut [BoEs] (with a neces-
sary additional hypothesis). More precisely, in this thesis, what will be referred to as
the Adams-Straus-Boutabaa-Escassut Theorem (AS-BE Theorem) is the following:

Let f and g be two non constant meromorphic functions over a complete
ultrametric field F which is algebraically closed. Additionally, if F has pos-
itive characteristic, assume that f and g have the same ramification index.
If f and g share four distinct values, then f and g are identical. If moreover,
f and g are entire functions, then sharing two values is enough to ensure
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that they are identical.

We will generalize the AS-BE Theorem to the case of several variables, first for
entire functions in Section 3.4, and then for meromorphic functions in Section 4.3.4

Theorem 1. Let f and g be two non-constant entire functions over Fn such that u(f) =
u(g). If there are two distinct values a, b ∈ F such that

supp(f − a) = supp(g − a) and supp(f − b) = supp(g − b),

then f = g.

A natural question in the positive characteristic case, is how much different can
be f and g if the condition u(f) = u(g) is not satisfied in Theorem 1. The following
corollary gives an answer to this question.

Corollary 2. Assume that F has positive characteristic. Let f and g be two non-
constant entire functions over Fn satisfying u(f) ≥ u(g). Write M = u(f) − u(g). If
there are two distinct values a and b in the finite subfield Fpu(g) of F which satisfy

supp(f − a) = supp(g − a) and supp(f − b) = supp(g − b),

then f = gp
M

.

Note that when u(f) = u(g), the previous statement is just Theorem 1.
Now we state the analogous statement for meromorphic functions.

Theorem 3. Let f and g be two non-constant meromorphic functions over Fn such
that u(f) = u(g). If there are four distinct values a1, a2, a3, a4 ∈ F such that

supp(f − ai) = supp(g − ai)

for each i ∈ {1, 2, 3, 4}, then f = g.

The proof of the following corollary is similar to the proof of Corollary 2 (at the end
of Section 3.4), using Theorem 3 instead of Theorem 1.

Corollary 4. Assume that F has positive characteristic. Let f and g be two non-
constant meromorphic functions satisfying u(f) ≥ u(g). Write M = u(f) − u(g).
Additionally, when p is two or three, suppose u(g) > 1. If there are four distinct values
a1, a2, a3, a4 in the finite field Fpu(g) which satisfy

supp(f − ai) = supp(g − ai)

for each i = 1, 2, 3, 4, then f = gp
M

.

4We thank Julie Wang for pointing out to us that the several variables case can be deduced from
the one variable case. We had not realized it. Nevertheless, our approach gives a uniform proof, in
the sense that the proof itself is independent of the number of variables, and therefore may be seen as
an alternative proof.
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Our main motivation behind these results comes from a classical number-theoretic
conjecture, known as the Erdös-Woods Conjecture, which (informally) states:

There is a positive integer N such that every integer k is completely deter-
mined by the list of prime divisors of k and its N successors x+1, . . . , x+N .

The following corollary can be thought of as an analogue of the Erdös-Woods Conjec-
ture over the ring of ultrametric entire functions (see [Vs, Theorem 2] for a polynomial
analogue, which inspired part of this thesis).

Theorem 5. Given two entire functions f and g, if there are two constants a, b ∈ F
and a one degree polynomial ` ∈ F[x1, . . . , xn] such that

• supp(f) = supp(g),

• supp(f + a) = supp(g + a),

• supp(f + `) = supp(g + `) and

• supp(f + `+ b) = supp(g + `+ b),

then f = g.

The previous result has implications in logical aspects of entire functions in any
characteristic. A meromorphic version of Theorem 5 is given in Section 4.3 (see Corol-
lary 4.3.4), with analogous consequences in logic. Nevertheless, those can be obtained
directly from Theorem 3, so we will omit them.

In this work, we will use L to denote the first-order language {S, S∗,⊥}, where S
and S∗ are two unary function symbol and ⊥ is a binary relation symbol (see Section
3.1 for a short introduction to the basic concepts of first-order predicate calculus that
we need in this thesis). We will denote by Ω the class of rings of entire functions in
an arbitrary number of variables, over an arbitrary complete ultrametric field which is
algebraically closed. By a ring of entire functions, we will always mean a ring in the
class Ω. Every ring of entire functions will be considered as a structure over L , where
⊥ is interpreted as the coprimeness relation, and the function symbols S and S∗ are
interpreted as the operations S(x) = x + 1 and S∗(x) = x + X, respectively, where X
denotes an independent variable of the ring.

As a consequence of Theorem 5, we deduce the following corollary.

Corollary 6. Equality is uniformly L -definable in the class Ω.

Inspired by the polynomial case, which is due to M. Vsemirnov in [Vs], we also
prove the following results.

Theorem 7. Let E be any ring of entire functions of positive characteristic. The
elementary theory of 〈E ;⊥, S, S∗〉 is undecidable.
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These results answer questions that are analogous to classical topics studied, in
particular, by Julia Robinson and Alan Woods in the case of integers - see Section 3.2
for more details.

We now come back to some other topics in non-Archimedean analysis which are
related to Value Distribution Theory. This is the content of Chapter 4. Though non-
Archimedean analysis in several variables has long been studied, some tools that we
needed in order to prove some of the theorems in this thesis, were either missing or not
convenient (especially for the theory of branched values and the applications that we
wanted from it). Instead of following the approach by W. Cherry and Z. Ye [ChYe] (see
also [Kh]), which for example define counting functions of zeros and poles through a
general line, we opted for a more “Grothendieck like” approach, first defining a concept
of irreducible point (which will be classes of equivalence of irreducible functions), which
allows us to have a very natural definition of the general concept of divisor in several
variables. The advantage of this approach is that we get very easily the “Boutabaa-
Escassut like” classical formulas [BoEs] (which so far hold in the one variable case
and in any characteristic). In Section 4.2, we reproduce the main theory of Nevanlinna.
Nothing is really new in this section, which we include (with proofs and with full details)
for the sake of being self-content, and because we could not find in the literature the
statements written in this form (Boutabaa-Escassut like) and in such a generality.5

These statements are precisely the ones that we need and that we will use for the
sections that follow and whose content we now describe.

Before we proceed, we need to introduce a few more definitions and notation. Recall
that in the one variable case,M(F) denotes the field of meromorphic functions on F and
M(d(a, r−)) denotes the field of meromorphic functions in the stripped disc d(a, r−)
with center a ∈ F and radius r. Analogous notation is used for analytic functions with
the letter A instead ofM. We may add to the notation an index b to refer to bounded
functions, and u to refer to unbounded functions.

In [EsOj], Alain Escassut and Jacqueline Ojeda consider the non-Archimedean ana-
logue of the notion of perfectly branched value onM(F) and onM(d(a, r−)) (see [Cha]
for the complex case). This notion is closely linked to Picard’s exceptional values
[Es3, Hay2]. Let us recall it here.

Given a meromorphic function on F or in d(a, r−), a value b ∈ F is said to
be a perfectly branched value for f when the set of simple zeros of f − b is
finite. In the case that f − b has no simple zeros, b is said to be a totally
branched value for f .

We extend these definitions to global meromorphic functions in several variables.

5Julie Wang has brought to our attention the paper by Cherry and Toropu [ChTo]. They prove that
the analogue of the n-conjecture – a generalized version of the ABC conjecture proposed by Browkin
and Brzezinski – for ultrametric entire functions, is true. For n = 3 their theorem is equivalent to the
corollary of our truncated Second Main Theorem with 3 targets – see Corollary 4.2.9
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Recall that the notion of the square-free part of an entire function is well defined (it is
the product of the irreducible divisors of the function which have multiplicity one).

Definition 8. Given a non-constant meromorphic function f ∈Mn, we will say that
b ∈ F is a perfectly branched value for f if the square-free part of the function of zeros
of f − b is a polynomial. Also, we will say that b is a totally branched value for f if the
square-free part of the function of zeros of f − b is a constant.

With this definition, we extend some of the results obtained in [EsOj] for goblal
meromorphic functions to the several variables case and to any characteristic. In Section
4.4, we will prove the following theorem.

Theorem 9. Given a non-constant meromorphic function f satisfying u(f) = 0, we
have:

1. f has at most three totally branched values;

2. if f is transcendental, then it has at most four perfectly branched values;

3. if f is transcendental and its function of poles is a polynomial, then it has at most
one perfectly branched value;

4. if f is a polynomial, then it has at most one totally branched value.

In [EsRi], together with Alain Escassut, we use the one variable characteristic zero
analogue of Theorem 9 (previously obtained in [EsOj]) to examine certain functional
equations. Some of the results obtained in [EsRi] are presented in this thesis in the more
general situation of several variables and any characteristic - see Section 4.5. Recall
that the characteristic exponent of F is the integer defined as p if p is positive, and as
1 if p is zero. The characteristic exponent of F will be denoted by q throughout the
thesis.

Corollary 10. Let m and d be two integers greater than 1, both coprime with q, and
let P,Q,R ∈ F[x1, . . . , xn] be non-zero polynomials. The functional equation

Pfd −Qgm = R

in the variables f and g has no transcendental solution over En.

Theorem 11. Let m ≥ 2 be an integer coprime with q. Let h ∈ En be an m-th power
and Q ∈ F[X1, . . . , Xn], both non-zero. The functional equation

gm = hfm +Q

in the variables f and g has no transcendental solution over En. Moreover, if h is
transcendental, then it has no solution at all.
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The other results obtained in [EsRi] deal with one variable analytic functions in
stripped disks. The reason why we could not generalize these results to several variables
is that we could not solve the analogue of Lazard’s problem [La] in this context.6 The
proofs of the following theorems are given in Section 4.6. Before we state them, we
recall that the residual characteristic of the ultrametric field F is the characteristic of
its residual field.

Theorem 12. Assume that F has characteristic zero. Fix a ∈ F and ρ ∈ R>0. Let
m ∈ Z≥2. Let h ∈ A(d(a, ρ−)) and w ∈ Ab(d(a, ρ−)) be both non identically zero. The
functional equation

gm = hfm + w

in the variables f and g has no solution over Au(d(a, ρ−)) in each of the following
situation:

• if m is coprime with the residual characteristic of F and h has no zeros in d(a, ρ−);

• if m and the residual characteristic of F are equal to 2, and for each x ∈ d(a, ρ−)
we have

|h(x)− h(0)| < 1

2
|h(0)|;

• if m is coprime with the residual characteristic of F and each zero of h has order
of multiplicity divisible by m. Moreover, if h is also assumed to be unbounded,
then the functional equation has no solution.

Theorem 13. Assume that F has characteristic zero. Fix a ∈ F and ρ ∈ R>0. Let
n,m ∈ Z≥2 be such that max{n,m} ≥ 3. Given h,w ∈ Ab(d(a, ρ−)), the functional
equation

gn = hfm + w

in the variables f and g has no solution over Au(d(a, ρ−)).

The one variable version of Corollary 10 was obtained as an attempt to find the
solutions f and g in A(F) of the functional Pell equation

f 2 − (h2 − 1)g2 = 1, (2)

where h is a fixed arbitrary non-constant entire function. The general motivation comes
from the fact that if the solutions turn to be nice enough, then one could obtain a very

6Recall that in the one variable case (with F spherically complete), Lazard [La] proved that, given
a divisor of a stripped disk (a sequence of elements of the disk, with multiplicities, whose sequence of
absolute values tends to the radius of the disk), there exists an analytic function on that disk whose
zeros – counting multiplicities – are the ones prescribed by the divisor. As far as we know, this problem
is open in the case of several variables. Our definition of divisors in Section 4.1 allows us to solve this
problem for entire functions on Fn in a quite straightforward way – see Theorem 4.1.4.
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strong undecidability result. If, for instance, one could prove that all the solutions
are polynomials in h, then the positive existential theory of A(F), in the language
LT of rings together with a predicate T for “x is not a constant function”, would
be undecidable. L. Rubel asked a question which needs this language in order to be
expressed. In [Ru], he showed that a ring of complex analytic functions on the open or
closed unit disk has decidable existential theory over LT . See [PhZa3] for a discussion
about this language.

When h is a non-constant polynomial, Corollary 10 reduces the problem of solving
Equation (2) to the polynomial case, which was solved by T. Pheidas and K. Zahidi
in [PhZa, Lem 2.2]. When h = z is the independent variable of the ring A(F), much
is known. First J. Denef [De] uses the polynomial solutions to Equation (2) to obtain
undecidability results for polynomial rings (in any characteristic). Over a ring of ul-
trametric entire functions, all solutions turn out to be polynomial (this is a result of
L. Lipshitz and T. Pheidas [LiPh] in the characteristic zero case — see also [Vi] for an
alternative proof of the undecidability result, using elliptic curves instead of Pell equa-
tion —, and N. Garćıa-Fritz and H. Pasten [GaPa] when the characteristic is distinct
from two - in characteristic two, they solve an analogous equation that fit better their
purpose, as they are mostly interested in logical consequences). When h is transcen-
dental, it is not known whether or not all solutions are polynomials in h. For general
surveys on Hilbert’s tenth problem, see [PhZa2], [Po] and [Koe], and the book [Sh].

In Section 4.5, we also prove the following corollary of Theorem 9 (inspired by a
result due to N. Garćıa-Fritz - see [Ga]).

Corollary 14. Let f and g be two coprime entire functions such that ∇
(
f
g

)
6= 0.

There exist at most three values of λ in F such that the entire function

f + λg

is a power in En (meaning that it can be written as hk for some h ∈ En and k ∈ Z≥2).
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Chapter 1

Preliminaries in Non-Archimedean
analysis

1.1 Non-Archimedean rings

In this Chapter we recall some basic properties of non-Archimedean rings. For most
definitions and results, we refer to [BGR]. By a ring, we always mean a commutative
ring with unit. Given a ring R, we use R∗ to denote the set R \ {0} and R× for the
group of units of R. A non-Archimedean absolute value on a ring R (also known as
ultrametric absolute value) is a function

| | : R→ R≥0

which satisfies the following properties for every x, y ∈ R:

1. |x| = 0 if and only if x = 0,

2. |xy| = |x| · |y|,

3. |x+ y| ≤ max{|x|, |y|}.

The third property is known as the strong triangle inequality. A non-Archimedean ring
(or an ultrametric ring) is a ring endowed with a non-Archimedean absolute value. It
follows directly from Conditions 1 and 2 that a non-Archimedean ring is an integral
domain.

Throughout this section, R will denote a ring endowed with a non-Archimedean
absolute value | |, and K will denote its fraction field. The absolute value of R extends
uniquely to a non-Archimedean absolute value | | on K in the usual way. In this case,
we say that K is an ultrametric field.
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1. Preliminaries in Non-Archimedean analysis

1.1.1 Basic facts and examples

The proof of the following is standard (sometimes known as “all triangles are isosceles”).

Lemma 1.1.1. Let x and y be two elements of R. If |x| > |y|, then |x+ y| = |x|.

We will often consider R as a topological ring and K as a topological field with
respect to the distance induced by | |.

One defines a valuation v associated to | | in the usual way: fix π ∈ ]1,+∞[, and
consider the real logarithmic function logπ of base π. The function v : R∗ → R, defined
as v(x) = − logπ |x| satisfies the following properties: for every x, y ∈ R∗, we have

a) v(xy) = v(x) + v(y), and

b) v(x+ y) ≥ min{v(x), v(y)}.

Reciprocally, a valuation v : R∗ → R induces a non-Archimedean absolute value | | in
R by setting |x| = π−v(x). The metric topology induced by this absolute value does not
depend on the choice of π.

We recall that any non-Archimedean ring can be embedded, as a dense subring, in
a complete non-Archimedean ring.

Examples 1.1.2. 1. If A is an integral domain, the function | | : A → R≥0 given
by

|x| =
{

1 if x 6= 0,
0 if x = 0,

defines the trivial non-Archimedean absolute value. Any integral domain A with
the trivial absolute value is complete.

2. Let Z be the ring of integers and let p be a prime number. The p-adic valuation vp
is defined as follows. Given a non-zero integer x, if s denotes the largest natural
number such that x factorizes as psq for some q ∈ Z, then we set

vp(x) = s.

The p-adic absolute value | |p is defined as the non-Archimedean absolute value
associated to vp. The completion of Z with respect to the p-adic absolute value
is the usual ring Zp of p-adic integers. The field Qp is the completion of Q with
respect to the p-adic absolute value and it is the fraction field of Zp.

3. The following example is especially relevant in positive characteristic. Let A be
an integral domain. Consider the ring A[[t]] of formal power series in the variable
t with coefficients in A. The order of a non-zero power series is defined as the
valuation

ord: A[[t]] \ {0} → Z
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1.1. Non-Archimedean rings

given by

ord

(∑
i∈N

ait
i

)
= min{i : ai 6= 0}.

The non-Archimedean absolute value on A[[t]] associated to this valuation is de-
noted by | |0, and (A[[t]], | |0) is a complete non-Archimedean ring. Moreover,
A[[t]] is the completion of the ring of polynomials A[t] with respect to the absolute
value | |0, namely, it contains A[t] as a dense subset.

We finish this subsection by recalling the following characterization of Cauchy se-
quences in ultrametric rings.

Proposition 1.1.3. [BGR, 1.1.7, Prop. 1] Any sequence (ak)k∈N of elements of R is
a Cauchy sequence if and only if it satisfies

lim
k→∞
|ak+1 − ak| = 0.

1.1.2 Complete non-Archimedean rings

In this subsection, we will assume that R is complete.

Lemma 1.1.4. [BGR, 1.1.8, Prop. 1] A series
∞∑
k=0

ak of elements of R is convergent

if and only if
lim
k→∞
|ak| = 0.

We notice that the strong triangle inequality can be extended to convergent series.
More precisely, if

∑∞
k=0 ak is a convergent series of elements in R, then∣∣∣∣∣

∞∑
k=0

ak

∣∣∣∣∣ ≤ max
k
|ak|.

We recall that given a sequence (ak)k∈N of non-zero elements of R, the infinite
product

∞∏
k=0

ak

is said to be convergent if the sequence(
k∏
i=0

ak

)
k∈N

of its partial products is convergent.
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1. Preliminaries in Non-Archimedean analysis

Lemma 1.1.5. Consider a sequence (ak)k of non-zero elements in R. The infinite
product

∞∏
k=1

ak

converges to a non-zero element of R if and only if it satisfies

lim
k→∞
|ak − 1| = 0. (1.1)

Proof. In [ChYe], the analogous statement for rings of analytic functions is proven. The
same argument works for the more general case that is considered here. We give it for
the convenience of the reader.

It is easily seen that an infinite product which converges to a non-zero element
satisfies Equation (1.1). For the other direction, we prove that the sequence of the

partial products Fm =
m∏
i=1

ai is a Cauchy sequence, and then we deduce the convergence

of this sequence by the completeness of R. By condition (1.1), there exists a positive
integer N such that |ak − 1| < 1, for each k ≥ N . Hence, by Lemma 1.1.1 it follows
that |ak| = 1, for each k ≥ N . Consequently, we obtain the following relations

|Fk+1 − Fk| = |Fk||ak+1 − 1| = |FN−1||ak+1 − 1|,

for each k ≥ N . Thus, by Equation (1.1) and Proposition 1.1.3, we conclude that (Fi)i
is a Cauchy sequence.

1.1.3 Ultrametric field extensions

In this subsection, we will recall a few facts in the special case of non-Archimedean
fields.

For the following results we refer to [Es1]. In this subsection, K denotes an ultra-
metric field. Given a ∈ K and r ∈ R>0, the dressed disk with center a and radius r is
the set

d(a, r) = {x ∈ K : |x− a| ≤ r}.
Analogously, the stripped disk with center a and radius r is defined as

d(a, r−) = {x ∈ K : |x− a| < r}.

Recall that both the dressed and the stripped disks are clopen.

Lemma 1.1.6. The set d(0, 1) is a local ring whose maximal ideal is d(0, 1−). Conse-
quently, the quotient

K̃ = d(0, 1)/d(0, 1−)

is a field.
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1.1. Non-Archimedean rings

The field K̃ is called the residual class field of K. If x is an element of d(0, 1), its
reduction modulo d(0, 1−) is denoted by x̃.

Lemma 1.1.7. [Es1, Th 6.3] If K is algebraically closed then its group of values |K∗|
is dense in R>0.

Proposition 1.1.8. [Es1, Th 6.3] Assume that K is complete and let K be an algebraic
closure of K. There is a unique ultrametric absolute value | |′ of K which extends the
one of K. Moreover, if a is an element of K, P is the minimal polynomial of a over K
and d is the degree of P , then

|a|′ = d
√
|P (0)|.

Lemma 1.1.9. [Es1, Th 6.6] Assume that K is complete and let K be an algebraic

closure of K. Then the residual field of K is an algebraic closure of K̃.

Theorem 1.1.10. [Es1, Th 6.10] If K is algebraically closed, then the completion of K
is algebraically closed.

Examples 1.1.11. 1. Let Qp be an algebraic closure of Qp. The p-adic absolute

value | |p on Qp can be extended uniquely to an ultrametric absolute value of Qp.

The completion of the ultrametric field Qp is denoted by Cp, and is called the
field of complex p-adic numbers. By theorem 1.1.10, the ultrametric field Cp is
complete and algebraically closed. The residual field of Cp is an algebraic closure
of the finite field Fp.

2. Let K be Q or Fp. For convenience we say that K has characteristic p by consid-
ering p = 0 in the case that K = Q. Consider the field K((t)), i.e. the fraction
field of the ring K[[t]]. The absolute value | |0 extends uniquely to an algebraic
closure

K((t))

of K[[t]]. The completion of K((t)) is denoted by C∞,p and its residual field is an
algebraic closure of K, so it is a field of characteristic p.

An ultrametric field (K, | |) is said to be spherically complete when all decreasing se-
quences of closed disk have a non-empty intersection. It is immediate that a spherically
complete ultrametric field is complete.

Theorem 1.1.12. [Es1, Th 7.4] Each ultrametric field K admits an ultrametric field

extension K̂ which is algebraically closed and spherically complete, with non-countable
residual field and group of values R>0.
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1. Preliminaries in Non-Archimedean analysis

1.2 Rings of power series

Let n be a positive integer and consider the n-tuple of indeterminates

X = (X1, . . . , Xn).

Given any field K, we will denote by K[[X]] the ring of formal power series in the
n indeterminates X1, . . . , Xn over K. It is convenient to introduce the multi-index
notation.

A multi-index (of length n) is an element of the additive monoid Nn. We will use θ
to denote the neutral element. The degree of a multi-index

γ = (γ1, . . . , γn)

is the non-negative integer |γ|, defined by

|γ| = γ1 + · · ·+ γn.

The degree can be seen as a monoid homomorphism from (Nn,+, θ) to (N,+, 0). It
extends to a unique Z-module homomorphism from Zn to Z. On Zn, we define the
binary relation � as follows: if α = (α1, . . . , αn) and β = (β1, . . . , βn) are two elements
of Zn, we write α ≺ β if α 6= β and

• either |α| < |β|, or

• |α| = |β| and αi < βi, where i is the smallest subscript satisfying αi 6= βi.

We write α � β if α ≺ β or α = β. The relation � is a total order on Zn called
the graded-lexicographical order. Note that it is compatible with addition, and that it
becomes a well-ordering on the set Nn.

For any γ ∈ Nn, we use Xγ to denote the monomial

Xγ1
1 . . . Xγn

n .

Recall that the order of a non-zero power series

f =
∑
γ

aγX
γ

in K[[X]] is the integer defined by

ord(f) = min{|γ| : aγ 6= 0},

i.e. the least degree of a multi-index whose coefficient in f is non-zero. It is not difficult
to prove that given two non-zero elements f and g in K[[X]], we have
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1.2. Rings of power series

• ord(f + g) ≥ min{ord(f), ord(g)},

• ord(fg) = ord(f) + ord(g).

For each j = 1, . . . , n, the j-th formal partial derivative of a power series f will be
denoted by ∂jf . We will denote by ∇f the n-tuple

(∂1f, . . . , ∂nf)

of power series.

1.2.1 Generalized topologically pure extensions

Let (K, | |) be a complete ultrametric field. Given a positive real number ρ, we denote
by Tn,ρ the K-algebra {∑

γ

aγX
γ ∈ K[[X]] : lim

|γ|→∞
|aγ|ρ|γ| = 0

}
.

Such algebra is endowed with the generalized Gauss norm

| |ρ : Tn,ρ → R≥0

defined as ∣∣∣∣∣∑
γ

aγX
γ

∣∣∣∣∣
ρ

= max
γ
|aγ|ρ|γ|.

As in Lemmas 1.17 and 1.18 in [HuYa], we have:

Lemma 1.2.1. The norm | |ρ is an ultrametric absolute value over Tn,ρ. The ultra-
metric ring Tn,ρ is complete. Given a power series

f =
∑
γ

aγX
γ

in Tn,ρ, the sequence (fi) of polynomials defined by

fi =
∑
|γ|≤i

aγX
γ,

converges to f .
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1. Preliminaries in Non-Archimedean analysis

Recall that for ρ = 1, Tn,ρ is a topologically pure extension of K of degree n and is
denoted by Tn. If ρ is in the the group of values of K, for any b ∈ K satisfying |b| = ρ,
the mapping

Ψb : Tn,ρ → Tn

defined by

Ψb

(∑
γ

aγX
γ

)
=
∑
γ

aγb
|γ|Xγ,

is a K-algebra isomorphism and an isometry between

(Tn,ρ, | |ρ) and (Tn, | |1).

Proposition 1.2.2. [BGR, 5.1.3, prop 1] Assume that ρ ∈ |K∗|. A power series

f =
∑
γ

aγX
γ

in Tn,ρ is a unit if and only if

aθ 6= 0 and |f − aθ|ρ < |aθ|.

We end this subsection with the fact that topologically pure extensions are unique
factorization domains. This statement is proven by Paolo Salmon in [Sa].

Proposition 1.2.3. [Es2, Th 33.7] Assume that ρ ∈ |K∗|. The ring Tn,ρ is a unique
factorization domain.

1.2.2 Analytic functions

Here, we recall the relation between Tn,ρ and the ring of analytic functions in the poly-
disk of radius ρ (see Proposition 1.2.4).

Let (F, | |) be a complete ultrametric field which is algebraically closed. The F-
vector space Fn is provided with the Gauss norm

‖(x1, . . . , xn)‖ = max
1≤i≤n

|xi|.

Given ρ > 0, we denote by Dn
ρ the dressed poly-disk

{z ∈ Fn : ‖z‖ ≤ ρ} .

Note that if ρ is not in the group of values |F∗|, the poly-disk Dn
ρ coincide with the

stripped poly-disk
Dn
ρ− = {z ∈ Fn : ‖z‖ < ρ} .
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1.2. Rings of power series

An analytic function in Dn
ρ is a map h : Dn

ρ → F which admits a power series
expansion (in n variables). The F-algebra of analytic functions in Dn

ρ is denoted by
A(Dn

ρ ). The F-algebra of bounded analytic functions in Dn
ρ is denoted by Ab(D

n
ρ ). The

supremum norm on Ab(D
n
ρ ) will be denoted by ‖ ‖Dnρ . By Lemma 1.1.4, each power

series f =
∑

γ aγX
γ in Tn,ρ defines by evaluation an analytic function in Dn

ρ . The
following proposition is well known. For instance, see [An, Lemma 2.4] and for the one
variable case, see [Es1, Th 13.1].

Proposition 1.2.4. Let ρ be a positive number. Each power series f ∈ Tn,ρ is a
bounded analytic function in Dn

ρ , and for each r ∈ ]0, ρ], it satisfies

‖f‖Dnr = |f |r.

If ρ ∈ |F∗|, then
Tn,ρ = Ab(D

n
ρ ) = A(Dn

ρ ).
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Chapter 2

Non-Archimedean analysis in
several variables

2.1 Entire and meromorphic functions

In this section we introduce the basic definitions and properties of ultrametric entire
and meromorphic functions in several variables. In what follows, (F, | |) will denote
a complete ultrametric field which is algebraically closed and n will denote a positive
integer. Classically, an entire function is defined as a map h : Fn → F whose restriction
to any polydisk Dn

r is analytic. The ring of entire functions on Fn will be identified
with the ring En(F) ⊂ F[[X]] given by

En(F) =
⋂

r∈R>0

Tn,r.

The fraction field of En(F) will be denoted by Mn(F) and is called the field of mero-
morphic functions in n variables over F. When it is clear from the context what the
field F is, the ring of entire functions is denoted by En and the field of meromorphic
functions by Mn.

Consider the family of norms

F = {| |r : r ∈ R>0}

on En. The ring of entire functions is naturally endowed with the ultrametric locally
convex topology τ induced by F (see [PeSc], 3.7.2). This topology provides a topologi-
cal ring structure on En. A sequence of entire functions converges in (En, τ) if and only
if it converges in (Tn,r, | |r), for each r > 0. As a direct application of Lemma 1.2.1, we
have
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2. Non-Archimedean analysis in several variables

Lemma 2.1.1. The ring of entire functions is a complete topological ring. Given an
entire function f =

∑
γ aγX

γ, the sequence of polynomials

fi =
∑
|γ|≤i

aγX
γ,

converges to f .

In other words, En is a completion of F[X1, . . . , Xn] with respect τ .

2.2 The maximum term

In this section, we recall the main properties of the maximum term of an entire function
(also known as the maximum modulus).

To each non-zero entire function

f =
∑
γ

aγX
γ,

we associate the real valued function

|f | : R≥0 → R≥0

defined by
|f |(r) = |f |r, if r > 0

and

|f |(0) =

(
max

|γ|=ord(f)
|aγ|
)

lim
s→0+

sord(f)

(there should be no ambiguity with the notation | | used also for the absolute value
over F). The real function |f | is called the maximum term of f . It is easily checked that
the maximum term is continuous and non-decreasing. To each r ∈ R>0, we associate
the set of multi-indices

Γr(f) = {γ : |aγ|r|γ| = |f |r},
and the two multi-indices

ν+(r, f) = max Γr(f)

and
ν−(r, f) = min Γr(f),

where the maximum and the minimum are taken with respect to the graded lexico-
graphical order on Nn. This definition is extended to R≥0, by setting

Γ0(f) =

{
γ : |aγ| = max

|β|=ord(f)
|aβ|
}
,
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2.2. The maximum term

ν+(0, f) = max Γ0(f)

and
ν−(0, f) = θ.

A critical radius of f is a non-negative real number r′ such that

|ν−(r′, f)| < |ν+(r′, f)|.

Since F is algebraically closed, each critical radius is contained in the group of values
|F∗|. From Proposition 1.2.2, we deduce:

Lemma 2.2.1. A non-zero entire function f is a unit in Tn,ρ if and only if it has no
critical radius in the interval [0, ρ].

The following propositions seem to be well-known but we were not able to find a
reference. The proofs of these facts are given in the next subsection.

Proposition 2.2.2. Let f be a non-zero entire function.

1. For each ρ > 0, the interval [0, ρ] contains only finitely many critical radii of f .

2. If f has infinitely many critical radii, then the increasing sequence (ρi)i of critical
radii tends to +∞.

3. If r′, r′′ ∈ R≥0 are such that the interval ]r′, r′′[ contains no critical radius of f ,
then for each r ∈ ]r′, r′′[ we have

a) |ν+(r′, f)| = |ν−(r, f)| = |ν+(r, f)| = |ν−(r′′, f)|, and

b) Γr(f) =

{
γ : |aγ| = max

|β|=d
|aβ|
}
, where d = |ν+(r′, f)|.

Let f be a non-zero entire function and I ⊂ R≥0 be an interval containing no critical
radius of f . The central degree of f in I is defined as the integer number |ν+(r′, f)|,
where r′ is any number in I. A multi-index ν is a central multi-index of f in I, if there
is r′ ∈ I such that ν ∈ Γr′(f).

Proposition 2.2.3. Let

f =
∑
γ

aγX
γ and g =

∑
γ

bγX
γ

be two non-zero entire functions and write

fg =
∑

cγX
γ.

For any r ∈ R≥0, we have
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2. Non-Archimedean analysis in several variables

1. ν+(r, fg) = ν+(r, f) + ν+(r, g) and ν−(r, fg) = ν−(r, f) + ν−(r, g),

2. |cν+(r,fg)| = |aν+(r,f)||bν+(r,g)| and |cν−(r,fg)| = |aν−(r,f)||bν−(r,g)|,

3. If f = cg for some constant c ∈ F, then

|g|(r)
|bν+(0,g)|

=
|f |(r)
|aν+(0,f)|

.

2.3 Proofs of Propositions 2.2.2 and 2.2.3

First we need a lemma.

Lemma 2.3.1. Let f be a non zero entire function. Given r, r′ ∈ [0, ρ] such that r < r′,
if ν ∈ Γr(f) and ν ′ ∈ Γr′(f), then |ν| ≤ |ν ′|. In particular, this implies that

|ν+(r, f)| ≤ |ν−(r′, f)|.

Proof. Write

f =
∑
γ

aγX
γ.

Let ν ′ be any multi-index in Γr′(f). Since the inequality

|aγ|r′|γ| ≤ |aν′|r′|ν
′|

is satisfied by any multi-index γ, in particular, for each γ whose degree is greater than
|ν ′| and aγ 6= 0, we have

|aγ|
|aν′ |

r|γ|−|ν
′| <
|aγ|
|aν′|

r′|γ|−|ν
′| ≤ 1,

which implies that

|aγ|r|γ| < |aν′|r|ν
′|.

Thus, the maximum term |f |r is not reached for terms aγX
γ whose degree |γ| is greater

than |ν ′|. If r = 0, it is clear that

ord(f) ≤ |ν ′|

for any ν ′ ∈ Γr′(f).

The following lemma is crucial.
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Lemma 2.3.2. Let f be a non-zero entire function. If r′ > 0, then there exists ζ ∈ R≥0

such that 0 < ζ < r′, which satisfies, for each r ∈ ]ζ, r′[,

|ν−(r, f)| = |ν+(r, f)| = |ν−(r′, f)|.

If r′ ≥ 0, then there exists ξ such that r′ < ξ, which satisfies, for each r ∈ ]r′, ξ[,

|ν−(r, f)| = |ν+(r, f)| = |ν+(r′, f)|.

Proof. Consider the multi-indices

ν+ = ν+(r′, f) and ν− = ν−(r′, f).

First, we prove the second assertion. Assume that the set of multi-indices

Γ>|ν+| = {γ : |γ| > |ν+| and aγ 6= 0}

is non-empty. For each β ∈ Γ>|ν+|, define

ξβ =

∣∣∣∣aν+aβ
∣∣∣∣ 1
|β|−|ν+|

.

Since

|aβ|r′|β| < |aν+ |r′|ν
+|,

we have

ξ
|β|−|ν+|
β =

|aν+|
|aβ|

> r′|β|−|ν
+|,

hence ξβ > r′. Let r ∈ ]r′, ξβ[. Since ξβ > r, we have

|aν+ |
|aβ|

= ξ
|β|−|ν+|
β > r|β|−|ν

+|.

Hence, for any β ∈ Γ>|ν+| and for any r ∈ ]r′, ξβ[, we have

|aβ|r|β| < |aν+ |r|ν
+|.

Next, we prove the following fact.
Fact. There exists ξ ∈ R>0 such that, for any γ whose degree is greater than |ν+|,

and for any r ∈ ]r′, ξ[, we have

|aγ|r|γ| < |aν+|r|ν
+|.
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2. Non-Archimedean analysis in several variables

Indeed, fix an arbitrary ρ greater than r′. When Γ>|ν+| is empty, choose ξ = ρ. Other-
wise, when Γ>|ν+| is finite, this is achieved by choosing

ξ = min

{
ρ, min

β∈Γ>|ν+|

ξβ

}
.

Assume that Γ>|ν+| is infinite. From

|aβ|ρ|β| =
|aν+|ρ|β|

ξ
|β|−|ν+|
β

= |aν+|ρ|ν
+|
(
ρ

ξβ

)|β|−|ν+|
,

we obtain

lim
|β|→∞

(
ρ

ξβ

)|β|−|ν+|
= 0,

and consequently, there is a multi-index β0 ∈ Γ>|ν+| such that, for any β ∈ Γ>|ν+|
satisfying |β| > |β0|, we have ξβ > ρ. So in this case we can choose

ξ = min

{
ρ, min
|ν+|<|β|<|β0|

ξβ

}
.

From the Fact above, we deduce that there is no term aγX
γ of degree greater than

|ν+| which reaches the maximum term |f |r when r ∈ ]r′, ξ[. Therefore, for all r ∈ ]r′, ξ[,
we get

|ν+| ≤ |ν−(r, f)| ≤ |ν+(r, f)| ≤ |ν+|,
where the first inequality comes from Lemma 2.3.1, and the last one from what we just
proved. So the second assertion is proved.

The first assertion is proven in a very similar and much easier way, by defining

Γ<|ν−| = {γ : |γ| < |ν−| and aγ 6= 0},

which is a finite set of multi-indices.

Proof of Proposition 2.2.2. First note that Assertion (2) is immediate from Assertion
(1).

Assertion (1) is an immediate consequence of Lemma 2.3.2, since it implies that the
set C of critical radii of f is discrete, hence C ∩ [0, ρ] is finite, since it is also compact.

We prove Assertion (3). Since there are no critical radius of f within ]r′, r′′[, the real
valued functions t 7→ |ν−(t, f)| and t 7→ |ν+(t, f)| are locally constant in ]r′, r′′[. Hence,
by the connectedness of ]r′, r′′[, we conclude that t 7→ |ν−(t, f)| and t 7→ |ν+(t, f)| must
be constant in ]r′, r′′[, which proves item (a). Finally, by item (a), for any r ∈ ]r′, r′′[,
each multi-index in Γr(f) has degree d = |ν+(r′, f)|. If ν, ν ′ ∈ Γr(f), it is clear that
|aν | = |aν′ |. Moreover, if γ /∈ Γr(f) is a multi-index of degree d, then |aγ| < |aν |. This
ends the proof of item (b).
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Proof of Proposition 2.2.3. Assertions (2) and (3) are immediate consequences of As-
sertion (1), which we prove now. Write µ = ν+(r, f) and ν = ν+(r, g). Let α and β be
two multi-indices such that

α + β = µ+ ν.

If µ ≺ α, then we have

|aαbβ| <
|f |r
r|α|
|bβ| ≤

|f |r
r|α|
|g|r
r|β|

=
|f |r|g|r
r|µ+ν| = |aµbν |.

If α ≺ µ, then ν ≺ β and by a similar argument we obtain |aαbβ| < |aµbν |. Thus, we
have

|cµ+ν | =

∣∣∣∣∣∣∣aµbν +
∑

α+β=µ+ν
µ≺α

aαbβ +
∑

α+β=µ+ν
ν≺β

aαbβ

∣∣∣∣∣∣∣ = |aµbν | =
|f |r|g|r
r|µ+ν| ,

which proves that µ + ν ∈ Γr(fg). Let γ be a multi-index satisfying µ + ν ≺ γ. If α
and β are such that γ = α + β, it follows that µ + ν ≺ α + β. If α satisfies µ ≺ α we
obtain

|aαbβ| <
|fg|r
r|γ|

and if α � µ, it implies that ν ≺ β from we get also

|aαbβ| <
|fg|r
r|γ|

.

Thus, we conclude that

|cγ| ≤ max
α+β=γ

|aαbβ| <
|fg|r
r|γ|

,

which implies
ν+(r, fg) = ν+(r, f) + ν+(r, g).

The other equality is proven in a similar manner.

2.4 Bounded entire functions and units

The following statements are classical. Some of them will be used later.

Lemma 2.4.1. An entire function f is bounded if and only if |f |(r) is a bounded real
valued function.

Proof. This follows directly from Proposition 1.2.4 and Lemma 1.1.7.

Proposition 2.4.2. A bounded entire function must be constant.
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2. Non-Archimedean analysis in several variables

Proof. Let f =
∑

γ aγX
γ be a non-constant entire function. If β is any multi-index of

positive degree such that aβ 6= 0, then

|aβ|r|β| ≤ |f |(r)

is satisfied by any r ∈ R≥0. Thus, from Lemma 2.4.1 it follows that |f |(r) is unbounded.

Corollary 2.4.3. An entire function f for which there is an increasing sequence (ri)i∈N
of positive numbers converging to +∞, which satisfies

|f |(ri) ≤
1

ri
,

for each i ∈ N, must be zero.

Corollary 2.4.4. The units of the ring En are the non-zero constant functions.

Proof. First, we notice that E×n ⊂ T×n,ρ for each ρ ∈ |F∗|. Given f ∈ E×n , by Proposition
1.2.2 and by Lemma 1.1.7, it follows that aθ 6= 0 and that for each f ∈ R≥0

|f |(r) = |aθ|,

which implies that f is bounded. Thus, the assertion follows by lemma 2.4.2.

2.5 Transcendental entire functions

We recall that an entire function f is called transcendental if it is not a polynomial. In
the one variable case, an entire function is transcendental exactly when it has infinitely
many zeros. In several variables we have a similar statement.

Proposition 2.5.1. An entire function f is a polynomial if and only if it has finitely
many critical radii.

Proof. Write f =
∑

γ aγX
γ. If f is a polynomial of degree d, defines β as a multi-index

where max
|γ|=d
|aγ| is reached and set

ξ = max
|γ|<d

∣∣∣∣aγaβ
∣∣∣∣ 1
|β|−|γ|

.

Since the set of critical radii of f is contained in the interval [0, ξ], the assertion follows
from Proposition 2.2.2.
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Assume that f is an entire function with finitely many critical radii. Let r′ > 0 be
the largest critical radius of f and ν = ν+(r′, f). Assume there exists a multi-index β
whose degree is greater than |ν| and such that aβ 6= 0. Set

r′′ =

∣∣∣∣aνaβ
∣∣∣∣ 1
|β|−|ν|

,

so that r′′ > r′ and
|aβ|r|β| > |aν |r|ν|,

for each r > r′′, which contradicts the fact that ν = ν+(r′, f). Thus, we conclude that
aγ = 0 for any γ satisfying |γ| > |ν|, which proves that f is a polynomial of degree
|ν|.

Corollary 2.5.2. An entire function f is transcendental if and only if, for each d ∈ N,
we have

lim
r→+∞

|f |(r)
rd

= +∞.

Lemma 2.5.3. Let P,Q ∈ F[X1, . . . , Xn] be such that deg(P ) > deg(Q). There exists
ρ0 ∈ |F∗| such that for any r > ρ0

|P |(r) > |Q|(r).

Proof. Write f =
∑

γ aγX
γ and g =

∑
γ bγX

γ. Let ρ′ and ρ′′ be the largest critical
radius of f and g respectively. Put

µ = ν+(ρ′, f), ν = ν+(ρ′′, g),

ξ =

∣∣∣∣ bνaµ
∣∣∣∣ 1
|µ|−|ν|

,

and
ρ0 = max{ξ, ρ′, ρ′′}

(note that degP = |µ| and degQ = |ν|). For each r > ρ0, we have

|P |(r) = |aµ|r|µ| > |bν |r|ν| = |Q|(r),

which ends the proof.

Lemma 2.5.4. Let f be a transcendental entire function and P be a polynomial. There
exists ρ0 ∈ |F∗| such that for each r > ρ0

|f |(r) > |P |(r).
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2. Non-Archimedean analysis in several variables

Proof. For each i ∈ N, consider the polynomial

fi =
∑
|γ|≤i

aγX
γ.

Let j ∈ N be such that deg fj > degP . By Lemma 2.5.3, there exists ρ0 ∈ |F∗| such
that

|P |(r) < |fj|(r) ≤ |f |(r),

for each r > ρ0. This ends the proof.

2.6 Partial derivatives

We state the most important fact about partial derivatives of entire and meromorphic
functions.

Proposition 2.6.1. Any entire function is differentiable, its analytic partial derivatives
coincide with its formal partial derivatives and they are entire.

The following result is proven in [ChYe].

Lemma 2.6.2 (Logarithmic Derivative Lemma). Each meromorphic function f satis-
fies

|∂jf |(r) ≤
1

r
|f |(r),

whenever r > 0.

From Lemma 2.6.2 and Lemma 2.4.3, we deduce the following corollary.

Corollary 2.6.3. Let f be a non-zero entire function. If f divides one of its partial
derivatives ∂jf , then ∂jf is identically zero.

Given an entire or meromorphic function f , we recall that the n-tuple

(∂1f, . . . , ∂nf)

is denoted by ∇f . We shall write ∇f = 0 when ∇f is the null n-tuple (0, . . . , 0). It is
easily seen that if F has characteristic zero, a meromorphic function is constant if and
only if ∇f = 0. We prove the analogous statement in positive characteristic.

Proposition 2.6.4. Assume F has characteristic p > 0. An entire function f is a p-th
power if and only if ∇f = 0.
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Proof. If f is p-th power, then obviously satisfies ∇f = 0. Reciprocally, assume ∇f = 0
and write f =

∑
γ aγX

γ. Each γ ∈ Nn for which aγ 6= 0, satisfies

γj ≡ 0 mod p

for j = 1, . . . , n. Since F is algebraically closed, for each γ there exists bγ such that
bpγ = apγ. Set g =

∑
γ bγX

γ. By Lemma 2.1.1, we obtain

f =
∑
γ

bpγX
pγ = lim

i→∞

∑
|γ|≤i

bpγX
pγ

 = lim
i→∞

∑
|γ|≤i

bγX
γ

p

= gp

which ends the proof.

2.7 Greatest common divisors and factorization

We recall the following facts which are fundamental in this work.

Proposition 2.7.1. [Ch, Th 13] The ring En is a greatest common divisor domain.
Moreover, given f1, . . . , fk in En, if g is a greatest common divisor of f1, . . . , fk in the
ring En, then g is a greatest common divisor of f1, . . . , fk in Tn,ρ, for each ρ ∈ |F∗|.

Proposition 2.7.2. [Ch, Th 14] Given a non-zero entire function f , there is an enu-
merable set S ⊂ En consisting of irreducible entire functions which are pairwise coprime,
and a mapping

ω : S → N,

such that

f =
∏
P∈S

P ω(P ).

Moreover, if S ′ is any other enumerable set consisting of irreducible entire functions
which are pairwise comprime, and for which there is a mapping

ω′ : S ′ → N

satisfying

f =
∏
P∈S′

P ω′(P ),

then, there is a bijection φ : S → S ′ such that for each P ∈ S, P and φ(P ) are
associated and such that ω = ω′ ◦ φ.
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2. Non-Archimedean analysis in several variables

In the previous proposition, if the product is infinite, then its convergence is under-
stood with respect the locally convex topology τ .

Given an irreducible entire function P , Proposition 2.7.2 allow us to define the
valuation at P as the map ordP : E∗n → Z given by

ordP (f) = max

{
d :

f

P d
∈ En

}
Obviously, it satisfies the usual properties of a valuation and it can be extended to the
field of meromorphic functions in the usual way.

Definition 2.7.3. Given a non-zero entire function f we define its support as the set
supp(f) of its irreducible factors.

Let p ≥ 0 be the characteristic of F. We recall some basic properties of the order of
multiplicity that we will use later.

Lemma 2.7.4. Let f be a non-zero entire function such that ∂jf is non-zero for some
j, and let P ∈ supp(f). If p = 0 or p is coprime with ordP (f), then

ordP (∂jf) = ordP (f)− 1,

Otherwise, we have
ordP (∂jf) ≥ ordP (f).

Proof. Let d = ordP (f) and G be an entire function coprime with P which satisfies
f = P dG. By computing the j-th partial derivative of f we obtain

∂jf = P d−1(dG∂jP + P∂jG).

If F has characteristic 0 or if d is coprime with p, then dG∂jP 6= 0. By assuming that

dG∂jP + P∂jG

is divisible by P , we obtain that P must divide dG∂jP . Therefore P must divides ∂jP ,
since G is coprime with P . But Lemma 2.6.3 implies that ∂jf is zero, a contradiction
with our assumption. Therefore, dG∂jP + P∂jG must be coprime with P . If F has
characteristic p > 0 and d is not coprime with p, then ∂jf = P d∂jG, from what we get
the relation

ordP (∂jf) = d+ ordP (∂jG).

With an argument similar to the one in the proof of Lemma 2.7.4, we deduce the
following lemma.
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2.7. Greatest common divisors and factorization

Lemma 2.7.5. Let g and h be two coprime entire functions. Assume ∂jg is non-zero
for some j. Given an irreducible entire function P such that ordP (g) 6= 0, if p = 0 or
p is coprime with ordP (g), then

ordP (h∂jg − g∂jh) = 0.

Corollary 2.7.6. Let f be a non-zero meromorphic function such that ∂jf is non-zero
for some j, and P be an irreducible entire function such that ordP (f) 6= 0. If p = 0 or
p is coprime with ordP (f), then

ordP (∂jf) = ordP (f)− 1.

Otherwise, we have
ordP (∂jf) ≥ ordP (f).

We also obtain the following corollary of Proposition 2.6.4.

Corollary 2.7.7. Assume that F has characteristic p > 0. A meromorphic function f
is a p-th power if and only if ∇f = 0.
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Chapter 3

Definability in rings of entire
functions

3.1 Preliminaries in Logic

In this section, we will briefly recall the necessary basic notions that we need from Logic
- see [CoLas] for a general introduction to Logic.

In our context, an algebraic structure is determined by a base-set, a set of distin-
guished elements (that we may call constants), and for each m ∈ Z≥1, a set of m-ary
functions and a set of m-ary relations (think for example of an ordered Abelian group
〈G; 0,+,≤〉). In Logic, we are sometimes interested in studying at once all the algebraic
structures which have a similar such presentation (the same number of distinguished
constants, and for each m, the same number of m-ary functions and relations). This
“presentation” is what we call the underlying language of the structure. So for example,
the underlying language of an ordered Abelian group 〈G; 0,+,≤〉 is the set {0,+,≤}.

One can think of it the other way around: given a language L = {0,+,≤}, where
the symbol 0 is a constant symbol, the symbol + is a symbol of binary function, and
the symbol ≤ is a symbol of binary relation, we may consider any algebraic structure
over the language L, namely, a strucutre which has one distinguished element, one
binary operation, and one binary relation. So, from the point of view of logic, any
ordered Abelian group is a structure over {0,+,≤} (or a {0,+,≤}-structure), namely,
an algebraic structure with a element that stands for (that interprets) the symbol 0, a
binary function that interprets the symbol +, and a binary relation that interprets the
symbol ≤.

More formally, consider a language L. An L-structure is a set M together with

• an element of M for each constant symbol in L,

• a function Mm →M for each m-ary function symbol in L, and
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3. Definability in rings of entire functions

• a subset of Mm for each m-ary relation symbol in L.

In this thesis, languages will not be assumed to be equalitarian (namely, there may be
no symbol for equality), unless otherwise mentioned.

Given a language L, an L-sentence is, informally, an expression built from the
symbols of L, together with parenthesis, logical conectives, variables and quantifiers, so
that the whole thing “makes sense” when interpreted in an L-structure. For example,
the expression ϕ

∀x∃y(x+ y = 0)

is a sentence over the language {0,+,=}, where 0 is a constant symbol, + is a symbol
of binary function, and = is a symbol of binary relation.

A sentence may be true or false, depending in which structure it is interpreted. For
example, ϕ holds in 〈Z; 0,+,=〉 but not in 〈N; 0,+,=〉. When the expression has free
variables (namely, variables that are not quantified), we call it an L-formula instead of
L-sentence. For example, the expression ψ(y)

ψ(y) : ∀x(x+ y = x)

is a {0,+,=}-formula. It holds in an Abelian group if and only if y is the neutral
element. More generally, given an L-formula ϕ, we shall write ϕ(y1, . . . , ym) to indicate
that ϕ has all its free variables among y1, . . . , ym.

If M is an L-structure with base set M and if R is a subset of Mm (namely, an
m-ary relation in M), we will say that a formula ϕ(y1, . . . , yn) defines R, or that R is
L-definable in M, if for each (a1, . . . , an) ∈ Mm we have: the formula ϕ(a1, . . . , an) is
true in M if and only if (a1, . . . , an) belongs to R (where ϕ(a1, . . . , an) is the sentence
obtained from ϕ(y1, . . . , yn) after replacing each yi by ai). A function is definable if its
graph is definable.

Let L′ be the first order language L ∪ {α} where α denotes any symbol which is
not in L. Given a class G of L′-structures, we will say that α is L-uniformly definable
in the class G, it there is an L-formula which defines the interpretation of α in each
element of G.

The elementary theory (or full theory) of an L-structure M is the set of sentences
of L which are true in M. We will say that the elementary theory of an L-structure M
is undecidable if there is no algorithm (a Turing machine) to decide whether a sentence
holds or not in M.

3.2 Historical context

In 1949, Julia Robinson [Ro] showed that addition + is definable in terms of multiplica-
tion and the successor operation S, and that multiplication is definable from addition
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and divisibility. Namely, the operation + is {·, S}-definable and multiplication is {+, |}-
definable. Here the languages {·, S} and {+, |} are assumed to be equalitarian. Actu-
ally, she observes that the {·, S}-definability of addition remains valid if one replaces
the semiring of natural numbers by any integral domain with unit. Julia Robinson
also asked about the definability of multiplication in terms of the successor operation
and the binary relation ⊥ of coprimess. In 1981, it was proven by Alan Woods [Wo]
that this question is equivalent to the same question without equality. He proved that
{⊥, S}-definability of equality, addition, multiplication and the order relation are all
equivalent to a classical number-theoretic conjecture, now known as the Erdös-Woods
Conjecture. For a general survey on definability in weak arithmetic, see the survey by
A. Bès [Bes].

Given an integer x, let us denote by supp(x) the set of prime divisors of x. The
Erdös-Woods Conjecture is the following:

There exists a positive integer N with the the following property: if x and
y are two integers satisfying

supp(x+ i) = supp(y + i)

for each i = 0, . . . , N , then x = y.

Only conditional results have been obtained so far (see [Wo], [Lan1] and [Lan2]).
In 2002, Maxim Vsemirnov in [Vs] gave an affirmative answer to a polynomial

analogue of the Erdös-Woods Conjecture. Vsemirnov deals with polynomial rings over
finite fields and with the language

{⊥, S, S∗}.

The symbol S∗ is interpreted as the operation

S∗(y) = y +X1,

where X1 denotes the first indeterminate of the polynomial ring. Vsemirnov proves
that equality is {⊥, S, S∗}-definable in the ring Fq[X1, . . . , Xn] and that the elementary
theory of

〈Fq[X1, . . . , Xn];⊥, S, S∗〉
is undecidable. We prove the analogous statements over rings of ultrametric entire
functions, much inspired by the work of Vsemirnov.

3.3 Examples of definable and uniformly definable

properties

In order to simplify some statements, throughout this chapter we adopt the following
conventions and notation.
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3. Definability in rings of entire functions

1. By an ultrametric field we will always mean a complete ultrametric field which is
algebraically closed.

2. By a ring of entire functions we will always mean a ring of the form En(F),
for some ultrametric field F and some positive integer n (characteristic may be
positive or 0).

3. We will denote by Ω the class of all rings of entire functions.

4. We use L to denote the first order language {S, S∗,⊥} where S and S∗ are two
unary function symbol and ⊥ is a binary relation symbol.

5. Every ring of entire functions will be considered as a structure over L where ⊥
is interpreted as the coprimess relation and the function symbols S and S∗ are
interpreted as the operations

S(x) = x+ 1 and S∗(x) = x+X,

respectively, where X denotes an independent variable of the ring.

6. For each positive integer k, we use Skx to denote the term of the language L
defined by induction as

S1x = Sx and Skx = SSk−1x.

The term Sk∗x is defined analogously.

The proof of the following lemma is classical. We give a proof in order to fix the
ideas.

Lemma 3.3.1. The following properties are uniformly {⊥}-definable in the class Ω:

1. “x is a non-zero constant ”

2. “x is identically zero”,

Proof. Let E be any ring in the class Ω. For the first assertion we claim that the
{⊥}-formula

ϕ1(x) = ∀y(x ⊥ y).

works. Indeed, this formula defines the units of the ring which are exactly the non-zero
constant functions (see Corollary 2.4.4). For the the second assertion, we consider the
{⊥}-formula

ϕ0(x) = ∀z(ϕ1(z) ∨ ¬(x ⊥ z)),

which obviously is satisfied by 0. If f is non-zero, it is coprime with at least one
irreducible entire function. Therefore f does not satisfies ϕ0.
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3.4. Uniform definability of equality in the class of rings of entire functions

Lemma 3.3.2. In any ring of entire functions, 1 and X are L -definable.

Proof. Let ϕ0(x) be the {⊥}-formula which defines the property “x is identically zero”.
It is easily checked that the L -formulas

ψ1(y) = ϕ0(Sp−1y) and ψX(z) = ϕ0(Sp−1
∗ z)

define 1 and X, respectively.

Lemma 3.3.3. The following classes of sets are uniformly {⊥}-definable in Ω.

1. AE = {(f, g) ∈ E2 : supp(f) ⊆ supp(g)},

2. BE = {(f, g) ∈ E2 : supp(f) = supp(g)},

where E run through the class Ω.

Proof. It is an easy exercise to check that each of the following {⊥}-formula

1. ψA(x, y) = ∀z(z ⊥ y → z ⊥ x),

2. ψB(x, y) = (ψA(x, y) ∧ ψA(y, x)),

defines uniformly the respective class.

3.4 Uniform definability of equality in the class of

rings of entire functions

In this subsection, we give a first proof of the AS-BE Theorem for entire functions in
several variables (see Theorem 1). From this theorem we deduce Theorem 5, which is the
analogue of the Erdös-Woods conjecture for entire functions. The uniform definability
of equality is given as an immediate application of Theorem 5 and Lemma 3.3.3.

Fix an ultrametric field F and consider the ring En of entire functions in n variables
X1, . . . , Xn over F.

Let us introduce the following notation: given two entire functions f and g, we shall
write f B g if there exists an increasing sequence (ri)i∈N in R>0 which tends to +∞,
such that

|f |(ri) ≥ |g|(ri),

for any i ∈ N. We shall write f 7 g if f B g is not satisfied.

Lemma 3.4.1. If f and g are two entire functions such that f 7 g, then g B f .
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3. Definability in rings of entire functions

Proof. Let (ri)i be any increasing sequence which converges to +∞. By the assumption
f 7 g, the increasing sequence (ki)i defined by induction as

k0 = min{k : |f |(rk) < |g|(rk)},

ki+1 = min{k > ki : |f |(rk) < |g|(rk)},
is well-defined. Thus, the sequence (rki) satisfies |f |(rki) < |g|(rki) for each i ∈ N.

Lemma 3.4.2. Let f and g be two entire functions such that ∇f 6= 0 and f B g. If
there exists c ∈ F such that

supp(f) = supp(g) and supp(f + c) = supp(g + c),

then f = g.

Proof. We adapt the proof given in [AdSt] by Adams and Straus for the one variable
case. Since ∇f 6= 0, there is j such that ∂jf 6= 0. First we prove that the meromorphic
function

F =
(f − g)∂jf

f(f + c)

is entire. Let P be an irreducible entire function in supp[(f + c)f ]. Since f and f + c
are coprime, either ordP (f) = 0 or ordP (f + c) = 0. For instance, assume ordP (f) = 0.
Since ∂j(f + c) = ∂jf , by Lemma 2.7.4, we obtain

ordP (F ) = ordP (∂jf) + ordP (f − g)− ordP (f + c)

≥ (ordP (f + c)− 1) + ordP (f − g)− ordP (f + c)

= ordP (f − g)− 1.

On the other hand, since supp(f + c) = supp(g + c) we have

ordP (f − g) = ordP ((f + c)− (g + c)) ≥ min{ordP (f + c), ordP (g + c)} ≥ 1,

and consequently, ordP (F ) ≥ 0, which proves that F is entire.
In order to conclude, we now prove that F = 0. For that, we first give an estimation

of the maximum term |F |(r). By the strong triangle inequality and the Logarithmic
Derivative Lemma (see Lemma 2.6.2), we have

|(f − g)∂jf |r ≤
1

r
|f |r max{|f |r, |g|r}, (3.1)

for each r ∈ R≥0. On the other hand, by Proposition 2.4.2, |f |(r) is unbounded.
Therefore, since the maximum term of F is increasing function of r, there exists r0 such
that, for any r ≥ r0, we have |f |r ≥ |c|. Consequently, we obtain

|f + c|r = |f |r, (3.2)
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3.4. Uniform definability of equality in the class of rings of entire functions

for r ≥ r0. Thus, by Relations (3.1) and (3.2) we obtain the estimation

|F |(r) ≤ |f |r max{|f |r, |g|r}
r|f |2r

=
max{|f |r, |g|r}

r|f |r
,

for r ≥ r0. Finally, by hypothesis there is an increasing sequence (ri)i in R≥0, satisfying
limi→∞ ri = +∞, such that |f |ri ≥ |g|ri for each i ∈ N. In particular, for i large enough
we have

|F |(ri) ≤
1

ri
.

Thus, by Lemma 2.4.3 it follows that F = 0.

We can now prove the analogue of the AS-BE Theorem in several variables.

Proof of Theorem 1. Let f and g be two non-constant entire functions over Fn such
that u(f) = u(g). Let a 6= b ∈ F be such that supp(f − a) = supp(g − a) and
supp(f − b) = supp(g − b).

Write m = pu(f), so that there exist f1 and g1 entire over Fn such that f = fm1 and
g = gm1 . On the other hand, since F is algebraically closed, there exist a1, b1 in F such
that a = am1 and b = bm1 . Note that a1 and b1 are distinct. Since

supp(f1 − a1) = supp(f − a) = supp(g − a) = supp(g1 − a1)

and analogously

supp(f1 − b1) = supp(f − b) = supp(g − b) = supp(g1 − b1),

Write F = f1 − a1, G = g1 − a1. By Lemma 3.4.1, we may assume that F / G. Since
u(f1) = 0, we have ∇F 6= 0, so f1 = g1 by applying Lemma 3.4.2 to F and G, taking
c = a1 − b1. We deduce that f = g.

Given f, g ∈ En, we shall say that f and g share a value b ∈ F (ignoring multiplicities)
if

supp(f − b) = supp(g − b).

With this notion, Theorem 1 can be reformulated as follows

Two non-constant entire functions, with the same ramification index, which
share two distinct values, are identical.

Note that when F has characteristic zero, the condition “with the same ramification
index” is empty. As we indicated in the introduction, Corollary 2 states that this
condition is necessary in the case of positive characteristic. We now prove this fact.
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3. Definability in rings of entire functions

Proof of Corollary 2. Assume that F has positive characteristic. Let f and g be two
non-constant entire functions over Fn satisfying u(f) > u(g). Write k = pM , where
M = u(f) − u(g). Let a1 and a2 be distinct elements in the finite field Fpu(g) which
satisfy supp(f − ai) = supp(g − ai) for i = 1, 2. We want to prove that f = gk.

Write
s = pu(f), t = pu(g), f = hs1, and g = ht2

for some h1, h2 ∈ En. By definition of the ramification index, h1 and h2 satisfy

u(h1) = u(h2) = 0.

Since the finite field Fpu(g) is included in both Fs and Ft, we have asi = ai and ati = ai
for each i = 1, 2. Hence, we obtain

supp(h1 − ai) = supp(f − ai) = supp(g − ai) = supp(h2 − ai),

for i = 1, 2. Thus, by Theorem 1 it follows that h1 = h2. Since s = tk, we have

f = hs1 = (ht1)k = (ht2)k = gk.

Proof of Theorem 5. Let p ≥ 0 be the characteristic of F. Let f and g be entire
functions. Let a, b ∈ F and ` ∈ F[x1, . . . , xn] of degree one. Assume that

supp(f) = supp(g)

supp(f + a) = supp(g + a)

supp(f + `) = supp(g + `), and

supp(f + `+ b) = supp(g + `+ b).

We want to prove that f = g.
Without loss of generality, we may assume f .g (see Lemma 3.4.1). In the case that

∇f 6= 0, the equality f = g follows from Lemma 3.4.2 because f and g share the values
0 and −a. Assume ∇f = 0 and write

F = f + ` and G = g + `.

If f is constant, the hypothesis supp(f) = supp(g) implies that g is constant. In this
case f = g follows by applying Theorem 1 to F and G. Assume that f is non-constant.
Since ∇f = 0, this implies p > 0 and f is a p-th power. Since f is not a one degree
polynomial, by Lemma 2.5.3 and 2.5.4, it follows that

|F |(r) = |f |(r)

for r large enough.
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We prove that g is not a degree one polynomial. Assume it is, so that F .G. Since
f is a p-th power, F = f + ` is non constant, and since supp(f + `) = supp(g + `), we
deduce that G = g + ` is non constant. Since

supp(F ) = supp(G) and supp(F + b) = supp(G+ b),

we deduce that F = G, which is impossible.
Since the degree of g is not 1, we deduce, as previously for f , that

|G|(r) = |g|(r)

for r large enough. Thus, we have F .G, and since F and G share the values 0 and −b,
Lemma 3.4.2 implies F = G, hence f = g.

We can now prove that equality is uniformly definable in the class Ω.

Proof of Corollary 6. By Lemma 3.3.3, there is a {⊥}-formula ϕ(x, y) which uniformly
defines the property “supp(x) = supp(y)” in Ω. Hence, by Theorem 5, the L -formula

ϕeq(x, y) = (ϕ(x, y) ∧ ϕ(Sx, Sy) ∧ ϕ(S∗x, S∗y) ∧ ϕ(SS∗x, SS∗y))

uniformly defines the equality in Ω.

3.5 Proof of Theorem 7

In this section we prove that the elementary theory of the L -structure 〈E ;⊥, S, S∗〉 is
undecidable. We will use Fp to denote the algebraic closure of the finite field Fp. In
[Vs], Vsemirnov proves the following statement.

Proposition 3.5.1. [Vs, Th 3] The elementary theory of the L -structure

〈Fp[X];⊥, S, S∗〉

is undecidable.

In fact, Vsemirnov states the previous proposition for polynomial rings over a finite
field, but his proof actually works with no change if the finite field is replaced by its
algebraic closure. Throughout this section, ϕ(x, y) and ψ(x, y) are two {⊥}-formulas
which define the properties “supp(x) = supp(y)” and “supp(x) ⊆ supp(y)”, respectively
(see Lemma 3.3.3).

Lemma 3.5.2. The property “y = Xpm for some m ∈ N∗” is L -definable in any ring
of entire functions of characteristic p.
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3. Definability in rings of entire functions

Proof. By Corollary 2, the formula

φpw(y) : ¬y = X ∧ ϕ(X, y) ∧ ϕ(SX, Sy)

satisfies the assertion.

Proof of Theorem 7. To prove the undecidability of 〈E ;⊥, S, S∗〉, it is enough to show
that Fp[X] is L -definable in E and apply Proposition 3.5.1. Indeed, the L -formula

ϕpol(x) : x = 0 ∨ ∃y[ϕpw(y) ∧ (ψ(x, Sp−1
∗ y))],

which reads in E as

“x = 0 or supp(x) ⊆ supp(Xpm + (p− 1)X) for some m”,

defines the property “x is a polynomimal in Fp[X]”. This is because, if f ∈ Fp[X], then
there exists m ∈ N∗ such that all the roots of f are contained in Fpm , namely, f satisfies

supp(f) ⊆ supp(Xpm −X).
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Chapter 4

Branched Values of Meromorphic
functions in several variables

4.1 Divisors of entire functions

Following some ideas from [La] and [EsTuYa], we introduce a group of divisors of entire
functions in several variables.

4.1.1 Definitions and properties

Given a non-zero entire function f , we will denote by [f ] the equivalence class of f
modulo association (e.g.: modulo multiplication by a unit). Since irreducibility is
preserved by association, we will denote by Irr(En) the set of equivalence classes of
irreducible entire functions. The elements of Irr(En) will be called irreducible points or
simply points. Since the map ord, defined by h 7→ ordh on irreducible entire functions,
is compatible with association, each point P = [h] ∈ Irr(En) induces a valuation

ωP = ordh

on En which extends in a canonical way to the field of meromorphic functions. Given a
map

T : Irr(En)→ Z,
we define its support as:

Supp(T ) = {P ∈ Irr(En) : T (P) 6= 0}.

Notation 4.1.1. Given a point P ∈ Irr(En) and a positive real number ρ, we shall
write

P ≤ ρ

if P is represented by an irreducible entire function P which is not a unit in Tn,ρ (namely,
which has at least on zero in the dressed polydisk Dn

ρ ).
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4. Branched Values of Meromorphic functions in several variables

Definition 4.1.2. A divisor of irreducible points, or simply a divisor, is a mapping

T : Irr(En)→ Z

whose support Supp(T ) is such that for each ρ > 0, there are at most finitely many
points P ∈ Supp(T ) satisfying P ≤ ρ. The set of divisors of irreducible points will be
denoted by

D(En).

With the addition + and the order ≥ induced by Z, D(En) is a partially ordered
group. A divisor T ∈ D(En) is called an effective divisor if it satisfies T ≥ 0. The
semigroup of effective divisors is denoted by D+(En).

It happens that the support of a divisor is countable (this is Corollary 4.1.6 below).
For this reason, in what follows, a divisor T is represented as a formal sum∑

i∈J

diPi

where J is a countable set, {Pi : i ∈ J} is a set of irreducible points which contains the
support of T , and di = T (Pi).

Let P be an irreducible point, and P =
∑
aγX

γ a function that represents it. Given
r ∈ R≥0, we put

|P |r =
|P |(r)
|aν+(0,P )|

,

which is well defined by Proposition 2.2.3. Note that when P is a unit in Tn,r, the
quantity |P |r is just 1.

Given a divisor
T =

∑
i∈J

diPi,

for each r ∈ R≥0, we define

|T |(r) =
∏
i∈J

|Pi|dir .

Note that only finitely many terms |Pi|r in this product are not equal to one, so that
it is indeed a finite product. It is also easily seen that any T, T ′ ∈ D+(En) satisfy

|T + T ′|(r) = |T |(r)|T ′|(r),

whenever r ∈ R≥0.
Finally, given a non-zero entire function, we will write

Supp(f) = {[h] ∈ Irr(En) : h ∈ suppf}.

We will prove the following lemma and theorem in the next sections.
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Lemma 4.1.3. Let T and T ′ be two effective divisors. If T ≤ T ′, then there exists a
positive real number r′ such that |T |(r) ≤ |T ′|(r), whenever r ≥ r′.

Theorem 4.1.4. 1. Given an entire function f , the formal sum

D(f) =
∑

P∈Supp(f)

ωP(f)P

defines an effective divisor. Moreover, writing f =
∑

γ aγX
γ, we have

|D(f)|(r) =
|f |(r)
|aν+(0,f)|

.

2. For each f, g ∈ E∗n, the map

D : E∗n → D+(En)

satisfies
D(f · g) = D(f) +D(g).

3. For each effective divisor T there is an entire function f which satisfies T = D(f).

To finish this section, let us note that one can easily extend Theorem 4.1.4 to
meromorphic functions.

4.1.2 Proof of Lemma 4.1.3

We first generalize the concept of critical radius to our context. Given an irreducible
point P = [P ], we will say that r ≥ 0 is a critical radius of P when it is a critical radius
of P . Given a divisor T , we will say that r ≥ 0 is a critical radius of T when r is a
critical radius for at least one irreducible point in Supp(T ).

Lemma 4.1.5. Let T be a divisor.

1. For each positive number ρ, the interval [0, ρ] contains only finitely many critical
radii of T .

2. Each critical radius of T is a critical radius for at most finitely many irreducible
points in Supp(T ).

Proof. Given a positive number r, denote by Sr the set of irreducible points in Supp(T )
with at least one critical radius inside the interval [0, r]. The first assertion follows
by Lemma 2.2.1, since Sr must be finite by the definition of divisors. For the second
assertion, let ρ0 be a critical radius of T . The set of irreducible points whose set of
critical radius contains ρ0 is contained in Sρ0 .
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4. Branched Values of Meromorphic functions in several variables

Corollary 4.1.6. The support of an effective divisor is countable.

Proof. Let T be a divisor and C ⊂ R≥0 be the set of critical radius of T . By the first
assertion of Lemma 4.1.5, C is countable. For each ρ ∈ C, denote by Cρ the set of
irreducible points in Supp(T ) whose first critical radius is ρ. By the second assertion
of Lemma 4.1.5, Cρ(T ) is finite (it could be empty). Thus, the support of T can be
written as the union

Supp(T ) =
⋃
ρ∈C

Cρ.

In this subsection and in the following, it will be useful to introduce the following
notation. We will denote by D+

0 (En) the set of effective divisors whose first critical
radius is zero. Analogously, D+

1 (En) will denote the set of effective divisors whose first
critical radius is positive. By the second assertion of Lemma 4.1.5, we observe that
divisors of D+

0 (En) have finite support. It is immediate that for each effective divisor
T , there are unique T0 ∈ D+

0 (En) and T1 ∈ D+
1 (En) such that T = T0 + T1.

Proof of Lemma 4.1.3. Let T and T ′ be two effective divisors such that T ≤ T ′. We
want to find a positive real number r′ such that |T |(r) ≤ |T ′|(r), whenever r ≥ r′. If
any of T and T ′ is the zero divisor, then the statement is trivial. Assume that both are
non-zero and write

T =
∑
i∈J

diPi and T ′ =
∑
i∈J

d′iPi

for some countable set J . We choose r′ large enough in order to have |Pi|r′ ≥ 1,
whenever i ∈ J is such that Pi ∈ D+

0 (En). On the other hand, any irreducible class
Pi ∈ D+

1 (En) satisfies |Pi|r ≥ 1 for each r ∈ R≥0. Thus, we obtain

|T |(r) =
∏
i∈J

|P |dir ≤
∏
i∈J

|P |d
′
i
r = |T ′|(r)

for any r ≥ r′.

4.1.3 Proof of Theorem 4.1.4

The second assertion of Theorem 4.1.4 is immediate. We prove the first and the third
assertions.

Proof of Assertion 1. Consider the map

T : Irr(En)→ Z

defined by
T (P) = ωP(f)
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4.1. Divisors of entire functions

for each P ∈ Irr(En). We only need to check that Supp(T ) is the support of an effective
divisor. Write f as the product ∏

i∈J

P di
i

of irreducible factors. Let ρ ∈ |F∗| be such that [0, ρ] contains at least one critical radius
of f . By Proposition 2.2.1, it follows that f is not a unit in Tn,ρ. Proposition 1.2.3
implies that f is divisible by finitely many irreducible elements p1, . . . , pk in Tn,ρ. On
the other hand, by Proposition 2.7.1, two different irreducible factors Pi and Pj (which
are assumed to be coprime if i 6= j) must be coprime in Tn,ρ. Hence, for each pi there
exists only one j ∈ J such that pi divides Pj in the ring Tn,ρ. Thus, it follows that only
finitely many entire functions Pj are non-units in Tn,ρ, which concludes the proof.

In order to prove the third assertion of Theorem 4.1.4, we first give some criteria
for the convergence of infinite products of entire functions. Given a sequence (fi)i of
elements of En, we recall that the infinite product

∞∏
i=0

fi

converges to f ∈ En with respect the locally convex topology τ if it converges to f in
(Tn,ρ, | |ρ), for each ρ ∈ |F∗|. The following proposition follows directly from Lemma
1.1.5.

Lemma 4.1.7 (Proposition 2.1, [ChYe]). If (fi)i is a sequence of entire functions which
satisfies

lim
i→∞
|fi − 1|ρ = 0,

for each ρ ∈ |F∗|, then the infinite product
∞∏
i=1

fi converges to an entire function f .

Lemma 4.1.8. If (fi) is a sequence of entire functions with constant term equal to
1, and for which there exists an increasing sequence (ρi)i∈N of elements in |F∗| which

converges to +∞, and such that each fi ∈ T×n,ρi, then the infinite product
∞∏
i=1

fi is

convergent in En.

Proof. For each j ∈ N, if we write

fj = 1 +
∑
|γ|≥1

aj,γX
γ,

by Proposition 1.2.2, we obtain that

|aj,γ|ρ|γ|j ≤ 1, if |γ| ≥ 1, (4.1)
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4. Branched Values of Meromorphic functions in several variables

since fj ∈ T×n,ρj by assumption. From Equation (4.1), it follows that for each i ∈ N and
any j > i, we have

|1− fj|ρi = max
|γ|≥1
|aj,γ|ρ|γ|i ≤ max

|γ|≥1

(
ρi
ρj

)|γ|
≤ ρi
ρj
,

from what we get

0 ≤ lim
j→∞
|1− fj|ρi ≤ lim

j→∞

ρi
ρj

= 0.

Since, for each ρ ∈ |F∗| there exists i ∈ Z+ such that ρ ≤ ρi, we obtain that

0 ≤ |1− f |ρ ≤ |1− f |ρi = 0.

Thus, the assertion follows from Lemma 4.1.7.

Lemma 4.1.9. If (fi)i is a sequence of non-constant entire functions with constant
term equal to 1 such that for each ρ ∈ |F∗|, the set

Tn,ρ \ T×n,ρ

contains only finitely many elements of the sequence, then the infinite product
∞∏
i=1

fi

converges in En.

Proof. Given a non-zero entire function f , denote by c(f) the first critical radius of f .
By hypothesis, the set of real numbers

{c(fi) : i ∈ N}

defines an increasing sequence (rj) of elements in |F∗| which converges to +∞. For each
j ∈ N, define the entire function hj as the finite product

hj =
∏

c(fi)=rj

fi.

Thus we obtain a sequence of entire functions (hj)j such that the first critical radius of
hj is rj. Since r0 > 0, we may choose a sequence ρj of elements in |F∗| which satisfies

0 < ρ0 < r0 and ri−1 < ρi < ri,

for each j > 1. It is immediate that (ρj)j converges to +∞. Therefore, (hj)j is a
sequence of entire functions whose constant term is equal to 1 and such that hj ∈ T×n,ρj ,
for each j. Hence, by Lemma 4.1.8, it follows that∏

hj =
∏

fi

converges in En.
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4.2. Nevanlinna Theory in several variables

Proof of Assertion 3. Let T be an effective divisor. If Supp(T ) is finite, the assertion is
trivial. Assume Supp(T ) is infinite. There exists T0 ∈ D+

0 (En) and T1 ∈ D+
1 (En) such

that T = T0 + T1. Since the support of T0 is finite, it is easy to construct an entire
function f0 satisfying T0 = D(f0). For each P ∈ Supp(T1), we may choose an entire
functions fP ∈ P with constant term equal to 1. Since the sequence

(fP)P∈Supp(T1)

satisfies the hypothesis of Lemma 4.1.9, the entire function

f1 =
∏

P∈Supp(T )

f
T (P)
P

satisfies T1 = D(f1). Thus, we have T = D(f0 · f1) which ends the proof.

4.2 Nevanlinna Theory in several variables

We start with generalizing the concept of counting function of zeros to the several
variable case. Our definition turns out to be equivalent to that given in [ChYe], though
we get to it in a very different manner. Finally, let us note that in the one variable
case, this definition is valid also for analytic functions in stripped balls.

Definition 4.2.1. Let f be a non-zero entire function. For each positive number r,
denote by Cr(f) the set of critical radii of f contained in the interval ]0, r]. The counting
function of zeros of f is defined as

Z(r, f) = |ν+(0, f)| log r +
∑

t∈Cr(f)

(|ν+(t, f)| − |ν−(t, f)|) log
r

t
.

We will prove the following proposition in the next section.

Proposition 4.2.2 (Poisson-Jensen Formula). Let f be a non-zero entire function.
Write f =

∑
γ aγX

γ. For each r > 0, we have

log |f |(r)− log |aν+(0,f)| = Z(r, f).

From the Poisson-Jensen Formula and Theorem 4.1.4, it is immediate that each
non-zero entire function satisfies

Z(r, f) = log(|D(f)|(r)). (4.2)

For this reason, given an effective divisor T and an entire function f such that T = D(f),
we will write

Z(r, T ) = Z(r, f).

The following corollary is an easy consequence of the discussion above, and the fact
that Z(r, ·) transforms products into sums (by Equation (4.2), since |D(·)|(r) transforms
products into products).

63



4. Branched Values of Meromorphic functions in several variables

Corollary 4.2.3. Let f be a non-zero entire function. For each r > 0, we have

Z(r, f) =
∑

P∈Supp(f)

ωP(f)Z(r,P).

For convenience of the reader, we recall some notation that are especially relevant
to this section.

Notation 4.2.4. 1. The characteristic of F will be denoted by p and the character-
istic exponent by q, i.e. q = p if p > 0, and q = 1 if p = 0.

2. Let f be a non-constant meromorphic function. If p > 0, we will denote by u(f)
the ramification index of f which is defined as the largest positive integer ` such
that f is a p`-th power. If p = 0, we set u(f) = 0. The fact that this notion is
well defined is a straightforward adaptation of the fact that it is well defined in
the one variable case - see [BoEs].

Definition 4.2.5. Let f be a non-zero entire function. Denote by ∆(f) the set of
irreducible points

{P ∈ Supp(f) : qu(f)+1 - ωP(f)}.
The counting function of zeros of f without multiplicities is defined as

Z(r, f) =
∑
P∈∆(f)

Z(r,P).

We also introduce the following divisor associated to f :

D(f) =
∑
P∈∆(f)

P .

Recall that, given a non-zero meromorphic function f , the function of zeros of f is
denoted by f0 and its function of poles by f∞, so that f = f0/f∞. The set of irreducible
points Supp(f0) will be called the support of zeros of f and will be denoted by Supp(f).
Analogously, the support of poles of f is the set Supp(f∞) and will be denoted by
Supp∞(f).

Definition 4.2.6. Let f be a non-zero meromorphic function.

1. The counting function of zeros of f with multiplicities is defined as

Z(r, f) = Z(r, f0).

2. The counting function of zeros of f without multiplicities is defined as

Z(r, f) = Z(r, f0).
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4.2. Nevanlinna Theory in several variables

3. The counting functions of poles of f with multiplicities is defined as

N(r, f) = Z(r, f∞).

4. The counting functions of poles of f without multiplicities is defined as

N(r, f) = Z(r, f∞).

5. The Nevanlinna function of f is defined as

T (r, f) = max{Z(r, f), N(r, f)}.

6. If P is a point and C is a subset of F, we may write f(P) ∈ C to mean that
there exists b ∈ C such that P ∈ Supp(f − b). It is also convenient to denote b
by f(P).

7. Assume ∂jf is non-zero for some j. Let S = {a1, . . . , am} ⊂ F be a finite set of
m distinct values. We define the following sets of irreducible points

ASj (f) = Supp(∂jf) \
m⋃
i=1

Supp(f − ai),

BS
j (f) = {P ∈ Supp(∂jf) : f(P) ∈ S and p | ωP(f − f(P))},

and
Ξ(f) = {P ∈ Supp∞(f) : p | ωP(f)}.

In particular, in characteristic 0, both BS
j (f) and Ξ(f) are empty. Set

ZS
0 (r, ∂jf) =

∑
P∈ASj (f)

ωP(∂jf)Z(r,P) +
∑

P∈BSj (f)

(ωP(∂jf)− ωP(f − f(P))Z(r,P)

and
N0(r, ∂jf) =

∑
P∈Ξ(f)

(ωP(∂jf)− ωP(f))Z(r,P).

Given a non-zero meromorphic function f , whose reduced decomposition is f0/f∞,
we shall say that a positive number ρ is a critical radius of f if ρ is a critical radius of
f0 or f∞.

Notation 4.2.7. 1. Given f1, . . . , fm ∈M∗
n, we will denote by

C (f1, . . . , fm)

the open interval ]0, ρ[, where ρ is the first positive critical radius of the product
f1 . . . fm.
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4. Branched Values of Meromorphic functions in several variables

2. Given three real valued functions ξ, ζ and η, defined in an interval J = ]r0,∞[,
we shall write

ξ(r) ≤ ζ(r) +O(η(r))

if there exists a constant C ∈ R such that ξ(r) ≤ ζ(r) + Cη(r) (if η is constant,
we may just say that ξ − ζ is bounded from above). Also, we shall write

ξ(r) = ζ(r) +O(η(r))

if there is a constant M ∈ R>0 such that |ξ(r)− ζ(r)| ≤Mη(r).

Theorem 4.2.8 (Nevanlinna’s Second Fundamental Theorem). Let f be a non-constant
meromorphic function, and a1, . . . , am be pairwise distinct elements of F, where m ≥ 2.
Consider the set

S = {b1, . . . , bm},

where each bi is a pu(f)-th root of ai. Let g be a pu(f)-th root of f , and let j be such that
∂jg 6= 0. Fix ρ0 ∈ C (f − a1, . . . , f − am, g, ∂jg). For any r ∈ ]ρ0,+∞[, we have

m− 1

qu(f)
T (r, f) ≤

m∑
i=1

Z(r, f − ai) +N(r, f)− ZS
0 (r, ∂jg)−NS

0 (r, ∂jg)− log r +O(1).

In practive, we will use the following corollary, which is an immediate consequence
of Theorem 4.2.8.

Corollary 4.2.9. Let f be a non-constant meromorphic function and a1, . . . , am be
pairwise distinct elements of F, where m ≥ 2. For r large enough, we have

m− 1

qu(f)
T (r, f) ≤

m∑
i=1

Z(r, f − ai) +N(r, f)− log r +O(1).

4.2.1 Proof of Proposition 4.2.2

Lemma 4.2.10. Let f be a non-zero entire function. If r1 and r2 are two positive
numbers such that the open interval ]r1, r2[ does not contain any critical radius of f ,
then we have

|f |(r2)

|f |(r1)
=

(
r2

r1

)ν+(r1,f)

.

Proof. By the third assertion of Proposition 2.2.2, for each r ∈ [r1, r2[ (and in particular
for r = r1), the maximum term is given by

|f |(r) = |aν+(r1,f)|r|ν
+(r1,f)|.
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4.2. Nevanlinna Theory in several variables

On the other hand, the continuity of the maximum term implies that

|f |(r2) = lim
r→r−2

|f |(r) = |aν+(r1,f)|rν
+(r1,f)

2 .

Proof of Proposition 4.2.2. Let ρ0 ∈ C (f) and ρ1 < · · · < ρm be the critical radii
of f inside the interval ]0, r[. Set ρm+1 = r, and for each i = 0, . . . ,m + 1, write
νi = ν+(ρi, f). It must be noted that ν0 = ν+(0, f), since f has no critical radius inside
]0, ρ0[. So, by Lemma 4.2.10, we obtain

|f |(r)
|f |(ρ0)

=
m∏
i=0

|f |(ρi+1)

|f |(ρi)
=

m∏
i=0

(
ρi+1

ρi

)|νi|
.

On the other hand, we have
m∏
i=0

(
ρi+1

ρi

)|νi|
=
ρ
|νm|
m+1

ρ
|ν0|
0

m∏
i=1

(
1

ρi

)|νi|−|νi−1|

=

(
ρm+1

ρ0

)|ν0| ρ|νm|m+1

ρ
|ν0|
m+1

m∏
i=1

(
1

ρi

)|νi|−|νi−1|

=

(
ρm+1

ρ0

)|ν0| m∏
i=1

ρ
|νi|−|νi−1|
m+1

m∏
i=1

(
1

ρi

)|νi|−|νi−1|

=

(
ρm+1

ρ0

)|ν0| m∏
i=1

(
ρm+1

ρi

)|νi|−|νi−1|

.

Thus, we have

|f |r
|f |ρ0

=

(
r

ρ0

)|ν0| m∏
i=1

(
r

ρi

)|νi|−|νi−1|

which is equivalent to

log |f |r − log |f |ρ0 = |ν0|(log r − log ρ0) +
m∑
i=1

(|νi| − |νi−1|) log

(
r

ρi

)
.

Therefore, we have

Z(r, f) = |ν0| log r +
m∑
i=1

(|νi| − |νi−1|) log

(
r

ρi

)
= log |f |r − log |f |ρ0 + |ν0| log ρ0

= log |f |r − log(|aν0 |ρ
|ν0|
0 ) + |ν0| log ρ0

= log |f |r − log |aν0|,
where the first equality comes from the definition of Z(r, f).
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4.2.2 Proof of Theorem 4.2.8

In this subsection, we prove several versions of the Nevanlinna’s Second Fundamental
Theorem.

Lemma 4.2.11. Let f, g ∈ E∗n and fix ρ0 ∈ C (f, g, f + g). For each r ∈ ]ρ0,+∞[ we
have

1. Z(r, fg) = Z(r, f) + Z(r, g) and

2. Z(r, f + g) ≤ max{Z(r, f), Z(r, g)}+O(1).

Proof. The first assertion is an immediate application of Proposition 4.2.2 (Poisson-
Jensen Formula). For the second assertion, write

f =
∑
γ

aγX
γ and g =

∑
γ

bγX
γ.

By Proposition 4.2.2 applied to f + g and the strong triangle inequality, we obtain

Z(r, f + g) = log |f + g|r +K ≤ max{log |f |r, log |g|r}+K,

where

K = − log |aν+(0,f) + bν+(0,g)|.

On the other hand, we have

log |f |r = Z(r, f) + log |aν+(ρ0,f)|

and

log |g|r = Z(r, g) + log |bν+(ρ0,g)|.

If

M = max{log |aν+(ρ0,f)|, log |bν+(ρ0,g)|},

then we obtain

log |f |r ≤ Z(r, f) +M

and

log |g|r ≤ Z(r, g) +M

Thus, it has been proven that there is a constant C such that

Z(r, f + g) ≤ max{Z(r, f), Z(r, g)}+ C,

which proves the second assertion.
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Theorem 4.2.12 (Nevanlinna’s First Fundamental Theorem). Let f be a non-zero
meromorphic function and fix ρ0 ∈ C (f). For each r ∈ ]ρ0,+∞[, we have

log |f |r = Z(r, f)−N(r, f) +O(1).

Proof. Let f0 and f∞ be the function of zeros and poles of f , respectively. Write
f0 =

∑
γ aγX

γ and f∞ =
∑

γ bγX
γ. Then we have

log |f |(r) = log |D(f0)|(r)− log |D(f∞)|(r) + log

∣∣∣∣ aν+(0,f0)

bν+(0,f∞)

∣∣∣∣ .

Proposition 4.2.13. Let f and g be two non-zero meromorphic functions and let b be
a constant. Fix ρ0 ∈ C (f, g, f + g, f − b). For each r ∈ ]ρ0,+∞[ we have

1. Z(r, fg) ≤ Z(r, f) + Z(r, g) +O(1),

2. N(r, fg) ≤ N(r, f) +N(r, g) +O(1),

3. T (r, fg) ≤ T (r, f) + T (r, g) +O(1),

4. Z(r, f + g) ≤ max{Z(r, f) +N(r, g), N(r, f) + Z(r, g)}+O(1),

5. N(r, f + g) ≤ N(r, f) +N(r, g) +O(1),

6. T (r, f + g) ≤ T (r, f) + T (r, g) +O(1),

7. T (r, f − b) = T (r, f) +O(1), and

8. if f ∈ En, then T (r, f) = Z(r, f) +O(1),

whenever r ∈ ]ρ0,+∞[.

Proof. Let f0, f∞, g0 and g∞ be the respective functions of zeros and poles of f and g.
By Lemma 4.1.3 and Lemma 4.2.11, we have

Z(r, fg) ≤ Z(r, f0g0) +O(1) = Z(r, f0) + Z(r, g0) +O(1) = Z(r, f) + Z(r, g) +O(1),

and similarly

N(r, fg) ≤ Z(r, f∞g∞)+O(1) = Z(r, f∞)+Z(r, g∞)+O(1) = N(r, f)+N(r, g)+O(1).

This proves the first two assertions of the proposition.
Now we prove the third assertion. By applying Assertions 1 and 2 we obtain

Z(r, fg) ≤ Z(r, f) + Z(r, g) +O(1) ≤ T (r, f) + T (r, g) +O(1),
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and
N(r, fg) ≤ N(r, f) +N(r, g) +O(1) ≤ T (r, f) + T (r, g) +O(1),

from what we get

T (r, fg) = max{Z(r, fg), N(r, fg)} ≤ T (r, f) + T (r, g) +O(1).

The fourth assertion follows from the following relations:

Z(r, f + g) ≤Z(r, f0g∞ + f∞g0)

≤max{Z(r, f0g∞), Z(r, f∞g0)}+O(1)

= max{Z(r, f0) + Z(r, g∞), Z(r, f∞) + Z(r, g0)}+O(1)

= max{Z(r, f) +N(r, g), N(r, f) + Z(r, g)}+O(1).

Assertion 5 follows from the following inequality:

N(r, f+g) ≤ Z(r, f∞g∞)+O(1) = Z(r, f∞)+Z(r, g∞)+O(1) = N(r, f)+N(r, g)+O(1).

Now we prove Assertion 6. By Assertions 4 and 5 we have

Z(r, f + g) ≤ T (r, f) + T (r, g) +O(1) and N(r, f + g) ≤ T (r, f) + T (r, g),

and henceforth

T (r, f + g) = max{Z(r, f + g), N(r, f + g)} ≤ T (r, f) + T (r, g) +O(1).

Assertion 7 is immediate from Assertion 6 and the fact that T (r, b) = 0.
Assertion 8 is a simple consequence of Proposition 4.2.2.

As a direct application of the fourth assertion of Proposition 4.2.13, we obtain that
for any meromorphic function f and for any value c ∈ F, the difference

Z(r, f − c)− T (r, f)

is bounded from above. The following lemma states that, there is at most one value
b ∈ F for which the difference

T (r, f)− Z(r, f − b)

is not bounded from above.

Lemma 4.2.14. Let f be a non-constant meromorphic function. Suppose there exists
b ∈ F and a sequence of intervals Ik = [uk, vk] which satisfies

uk < vk < uk+1 and lim
k→∞

un = +∞

70



4.2. Nevanlinna Theory in several variables

for each k ∈ N, such that

lim
k→∞

(
inf
r∈Ik

(T (r, f)− Z(r, f − b))
)

= +∞.

If c ∈ F is not equal to b, then

Z(r, f − c) = T (r, f) +O(1)

is satisfied by any r ∈ Ik, for k large enough.

Proof. Write F = f − b, so that

lim
k→∞

(
inf
r∈Ik

(T (r, F + b)− Z(r, F ))

)
= +∞.

Since
T (r, F + b) = T (r, F ) +O(1),

it follows that

lim
k→∞

(
inf
r∈Ik

(T (r, F )− Z(r, F ))

)
= +∞.

Thus, we have T (r, F ) = N(r, F ) for each r ∈ Ik, as long as k is large enough. Hence,
if F0 and F∞ are respectively the functions of zeros and poles of F , then we have

lim
k→∞

(
inf
r∈Ik

(Z(r, F∞)− Z(r, F0))

)
= +∞. (4.3)

Given any constant c which is not equal to b, we put a = c− b 6= 0. So we have

Z(r, F − a) = Z(r, F0 − aF∞) = log |F0 − aF∞|r +O(1)

On the other hand, we have

Z(r, F∞) = Z(r, aF∞) = log |aF∞|r +O(1)

and
Z(r, F0) = log |F0|r +O(1),

so from Equation (4.3), it follows that for each r ∈ Ik with k large enough, we have

|aF∞|r > |F0|r.

Thus, we obtain

Z(r, F − a) = log |aF∞|r +O(1) = Z(r, aF∞) +O(1) = T (r, F ) +O(1),
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for r ∈ Ik and k large enough. Finally, since

f − c = (f − b)− (c− b) = F − a

it follows that

Z(r, f − c) = T (r, f − b) +O(1) = T (r, f) +O(1),

for r ∈ Ik and k large enough, which ends the proof.

The following corollary is sometimes seen as a weak version of the Second Funda-
mental Theorem.

Corollary 4.2.15. Let f be a meromorphic function, m ≥ 2 an integer, and a1, . . . , am
pairwise distinct elements of F. Fix ρ0 ∈ C (f − a1, . . . , f − am). For each r ∈ ]ρ0,+∞[
we have

(m− 1)T (r, f) ≤ max
1≤j≤m

(
m∑

i=1,i 6=j

Z(r, f − ai)

)
+O(1).

Proof. For each j = 1, . . . ,m, consider the real valued function

φj(r) =
m∑

i=1,i 6=j

Z(r, f − ai).

Since for each j we have (trivially)

m∑
i=1,i 6=j

(T (r, f)− Z(r, f − ai)) ≥ (m− 1)T (r, f)− max
1≤`≤m

φ`(r),

if the difference
(m− 1)T (r, f)− max

1≤`≤m
φ`(r)

is assumed to be unbounded from above, then for each j, there exists kj 6= j such that

T (r, f)− Z(r, f − akj)

is unbounded from above. In particular, Since m ≥ 2, this implies that there are two
different values ak and ak′ such that

T (r, f)− Z(r, f − ak)

and
T (r, f)− Z(r, f − ak′)

are unbounded from above, which is a contradiction with the assertion of Lemma 4.2.14.
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Lemma 4.2.16. Let S = {a1, . . . , am} be a set of m distinct elements of F. If f is a
meromorphic function whose j-th partial derivative ∂jf is non-zero, then

m∑
i=1

(Z(r, f − ai)− Z(r, f − ai)) = Z(r, ∂jf)− ZS
0 (r, ∂jf).

Moreover, we have

N(r, ∂jf) ≤ N(r, f) +N(r, f)−NS
0 (r, ∂jf) +O(1).

Proof. This comes immediately from the definitions and Corollary 2.7.6.

Lemma 4.2.17. Given a non-zero meromorphic function f such that ∂jf 6= 0 for some
j, we have

Z(r, ∂jf) ≤ Z(r, f) +N(r, f)−NS
0 (r, ∂jf)− log r +O(1)

for each r ∈ ]ρ0,+∞[, where ρ0 ∈ C (f, ∂jf).

Proof. By Theorem 4.2.12 (Nevanlinna’s First Fundamental Theorem) applied to f and
then to ∂jf , we have

log |f |r = Z(r, f)−N(r, f) +O(1)

and
log |∂jf |r = Z(r, ∂jf)−N(r, ∂jf) +O(1),

for each r ∈ ]ρ0,+∞[, where ρ0 ∈ C (f, ∂jf).
Therefore, from Lemma 2.6.2 (Logarithmic Derivative Lemma) we obtain

Z(r, ∂jf)−N(r, ∂jf) ≤ Z(r, f)−N(r, f)− log r +O(1).

We conclude the proof by applying the second assertion of Lemma 4.2.16.

m− 1

qu(f)
T (r, f) ≤

m∑
i=1

Z(r, f − ai) +N(r, f)− ZS
0 (r, ∂jg)−NS

0 (r, ∂jg)− log r +O(1).

Proof of Theorem 4.2.8. Fix a non-constant meromorphic function f , an integer m ≥ 2,
and pairwise distinct elements a1, . . . , am of F. For each i, let bi be a pu(f)-th root of
ai, S = {b1, . . . , bm}, and g be a pu(f)-th root of f . Let j be such that ∂jg 6= 0. Fix
ρ0 ∈ C (f − a1, . . . , f − am, g, ∂jg) and r ∈ ]ρ0,+∞[.

By Corollary 4.2.15, there is an index kr between 1 and m such that

(m− 1)T (r, g) ≤
m∑
i=1

Z(r, g − bi)− Z(r, g − bkr) +O(1),
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so, by the first assertion of Lemma 4.2.16, we have

(m− 1)T (r, g) ≤
m∑
i=1

Z(r, g − bi) + Z(r, ∂jg)− Z(r, f − bkr)− ZS
0 (r, ∂jg) +O(1).

On the other hand, since ∂jg 6= 0, by Lemma 4.2.17, we have

Z(r, ∂jg) ≤ Z(r, g − bkr) +N(r, g)−NS
0 (r, ∂jg)− log r +O(1),

so we have

(m−1)T (r, g) ≤
m∑
i=1

Z(r, g−bi)+N(r, g)−ZS
0 (r, ∂jg)−NS

0 (r, ∂jg)− log r+O(1), (4.4)

(so in particular, the theorem is proven if u(f) = 0).

Moreover, we have (see Definition 4.2.5):

1. Z(r, f) = Z
(
r, gq

u(f)
)

= qu(f)Z(r, g),

2. N(r, f) = N
(
r, gq

u(f)
)

= qu(f)N(r, g),

3. Z(r, f − ai) = Z(r, g − bi), and finally

4. N(r, f) = N(r, g).

Combining items 1 and 2 above, we get

T (r, f) = qu(f)T (r, g),

so that (4.4) becomes:

(m− 1)

qu(f)
T (r, f) ≤

m∑
i=1

Z(r, f − bi) +N(r, f)− ZS
0 (r, ∂jg)−NS

0 (r, ∂jg)− log r +O(1),

which was to be proved.

4.3 AS-BE uniqueness Theorem in several variables

As a direct application of Nevanlinna’s Second Fundamental Theorem, we present the
AS-BE uniqueness theorem for meromorphic functions in several variables.
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Lemma 4.3.1. If f and g are two non-zero meromorphic functions such that

supp(f + a) = supp(g + a)

for some a ∈ F, then
supp(f + a) ⊆ supp(f − g).

Proof. Write f + a and g + a in reduced form as

f + a =
f1

f2

and g + a =
g1

g2

for some non-zero entire functions f1, f2, g1 and g2. We have

f − g = (f + a)− (g + a) =
f1g2 − f2g1

f2g2

.

If P is an irreducible divisor of f1, by assumption, it is an irreducible divisor of g1, but
it is not an irreducible factor of f2g2. Thus, P must be in supp(f − g).

We now prove Theorem 3, that we restate here for convenience of the reader.

Theorem 4.3.2 (Adams, Straus, Boutabaa, Escassut). Let a1, a2, a3 and a4 be four
distinct elements of F. If f and g are two meromorphic functions such that u(f) = u(g)
and

supp(f + aj) = supp(g + aj) (4.5)

for each j ∈ {1, 2, 3, 4}, then f = g.

Proof. Consider m = 2 if f and g are entire, and m = 4 otherwise. The proof that we
present here, for m = 2, is indeed an alternative proof to Theorem 1.

Without loss of generality, we may assume that u(f) = 0. Indeed, suppose that the
theorem is true in that case and let f, g be such that s = u(f) 6= 0. Consider h1 and
h2 such that

f = hp
s

1 and g = hp
s

2 ,

and, for each j = 1, . . . ,m, choose a ps-th root bj of aj. We have then

supp(h1 + bj) = supp(f + aj) = supp(g + aj) = supp(h2 + bj).

Hence, since u(h1) = 0 = u(h2), we conclude that h1 = h2, hence f = g.
Since by Lemma 4.3.1 we have

supp(f + aj) ⊆ supp(f − g)

for each j = 1, . . . ,m, we get

m∑
i=1

Z(r, f + ai) ≤ Z(r, f − g) +O(1),
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By Corollary 4.2.9 of the Nevanlinna Second Fundamental Theorem, we obtain

(m− 1)T (r, f) ≤
m∑
i=1

Z(r, f − ai) +N(r, f)− log r +O(1)

≤ Z(r, f − g) +N(r, f)− log r +O(1),

and then
(m− 1)T (r, f) ≤ T (r, f − g) +N(r, f)− log r +O(1). (4.6)

On the other hand, with an analogous argument applied to g, we obtain

(m− 1)T (r, g) ≤ T (r, f − g) +N(r, g)− log r +O(1). (4.7)

If f and g are entire functions, the fourth assertion of Proposition 4.2.13 gives

T (r, f − g) ≤ max{T (r, f), T (r, g)}+O(1),

and since
N(r, f) = N(r, g) = 0,

from Equations (4.6) and (4.7) , we obtain

(m− 1) max{T (r, f), T (r, g)} ≤ max{T (r, f), T (r, g)} − log r +O(1),

which, for m = 2, gives a contradiction.
In the case where f and g are not necessarily entire, we note that

max{N(r, f), N(r, g)} ≤ max{T (r, f), T (r, g)}+O(1). (4.8)

Thus, from Equations (4.6) and (4.7), and by the sixth assertion of Proposition 4.2.13,
we obtain

(m− 1) max{T (r, f), T (r, g)} ≤ T (r, f − g) + max{T (r, f), T (r, g)} − log r +O(1)

≤ T (r, f) + T (r, g) + max{T (r, f), T (r, g)} − log r +O(1)

≤ 3 max{T (r, f), T (r, g)} − log r +O(1),

which, for m = 4, gives a contradiction.

We now prove a couple of corollaries which are analogues of the Erdös-Woods con-
jecture for meromorphic functions.

Corollary 4.3.3. Assume that F has characteristic zero. Let

{a1, a2, a3, a4} and {b1, b2, b3, b4}
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be two subsets (not necessarily disjoint) of four distinct elements of F and let ` be a
polynomial in F[X1, . . . , Xn] of degree one. If f and g are two meromorphic functions
satisfying

supp(f + aj) = supp(g + aj) (4.9)

and

supp(f + `+ bj) = supp(g + `+ bj) (4.10)

for each j ∈ {1, 2, 3, 4}, then f = g.

Proof. By Theorem 4.3.2, if ∇f and ∇g are non-zero, the equality f = g follows from
Equation (4.9). If one of the gradients is assumed to be zero, by Equation (4.9) we
conclude that the other must be zero. So, since ∇(f + `) 6= 0 and ∇(g + `) 6= 0, by
Equation (4.10) and Theorem 4.3.2, we conclude that f + ` = g + `, hence f = g.

Corollary 4.3.4. Assume that F has characteristic p > 3 and let ` be a polynomial in
F[X1, . . . , Xn] of degree one. If f and g are two non-constant meromorphic functions
satisfying

supp(f + a) = supp(g + a) (4.11)

and

supp(f + `+ a) = supp(g + `+ a) (4.12)

for each a ∈ {0, 1, 2, 3} ∩ F, then f = g.

Proof. Similarly to the characteristic zero case, if ∇f and ∇g are both non-zero or both
zero, the equality f = g follows from Theorem 4.3.2 and Equations (4.11) and (4.12).
We claim that there is no other case.

Assume, for instance, that ∇f 6= 0 and ∇g = 0. In particular, this implies that
f 6= g. Moreover, Corollary 4 implies that g = fp

m
, for some positive integer m.

We prove that ∇(f + `) = 0. Assume the contrary. By Equation (4.12), we have
supp(f+`) = supp(g+`), hence∇(g+`) 6= 0, so by Theorem 4.3.2, we have f+` = g+`,
hence f = g, which is a contradiction.

Observe that since∇(g) = 0, we have∇(g+`) 6= 0. Since∇(f+`) = 0, by Corollary
4, there is a positive integer k such that

g + ` = (f + `)p
k

,

so that we have

` = fp
m − (f + `)p

k

=
(
fp

m−1 − (f + `)p
k−1
)p
,

which is impossible.
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4.4 Branched values of meromorphic functions

This section is dedicated to prove Theorem 9.
Consider a non-zero entire function f whose decomposition as a product of irre-

ducible factors is

f =
∏
j∈J

P
dj
j .

We will say that an entire function g is a square free part of f if g is associated to the
entire function ∏

j∈J
dj=1

Pj,

namely, if up to a constant, g is the product of the simple irreducible factors of f .

Definition 4.4.1. Given a non-zero meromorphic function f , we say that b ∈ F is a
perfectly branched value for f , if the square-free part of the function of zeros of f − b
is a polynomial. Analogously, we say that b is a totally branched value for f if the
square-free part of the function of zeros of f − b is a unit.

Remark 4.4.2. The following are some trivial situations:

1. If a meromorphic function f is in the field of rational functions F(X1, . . . , Xn),
each b ∈ F is a perfectly branched value for f .

2. When the ground field F has characteristic p > 0, for each meromorphic function
f which is a p-th power, each b ∈ F is a totally branched value for f .

We now prove a few lemmas in order to prove items 1, 2 and 4 of Theorem 9 - this
will be Theorems 4.4.6, 4.4.7 and 4.4.8 below.

Lemma 4.4.3. A non-zero meromorphic function f is transcendental if and only if it
satisfies

lim
r→∞

T (r, f)

log r
= +∞

Proof. This is an immediate consequence of Corollary 2.5.2.

Lemma 4.4.4. Let f be a non-zero meromorphic function. If b is a perfectly branched
value for f , then there is a constant M ≥ 0 such that

Z(r, f − b) ≤ 1

2
T (r, f) +M log r +O(1).

Moreover, if b is a totally branched value for f , then one can take M = 0.
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Proof. Let f0 ∈ En be a function of zeros of f − b. Write f0 = gh where g is the
square-free part of f0. Since

D(g) ≥ D(g) and D(h) ≥ 2D(h)

(see Definition 4.2.5 for the notation D(·)), we obtain

2D(f0) = 2D(g) + 2D(h)

≤ D(g) + (D(g) +D(h))

≤ D(g) +D(f0).

By Lemma 4.1.3, it follows that

Z(r, f − b) ≤ 1

2
(Z(r, f − b) + Z(r, g)) .

Since g is a polynomial, we have

Z(r, g) = deg g log(r) +O(1).

Thus we have

Z(r, f − b) ≤ 1

2
(Z(r, f − b) + deg g log r) +O(1)

≤ 1

2
T (r, f) +M log r +O(1),

where

M =
1

2
deg g.

If b is a non-zero totally branched value for f , then

M =
1

2
deg g = 0.

When b = 0, we have
2D(f0) ≤ D(f0),

from what we obtain

Z(r, f − b) ≤ 1

2
T (r, f) +O(1),

so we can take M = 0.

Lemma 4.4.5. Let f be a non-constant meromorphic function satisfying u(f) = 0. If
f admits m distinct perfectly branched values, then there is a constant M such that

(m− 2)

2
T (r, f) ≤ N(r, f) + (M − 1) log r +O(1).

Moreover, if each of the m values are totally branched values for f , then one can take
M = 0.
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Proof. Let {b1, . . . , bm} be a finite set of m distinct perfectly branched values for f . By
Lemma 4.4.4, for each j = 1, . . . ,m there is a constant Mj ≥ 0 such that

Z(r, f − bj) ≤
1

2
T (r, f) +Mj log r +O(1).

Thus, by Corollary 4.2.9 of the Nevanlinna’s Second Fundamental Theorem we obtain

(m− 1)T (r, f) ≤
m∑
j=1

Z(r, f − bj) +N(r, f)− log r +O(1)

≤ m

2
T (r, f) +N(r, f) + (M − 1) log r +O(1),

where

M =
m∑
j=1

Mj.

Moreover, Lemma 4.4.4 states that if bj is a totally branched value for f , then Mj = 0,
which concludes the proof.

We can now prove items 1, 2, and 4 of Theorem 9.

Theorem 4.4.6. A transcendental meromorphic function f satisfying u(f) = 0 has at
most four perfectly branched values.

Proof. Let f be a transcendental meromorphic function which admits m distinct per-
fectly branched values. By Lemma 4.4.5, there exists a constant M such that

(m− 2)

2
T (r, f) ≤ N(r, f) + (M − 1) log r +O(1)

≤ T (r, f) + (M − 1) log r +O(1).

Thus, we obtain the relation

(m− 4)
T (r, f)

log r
≤ O(1),

which contradicts Lemma 4.4.3 when m > 4.

Theorem 4.4.7. A non-constant meromorphic function f satisfying u(f) = 0 has at
most three totally branched values.

Proof. Let m be the number of distinct totally branched values for f . Lemma 4.4.5
implies that

(m− 2)

2
T (r, f) ≤ T (r, f)− log r +O(1),
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from which we deduce

(m− 4)

2
T (r, f) ≤ − log r +O(1). (4.13)

If f is transcendental, then from Theorem 4.4.6 we have m ≤ 4, and the latter
inequality gives a contradiction for m = 4.

If f is a rational function, then it satisfies

T (r, f) = deg(f) log r +O(1),

where deg(f) is the maximum between deg(f0) and deg(f∞). If deg(f) = 1, then f has
no totally branched values. If deg f ≥ 2, then from (4.13) and the latter equality, we
obtain

(m− 3) log r ≤ O(1),

which gives m ≤ 3.

Theorem 4.4.8. A non-constant polynomial f satisfying u(f) = 0 has at most one
totally branched value.

Proof. First note that the statement is trivial if f has degree 1. Assume that f has
degree at least 2. Let m be the number of distinct totally branched values. By Lemma
4.4.5, we have

(m− 2)

2
T (r, f) ≤ − log r +O(1).

On the other hand, we have

T (r, f) = deg f log r +O(1).

Since deg(f) ≥ 2, it follows that

(m− 2) log r ≤ − log r +O(1),

which implies m ≤ 1.

Before we can prove item 3 of Theorem 9 (this is Theorem 4.4.10 below), we need
one more lemma (which will also be used in the next section).

The proof of the next result requires to extend the maximum term to elements of an
algebraic closure of K =Mn. In the first chapter, Proposition 1.1.8 gives a precise way
to extend each ultrametric absolute value | |r of K to an ultrametric absolute value on
its algebraic closure K. Given Θ ∈ K, for each r ∈ R≥0, we define

|Θ|(r) = d
√
|PΘ(0)|(r),
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where PΘ ∈ K[t] denotes the minimal polynomial of Θ over K, and d denotes the degree
of PΘ. As for meromorphic functions, we will say that Θ is transcendental if

lim
r→∞

|Θ|(r)
rk

= +∞

for each k ∈ N. It is important to notice that elements of K \ K are purely formal
objects with no meaning as global meromorphic functions.

Lemma 4.4.9. Consider two entire functions g and h whose quotient g/h is transcen-
dental. Let d ∈ Z≥2 be coprime with q. Given a non-zero rational function F , the
meromorphic function gd − Fhd satisfies

lim
r→∞

|gd − Fhd|(r)
rk

= +∞

for each k ∈ N.

Proof. First, we notice that gd−Fhd is non-zero, because g/h is transcendental. Assume
that h is transcendental (otherwise the assertion will follow from Lemma 2.5.4 applied
to g). Let Θ ∈ K be a d-th root of F . Thus gd − Fhd can be written as

gd − Fhd = (g −Θh)S,

where Ξ = g −Θh and

S =
d−1∑
i=0

gd−1−i(g − Ξ)i.

It is enough to prove that if Ξ is not transcendental, then S is. So assume that Ξ is
not transcendental.

Note that S can be written as

dgd−1 −H,

where H is a polynomial in Ξ of degree d − 1 whose coefficients are polynomials in g
of degree at most d− 2. Since Ξ is not transcendental, there exists a ∈ |F∗| and ` ∈ N
such that for each r ∈ R≥0 we have

|Ξ|(r) ≤ ar`/d,

hence
|H|(r) ≤ ad−1r

`(d−1)
d (|g|(r))d−2.

On the other hand, since g is transcendental and because d is coprime with q by
hypothesis, by Lemma 2.5.4, we have for r large enough

|d|(|g|(r))d−1 > ad−1r
`(d−1)
d (|g|(r))d−2,
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hence
|H|(r) < |d|(|g|(r))d−1,

hence
|dgd−1 −H|(r) = |d|(|g|(r))d−1.

Therefore, S is transcendental.

Theorem 4.4.10. A transcendental meromorphic function f satisfying u(f) = 0, and
whose function of poles f∞ is polynomial, has at most one perfectly branched value.

Proof. Assume that f has two distinct perfectly branched values b1 and b2. Choose
d = 3 if F has characteristic 2, and d = 2 otherwise.

Suppose first that for each j ∈ {1, 2}, we have

f − b1 =
Pgd

f∞
and f − b2 =

Qhd

f∞
, (4.14)

for some polynomials P and Q, and transcendental entire functions g and h. This
means that the irreducible factors of the non square-free part of the function of zeros
of f − bj, whose multiplicity is distinct from d, is a finite subset of F[X1, . . . , Xn].

We prove that g/h is transcendental. Assume it is not. By hypothesis, the fraction

f0 − b1f∞
f0 − b2f∞

is a rational function. Since each f0−bif∞ is transcendental by hypothesis, the greatest
common divisor η of f0 − b1f∞ and f0 − b2f∞ is a transcendental entire function. But
then η divides the polynomial

f0 − b1f∞ − (f0 − b2f∞),

which is absurd.
Writing

F =
Q

P
and G = (b2 − b1)

f∞
P
,

we have
gd − Fhd = G.

Since f∞ is a polynomial by hypothesis, G is a rational function, hence there exists
` ∈ N such that

|G|(r)
r`

is bounded (by Lemma 4.4.3). But at the same time, since g
h

is transcendental, the
meromorphic function gd − Fhd satisfies the assertion of Lemma 4.4.9, hence is tran-
scendental, which is absurd. Therefore, not both f − b1 and f − b2 can be written as
in Equations (4.14). Assume that f − b1 cannot be written in that form.
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From the previous discussion, we deduce that the set of irreducible factors of the
zero function of f−b1, whose order of multiplicity is distinct from d, is either an infinite
subset of F[X1, . . . , Xn] (case 1), or it contains at least one transcendental irreducible
entire function (case 2).

We now prove that in both cases the function

σ(r) = Z(r, f − b1)− 2Z(r, f − b1)

satisfies

lim
r→∞

σ(r)

log r
= +∞.

Write f − b1 = f1/f∞ in reduced form. The divisor D(f1) can be written in the form

D(f1) = D0 + 2D1 +
∑
i

diPi,

where D0 is the divisor of the square-free part, D1 corresponds to the points with
multiplicity exactly 2, and each di is at least 3. Assume that the characteristic p is not
2. We have

D(f1) = D0 +D1 +
∑
i

eiPi,

where ei = 1 if di is coprime with p and ei = 0 otherwise. Since d = 2, we have

D(f1) +D0 = 2D(f1) +
∑
i

(di − 2ei)Pi,

hence
Z(r, f1) + Z(r,D0) = 2Z(r, f1) +

∑
i

(di − 2ei)Z(r,Pi).

We deduce that
σ(r)

log r
=
Z(r, f1)

log r
− 2Z(r, f1)

log r

=

∑
i(di − 2ei)Z(r,Pi)

log r
− Z(r,D0)

log r

=

∑
i(di − 2ei)Z(r,Pi)

log r
−O(1),

which proves our claim since each di is at least 3. If p = 2, we have

D(f1) = D0 +
∑
i

eiPi,

so that
D(f1)− 2D(f1) = D0 + 2D1 +

∑
i

diPi − 2(D0 +
∑
i

eiPi)

= −D0 + 2D1 +
∑
i

(di − 2ei)Pi.
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We leave to the reader the simple verification that the counting function of zeros of the
divisor

2D1 +
∑
i

(di − 2ei)Pi

has order of growth greater than that of log r in both case 1 and case 2.
On the other hand, from the relations

Z(r, f − b1) =
Z(f − b1)−

(
Z(r, f − b1)− 2Z(r, f − b1)

)
2

≤ T (r, f − b1)− σ(r)

2

=
T (r, f)− σ(r)

2
+O(1),

combined with Lemma 4.4.4 applied to f−b2, and by Corollary 4.2.9 of the Nevanlinna’s
Second Fundamental Theorem, we obtain

(m− 1)T (r, f) ≤ mT (r, f)− σ(r)

2
+O(log r),

with m = 2, which gives a contradiction.

4.5 Applications of branched values to solve some

functional equations

We first prove Corollary 10, stated in the introduction.

Proof of Corollary 10. Consider the equation

Pfd −Qgm = R, (4.15)

in the variables f and g, where P , Q and R are three non-zero polynomials, and where
d,m ∈ Z≥2 are coprime with the characteristic exponent q. We want to prove that
there are no transcendental solutions.

For the sake of contradiction, assume that f and g are transcendental solutions.
Consider the meromorphic functions

F =
Pfd

R
and G =

Qgm

R
.

Note that both are transcendental and that their respective functions of poles are
polynomials. Notice that since F − G = 1, we have u(F ) = u(G). Since 0 and 1 are
perfectly branched values for F , it follows that u(F ) must be positive (and consequently,
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4. Branched Values of Meromorphic functions in several variables

p is positive), otherwise it would contradict Theorem 4.4.10. Set ` = u(F ) and let
F0, G0 ∈Mn be such that

F = F p`

0 and G = Gp`

0 ,

so that we have F0 −G0 = 1, and their functions of poles are polynomials.
Note that in reduced form, F can be written as

F =
P ′f ′d

R′

where P ′ and R′ are polynomials, and f ′ is a transcendental function which is coprime
with P ′. Since F is a p`-th power, its function of zeros P ′f ′d is a p`-th power. Since
moreover P ′ is coprime with f ′, both P ′ and f ′d are p`-th powers, and since d is coprime
with p, indeed f ′ is a p`-th power. So actually, the function of zeros of F can be written
as

(P0f
d
0 )p

`

where P0 is a polynomial, and f0 is a transcendental entire function which is coprime
with P0. Similarly, the function of zeros of G can be written as

(Q0g
m
0 )p

`

,

where Q0 is a polynomial, and g0 is a transcendental entire function which is coprime
with g0. Therefore, P0f

d
0 and Q0g

m
0 are the functions of zeros of F0 and G0, respectively.

Thus, we obtain that 0 and 1 are perfectly branched values for F0 (since F0 − 1 = G0

and 0 is a perfectly branched values for G0). This contradicts Theorem 4.4.10.

Next we prove Theorem 11, stated in the introduction.

Proof of Theorem 11. Consider the equation

gm = hfm +Q (4.16)

in the variables f and g, where m ≥ 2 is an integer coprime with the characteristic
exponent q, h ∈ En is an non-zero m-th power, and Q ∈ F[X1, . . . , Xn] is non-zero. We
want to prove that none of f and g can be transcendental, and that if h is transcendental
then the equation has no solution, namely, we want to prove that if the equation admits
a solution (f, g), then none of f , g and h can be transcendental.

If h is a polynomial, then Corollary 10 implies that f and g must be polynomials.
So we need only to prove that h is not transcendental. Assume it is. Since h is an m-th
power, it can be written as h = Hm for some transcendental entire function H, so that
Equation (4.16) becomes

gm = Hmfm +Q.
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4.6. Another application of branched values for analytic functions in the stripped balls

If the meromorphic function Hf/g is a polynomial, then the entire function

G = gcd(Hf, g)

is transcendental, as H is, and this contradicts the fact that G divides Q. Hence Hf/g
is transcendental.

Since m is coprime with q, by Lemma 4.4.9, we obtain that gm − (Hf)m = Q is
transcendental, which is absurd.

Finally, we prove Corollary 14.

Proof of Corollary 14. Let f and g be two coprime entire functions such that

∇
(
f

g

)
6= 0.

Assume that {λ1, . . . , λN} is a subset of F such that f + λig is a power in En, for each
i = 1, . . . , N . For each i = 1, . . . , N , write

f + λig = hmii

for some hi ∈ En and mi ∈ Z≥2. The coprimality between f and g implies the copri-
mality between g and hi for each i. By setting F = f/g, we obtain

F + λi =
hmii
g
,

namely, for each i ∈ {1, . . . , N}, −λi is a totally branched value for F . Since ∇(F ) 6= 0,
we have u(F ) = 0 by Corollary 2.7.7. Thus, by Theorem 4.4.7, it follows that N is at
most 3.

4.6 Another application of branched values for an-

alytic functions in the stripped balls

This section is dedicated to prove Theorems 12 and 13. Here, we assume that F has
characteristic zero. We will use κ to denote the residual characteristic of F (namely, the
characteristic of the residual field of F). We will fix a ∈ F and ρ− ∈ R≥. For a general
introduction to non-Archimedean analysis in one variable, we refer the reader to [Es1].

We first state a few theorems and lemmas that are needed for the proofs.

Theorem 4.6.1. [Es1, Cor 23.17] An analytic function h in the disk d(a, ρ−) is a unit
if and only if, for each x ∈ d(a, ρ−), it satisfies

|h(x)− h(a)| < |h(a)|.
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4. Branched Values of Meromorphic functions in several variables

The following lemma is well known.

Lemma 4.6.2. Let f, g ∈ A(d(a, ρ−)). If the product fg is bounded, then f and g are
both bounded.

Theorem 4.6.3. [Es1, Ch. 33] Let m ∈ Z≥2 and w ∈ A(d(a, ρ−)) be such that

• for each x ∈ d(a, ρ−), the analytic function w satisfies

|w(x)− 1| < 1;

if κ 6= 2 and m is coprime with κ; or

• for each x ∈ d(a, ρ−), the analytic function w satisfies

|w(x)− 1| < 1

2
,

if κ = m = 2.

In both situations, w has an m-th root in A(d(a, ρ−)).

Theorem 4.6.4. [La, Th. 2.3.7] Suppose that F is spherically complete. Let (an)n∈N
be a sequence of elements of d(a, ρ−) satisfying lim

n→∞
|an| = ρ and let (dn)n∈N be any

sequence of positive integers. There exists f ∈ A(d(a, ρ−)) admitting each an as a zero
of order dn.

The following lemma is proven in the same way as Lemma 4.4.9 (and the proof is
indeed simpler).

Lemma 4.6.5. Let f, g ∈ Au(d(0, ρ−)) with f 6= g. For each m ∈ Z≥2, we have
fm − gm ∈ Au(d(a, ρ)).

Lemma 4.6.6. Let m ∈ Z≥2 and let L be a complete algebraically closed extension of
F. Let

dL(a, ρ−) = {x ∈ L : |x− a| ≤ ρ−}.
If f has an m-th root g in the ring A(dL(0, ρ−)), then g ∈ A(d(a, ρ−)).

Proof. Without loss of generality, we assume a = 0. Write

f =
∞∑
i=0

aix
i and g =

∞∑
i=0

bix
i,

where ai ∈ F and bi ∈ L. By induction, we prove that bi ∈ F for each i ∈ N. Since F is
algebraically closed and am0 = b0, we obtain b0 ∈ F. Now suppose that we have proven
that aj ∈ F for each 0 ≤ j ≤ k− 1. It is clear that bk has the form aka

m−k
0 + v where v

is a polynomial in a0, a1, . . . , ak−1. Therefore, it also belongs to F. Consequently, each
coefficient of g is in F.
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4.6. Another application of branched values for analytic functions in the stripped balls

If f is an analytic function in a stripped disk, by m
√
f , we mean an arbitrary m-th

root of f .

Theorem 4.6.7. Let m ∈ Z≥2 be coprime with κ and let f ∈ A(d(a, ρ−)). If all zeros
of f have order a multiple of m, then f has an m-th root g ∈ A(d(a, ρ−)).

Proof. Suppose first that F is spherically complete. Let (αn)n∈N be the sequence of
zeros of the function h in d(a, ρ−), with lim

n→+∞
|αn| = ρ, each αn having order msn.

By Theorem 4.6.4, there exists φ ∈ A(d(a, ρ−)) whose zeros are given by the se-
quence (αn)n∈N and whose respective order of multiplicities are sn. Thus, f

φm
has no

zero and no pole and therefore is an invertible bounded function ` which belongs to
Ab(d(a, ρ−)). Let ψ = `

`(a)
and let λ be an m-th root of `(a). Since ` has no zero in

d(a, ρ−), for each x ∈ d(a, ρ−), we have

|`(x)− `(a)| < |`(a)|,

and therefore
|ψ(x)− ψ(a)| = |ψ(x)− 1| < 1.

Consequently, since κ does not divide m, by Theorem 4.6.3, the function m
√
ψ(x)

belongs to Ab(d(a, ρ−)). So, we have

f(x) =
(
λφ(x) m

√
ψ(x)

)m
,

which proves the claim when F is spherically complete.
Consider now the general case, when F is no longer supposed to be spherically

complete. Let F̂ be a spherically complete algebraically closed extension of F. Given a
disk d(a, ρ−) of F, we will denote by d̂(a, ρ−) the similar disk of F̂:

{x ∈ F̂ | |x− a| < r}.

The function f can be extended to a function f̂ which belongs to A(d̂(α, ρ−)), and

hence there exists a function g ∈ A(d̂(α, ρ−)) such that gm = f . By Lemma 4.6.6, g is
a power series that has all its coefficients in F, and hence belongs to A((d(a, ρ−)).

We are now able to prove Theorem 12.

Proof of Theorem 12. Let m ∈ Z≥2. Let h ∈ A(d(a, ρ−)) and w ∈ Ab(d(a, ρ−)) be
non-zero. We consider the functional equation

gm = hfm + w (4.17)

in the variables f and g. Suppose that Equation (4.17) has solutions f, g ∈ Au(d(a,R−)).
We assume that one of the following hypothesis is satisfied.
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4. Branched Values of Meromorphic functions in several variables

• m is coprime with the residual characteristic κ of F and h has no zeros in d(a, ρ−).

• m and the residual characteristic of F are equal to 2, and for each x ∈ d(a, ρ−)
we have

|h(x)− h(0)| < 1

2
|h(0)|.

• m is coprime with the residual characteristic of F and each zero of h has order of
multiplicity divisible by m.

By Theorem 4.6.3 and Lemma 4.6.6, there exists a function φ ∈ A(d(a,R−)) such that
h = φm. Consequently we can write

(g(x))m − (φ(x)f(x))q = w(x).

But by Lemma 4.6.5,
(g(x))m − (φ(x)f(x))q

is unbounded, a contradiction to the hypothesis on w.

In order to prove Theorem 13 we need to recall the following definitions. Given
f, w ∈ M(d(0, ρ−)), the function w is called a small function with respect to f if it
satisfies

lim
r→ρ

T (r, w)

T (r, f)
= 0.

We denote by Mf (d(0, ρ−)) the set of functions w ∈ M(d(0, ρ−) which are small
functions with respect to f . Similarly, we denote by Af (d(0, ρ−)), the set of functions
w ∈ Af (d(0, ρ−)) which are small functions respect to f . Note that given any f ∈
Mu(d(0, R−)), all functions u ∈ Mb(d(0, ρ−)) belong to Mf (d(0, ρ−)). In the proof
of Theorem 13, we will use the following Lemma 4.6.8 and Theorem 4.6.10, known as
Nevanlinna’s Second Fundamental Theorem on 3 small functions.

Lemma 4.6.8. Given f ∈M(d(0, ρ−)), the setMf (d(0, ρ−)) is a subfield ofM(d(0, ρ−)).

Lemma 4.6.9. A function f ∈ A(d(0, ρ−)) belongs to Ab(d(0, ρ−)) if and only if T (r, f)
is bounded when r tends to ρ.

Theorem 4.6.10. [HuYa, Th. 2.21] Let f ∈Mu(d(0, ρ−)) and u1, u2 ∈Mf (d(0, ρ−))
be distinct. We have

T (r, f) ≤ Z(r, f − u1) + Z(r, f − u2) +N(r, f) + o(T (r, f)).

Corollary 4.6.11. Let f ∈ Au(d(0, ρ−)) and u ∈ Af (d(0, ρ−)). We have

T (r, f) ≤ Z(r, f) + Z(r, f − u) + o(T (r, f))
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4.6. Another application of branched values for analytic functions in the stripped balls

We can now prove Theorem 13.

Proof of Theorem 13. Let n,m ∈ Z≥2 be such that max{n,m} ≥ 3. Let h,w ∈
Ab(d(a, ρ−)) be non-zero and consider the functional equation

gn = hfm + w

in the variables f and g. We want to prove that it has no solution over Au(d(a, ρ−)).
Write F (x) = g(x)n. From Corollary 4.6.11, we have

T (r, F ) ≤ Z(r, F ) + Z(r, F − w) + o(T (r, F )).

On the other hand, we have

Z(r, F ) ≤ 1

n
Z(r, F ).

Moreover, since h is bounded, by Lemma 4.6.9, Z(r, h) is bounded, hence by Lemma
4.6.8, we have

Z(r, hfm) ≤ Z(r, f) + Z(r, h) = Z(r, f) +O(1).

Therefore, we have

Z(r, hfm) ≤ 1

m
Z(r, hfm) +O(1) =

1

m
Z(r, F ) +O(1).

On the other hand, we have

Z(r, F ) = Z(r, F − w) +O(1) = T (r, F ) +O(1),

hence

T (r, F ) ≤
(

1

m
+

1

n

)
T (r, F ) + o(T (r, F )),

which implies
1

m
+

1

n
≥ 1.

The latter contradicts the fact that our hypothesis on m and n implies

1

m
+

1

n
≤ 5

6
.
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[GaPa] N. Garćıa-Fritz, H. Pasten, Uniform existential interpretation of the integers
in rings of entire functions of positive characteristic. J. Number Theory 156
(2015), 368–393.

[Hay1] W. K. Hayman, Meromorphic functions, Oxford Univ. Press, Oxford, 1964.

[Hay2] W. K. Hayman, Picard values of meromorphic functions and their derivatives,
Ann. Math. 70 (1), (1959) 9–42.

[HuYa] P. H. Hu and C. C. Yang, Meromorphic functions over non archimedean fields,
Kluwer Academy Publishers (2000).

[Kh] Ha Huy Khoai, La hauteur des fonctions holomorphes p-adiques de plusieurs
variables. (French) [Height for p-adic holomorphic functions of several variables],
C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 11, 751–754.

[Koe] J. Koenigsmann, Undecidability in Number Theory, in: Model Theory in Alge-
bra, Analysis and Arithmetic, Cetraro, Italy 2012, Springer, Lecture Notes in
Mathematics 2111 (2014).

94



BIBLIOGRAPHY

[Lan1] M. Langevin, Plus grand facteur premier d’entiers consécutifs, C.R. Acad. Sci.
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