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Introduction

The object of this thesis is to extend (first-order) Diophantine undecidability results
on addition and divisibility to rings that are localized at finite sets of primes. Our
main results are resumed in the following theorem (the logical terms will be explained

in Chapter 1).

Theorem 1. 1. Let S be a finite and non-empty set of prime numbers.
Multiplication is positive-existentially definable in Zs = (Z[S7];=,0,1,+,]),

where the symbol | stands for the usual divisibility (binary) relation.

2. Let S be a non-empty finite set of irreducible polynomials over a finite field
F of odd characteristic. Multiplication is positive-existentially definable in
the structure Fs = (ST'F[t];=,F,0,1,+,|, f + tf), where f — tf is the
multiplication by t map. If F has a prime number of elements, then one can
remove the constants F from the language.

In particular, the positive existential theory of both Zg and Fs are undecidable.

This implies that there is no algorithm to decide whether or not an arbitrary
system of linear equations over Z (resp. F|[t]), together with conditions of the form
z | y on the variables, has a solution over Z[S™!] (resp. S'F[t]).

We now introduce the historical context of our result.

Hilbert’s Tenth Problem (referred to as “H10” in the sequel) asks for the following:

Given a polynomial equation (in an arbitrary number of variables) and with
coefficients in Z, find a process according to which it can be determined in a finite

number of steps whether the equation is solvable in Z.
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Nowadays, one would ask whether the positive existential theory of the structure
(Z;=,0,1,4+,-) is or not decidable — see Chapter 1 for the meaning of the logical
concepts. Building on works by M. Davis, H. Putnam and J. Robinson, Y.
Matiyasevich gave in 1970 a negative answer to H10 (see [Mat70], or [Da73]). Using
J. Robinson’s work [Ro49] and Matiyasevich’s result for H10 over Z, one can show
that, if S is a finite set of primes, then Hilbert’s Tenth problem over Z[S™!] has a
negative answer (see [Sh1l, p. 240] or [Po03, p. 982|). It is not known whether the

analogue of H10 for the field Q of rational numbers is decidable or not.

Before going specifically to addition and divisibility, we should mention that
there has been a lot of results extending the negative solution to H10 in (at least)

two directions.

On the one hand, undecidability results have been obtained for many classical
structures over the ring language or extensions of it. We first list a few results
regarding rings of functions in one or more variables (the language usually contains
constant symbols for the variables), as they are relevant for possible extensions
of our result about polynomial rings over finite fields — for general surveys on
H10, or more generally on decidability problems in number theory, see for instance
[Ph94, PhZ00, PhZ08, Kol4|, and the book [Sh07]|, and the references therein. For
polynomial rings (in any characteristic), this was solved by J. Denef [De78, De79|.
T. Pheidas [Ph91] solved the problem for rational function fields over finite fields —
see |Vide94| for the characteristic 2 case, and [Z03| for partial results towards the
still open case where the base field is an algebraically closed field of characteristic
zero. As far as algebraic extensions are concerned, see [Sh92, Ei03, Sh00], and with
respect to completions see [Ph87a, Ph87b, LiPh95, Vida03, GaPasl5|. Famously
open problems are: C(t) (unless one adds a valuation in the language — note that
even the full theory is not known to be undecidable) and the ring of entire functions
over C.

Concerning number fields, we should mention the following results. In [DeT75,
De80, Ph88, Sh89, Vide89|, it is shown that H10 for the ring of integers of a number
field is unsolvable, as long as there are at most one pair of complex conjugate

embeddings (the general case is solved modulo conjectures).
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On the other hand, a lot of work has been done recently on trying to recover
the ring structure from “looking-weaker” structures over the same base ring. See
for instance [Wo81, Wo093, Ull, Gal3, Ril6, PasVidal6, Ul6]. More specifically
for the case of defining positive-existentially multiplication from addition and k-th
powers (for some fixed k > 2), we refer to the general survey [PasPhVidal0] and the
references therein.

In the late seventies, L. Lipshitz [Li77], and in parallel A. P. Bel’tyukov [B80],
showed that the positive existential theory of the structure (Z;=,0,1,+,]|) is
decidable. Namely, there is an algorithm for deciding whether or not an arbitrary

sentence of the form

k
x4 . ..Elxn/\f,-(xl, e ) | g, ),
i=1

where the f; and g; are linear polynomials with integer coefficients, is true over Z.
Note that the full theory is undecidable (see [Wo81] — this is because the coprimality
relation is defined from divisibility using Bézout’s identity).

The full theory of the structure (Q; 0, 1, +, |) is decidable (see [Mar02, Th. 3.1.9]).
Indeed, the structure (Q;0,1,+,|) is bi-interpretable with (Q;0, 1, +, #).

In view of the results above, the following question arises naturally.

Question 1. For which subrings A C Q is the positive existential theory of the
structure (A;=,0,1,4+,]|) decidable?

Our main theorem answers this question for A = Z[S™!], where S is any fixed
finite set of primes.

At first sight, it is slightly surprising that inverting a single prime makes a
difference about the decidability of the structure. Nevertheless, inverting just one
prime makes the group of units infinite. Moreover, our result can be contrasted
with the following result of J. Denef — see [De75]: the positive existential theory
of the structure (Z;0, 1, +,|,) is undecidable, where the symbol |, has the following

meaning for a fixed integer p > 1:
z |, y if and only if there exist z,7 € Z such that y = zzp'.

Observe that the predicate |, is, in disguise, the divisibility in Z[%] restricted to Z.

11
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The main difficulties in adapting the arguments of J. Denef to our case come
from the fact that our structure is not discrete. Nevertheless, we follow the classical
strategy which consists of gradually defining the multiplication: first we square units,
then we multiply a unit by an arbitrary element of the ring, and finally we define
the squaring function. Multiplication is definable from the squaring function thanks
to the identity (x +y)? = 22 + 22y + y2.

Note that analogues of Lipshitz’s result on addition and divisibility have been
obtained for several rings of functions (for example for polynomial rings over a
decidable field — see [Ph85], and for some richer structures — see [Si09]), so one
may ask the analogue of Question 1 for all those rings. Our main theorem also
essentially solves the problem for finite S over F,[t], though we needed to extend the
language with a symbol for multiplication f + ¢f (the multiplication by ¢ map).
The technique uses more or less the strategy that we use for the integers, though
one has to put a special attention to the dominant coefficients of the polynomials,
and the final formula is different and requires new arguments.

We finish the introduction with a few questions that naturally arise from our
main theorem.

B. Poonen showed [Po03] that there exist infinite sets S of primes of natural
density 1 such that Z has a diophantine model in Z[S™!| over the language of rings.
This leads to the following question.

Question 2. [s there a set S consisting of infinitely many primes such that

multiplication is positive-existentially definable in the structure Zg? What about

Fs?

In |[Li78b], L. Lipshitz shows that if O is the ring of integers of a number field
K, then multiplication can be recovered in a positive existential way from addition
and divisibility if and only if K is not an imaginary quadratic extension of QQ. So

more generally, we may ask:

Question 3. For which rings of algebraic S-integers is multiplication

positive-existentially definable from addition and divisibility?

12



Introduccion

El objetivo de esta tesis es extender algunos resultados de indecidibilidad (en logica
de primer orden) sobre problemas diofantinos en adicién y divisibilidad, a anillos
localizados por conjuntos finitos de primos. Nuestros principales resultados se

resumen en el siguiente teorema (los términos l6gicos seran explicados en el Capitulo

).

Teorema 1. 1. Sea S un conjunto finito y no vacio de numeros primos. La
multiplicacion es definible de manera positivo existencial en Zg = (Z[S™'];=

,0,1,+,|), donde el simbolo | representa la relacion (binaria) usual de

divisibilidad.

2. Sea S un conjunto no vacio y finito de polinomios irreducibles sobre un campo
finito F de caracteristica impar. La multiplicacion es definible de manera
positivo existencial en la estructura Fs = (ST'F[t];=,F,0,1,+,|, f — tf),
donde f — tf es la multiplicacion por t. Mads aiun, si F tiene un nimero
primo de elementos, entonces podemos remover el conjunto de constantes F de
nuestro lenguaje.

En particular, la teoria positivo existencial de Zg y Fgs es indecidible.

Esto implica que no existe un algoritmo para decidir si o no un sistema de
ecuaciones lineales arbitrario sobre Z (resp. F[t]), junto con condiciones de la forma
x| y en las variables, tiene solucion sobre Z[S™!| (resp. S™'F[t]).

Ahora introducimos el contexto histérico de nuestro resultado.

El Décimo Problema de Hilbert (referido como “H10” en lo sucesivo) es el

siguiente:
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Dada una ecuacion polinomial (en un ntimero arbitrario de variables) con
coeficientes en Z, hallar un proceso segun el cual se pueda determinar en un

nimero finito de pasos si la ecuaciéon tiene soluciones en Z.

Utilizando el lenguaje moderno de logica matematica, la pregunta se traduce a
si la teoria positivo existencial de la estructura (Z;=,0,1,+,-) es o no decidible —
ver Capitulo 1. Basandose en trabajos de M. Davis, H. Putnam y J. Robinson,
Y. Matiyasevich dio en 1970 una respuesta negativa a H10 (ver [Mat70], o [Da73]).
Usando el trabajo de J. Robinson [Ro49] y el resultado de Matiyasevich para H10
sobre Z, uno puede mostrar que, si S es un conjunto finito de primos, entonces el
Décimo Problema de Hilbert sobre Z[S™!| tiene una respuesta negativa (ver [Sh1l,
p. 240] o [Po03, p. 982]). No se conoce si el andlogo de H10 para el campo Q de los
numeros racionales es decidible o no.

Antes de tratar especificamente a la adicion y divisibilidad, debemos mencionar
que ha habido muchos resultados que extienden la solucién negativa de H10 en (al
menos) dos direcciones.

Por un lado, se han obtenido resultados de indecidibilidad para muchas
estructuras clasicas sobre el lenguaje de anillos o extensiones del mismo. Primero
enunciaremos algunos resultados con respecto a anillos de funciones en una o
més variables (el lenguaje normalmente contiene simbolos de constantes para las
variables), ya que son relevantes para posibles extensiones de nuestro resultado
sobre anillos de polinomios sobre campos finitos — para estudios generales sobre
H10 o, méas generalmente, sobre problemas de decidibilidad en teoria de nimeros,
ver, por ejemplo, [Ph94, PhZ00, PhZ08, Kol4| y el libro [Sh07|, y las referencias
citadas en el. Para anillos de polinomios (en cualquier caracteristica), este fue
resuelto por J. Denef [De78, De79|. T. Pheidas [Ph91] resolvi6 el problema para
los campos de funciones racionales sobre campos finitos — see [Vide94| para
el caso de caracteristica 2, y [Z03] para resultados parciales para el caso atn
abierto de caracteristica cero sobre un campo algebraicamente cerrado. Para
extensiones algebraicas, ver [Sh92, Ei03, Sh00|, y con respecto a completaciones
ver [Ph87a, Ph87b, LiPh95, Vida03, GaPas15]. Los famosos problemas abiertos son:

C(t) (a menos que se afiada la valuacion al lenguaje — observamos que incluso la

14
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teorfa completa no se sabe si es indecidible) y el anillo de funciones enteras sobre C.

Con respecto a los campos de nimeros, deberiamos mencionar los siguientes
resultados. En [De75, De80, Ph88, Sh89, Vide89|, se demuestra que H10 para el
anillo de enteros de un campo de nimeros es insoluble, siempre que haya a lo mas
un par de incrustaciones complejas (para el caso general s6lo se conocen soluciones
modulo conjeturas).

Por otro lado, recientemente ha habido mucho trabajo en intentar recuperar la
estructura de anillo desde estructuras que son, a primera vista, mas débiles sobre el
mismo conjunto base. Ver por ejemplo [Wo81, Wo93, Ul1, Gal3, Ril6, PasVidal6,
U16]. Mas especificamente, para el caso de definir de manera positivo existencial la
multiplicacion utilizando la adicion y k-ésima potencias (para algin k > 2 fijo), ver
el articulo [PasPhVidal0| y las referencias contenidas en el.

A finales de los setenta, L. Lipshitz [Li77|, y en paralelo A. P. Bel'tyukov |[B80],
demostraron que la teoria positivo existencial de la estructura (Z;=,0,1,+,|) es
decidible. En otras palabras, existe un algoritmo para decidir si o no un enunciado

arbitrario de la forma

k
Jz; . ..Elxn/\fi(xl, o) | g, ),
i=1

donde los f; v g; son polinomios lineales con coeficientes enteros, es verdadero sobre
Z. Observamos que la teorfa completa es indecidible (ver [Wo81| — ya que ser
coprimo se puede definir utilizando divisibilidad y la identidad de Bézout).

La teoria completa de la estructura (Q;0,1,4,]|) es decidible (ver [Mar02, Th.
3.1.9]). Vale la pena mencionar que la estructura (Q;0,1,+,|) es bi-interpretable
con la estructura (Q; 0,1, +, #).

En vista de los resultados anteriores, la siguiente pregunta surge de manera

natural.

Pregunta 1. ;Para qué subanillos A C Q es la teoria positivo existencial de la

estructura (A;=,0,1,4,|) decidible?

Nuestro teorema principal responde esta pregunta para A = Z[S™!], donde S es

un conjunto finito fijo de primos.

15
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A primera vista, es un poco sorprendente que invertir un solo primo haga
diferencia acerca de la indecidibilidad de la estructura. Sin embargo, invertir un
solo primo hace el grupo de unidades infinito. Ademas, nuestro resultado puede ser
contrastado con el siguiente resultado de J. Denef (ver [De75]) donde demuestra que
la teoria positivo existencial de la estructura (Z;0,1,+,|,) es indecidible, donde el

simbolo “|,” tiene el siguiente significado para un entero p > 1 fijo:
x |, y siy solo si existe 2,7 € Z such that y = zzp'.

Observamos que el predicado |, corresponde a la divisibilidad en Z[i] restringida a
Z.

La principales dificultades para adaptar el argumento de J. Denef a nuestro
caso viene del hecho que nuestra estructura no es discreta. Sin embargo, seguimos
la estrategia clasica que consiste en ir definiendo gradualmente la multiplicacién:
primero para el cuadrado de unidades, luego la multiplicaciéon de una unidad por
un elemento arbitrario del anillo, y finalmente definimos la funcién cuadrado. La
multiplicacién es definible utilizando el cuadrado gracias a la identidad (z + y)? =
2?2 + 2zy + 92

Observamos que anélogos al resultado de Lipshitz en adiciéon y divisibilidad se
han obtenido para varios anillos de funciones (por ejemplo para anillos de polinomios
sobre un campo decidible —ver [Ph85|, y para algunas estructuras enriquecidas —
ver [Si09]), asi uno puede preguntar sobre el andlogo de la Pregunta 1 para todos
estos anillos. Nuestro principal teorema también resuelve el problema para S finito
sobre [F[t], aunque, en este caso, necesitamos extender el lenguaje con un simbolo
para la multiplicacion f +— ¢f (la multiplicacion por t). La demostracion utiliza mas
o menos la misma estrategia que utilizamos para los enteros, aunque hay que prestar
especial atencion a los coeficientes principales de los polinomios, y la formula final
es diferente y requiere nuevos argumentos.

Terminamos esta introducciéon con algunas preguntas que surgen naturalmente
de nuestro teorema principal.

B. Poonen mostré [Po03] que existe un conjunto infinito S de ntimeros primos de

densidad natural 1 tal que Z tiene un modelo diofantino en Z[S™!] sobre el lenguaje

16
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de anillos. Esto conduce a la siguiente pregunta:

Pregunta 2. ;FExiste un conjunto de infinitos nimeros primos S tal que la
multiplicacion es positiva existencialmente definible en la estructura Zs¢ Qué se

puede decir con respecto a Fg.

En [Li78b], L. Lipshitz muestra que si O es el anillo de enteros de un campo
de numeros K, entonces la multiplicacién puede recuperarse en forma positivo
existencial utilizando la adicién y divisibilidad si y sélo si K no es una extencion

cuadratica imaginaria de (. De manera mas general, podemos preguntar:

Pregunta 3. ;Para qué anillos de S-enteros algebraicos es la multiplicacion positiva

existencialmente definible utilizando adicion y divisibilidad?

17






Chapter 1

Logical background

In this chapter we recall the basic facts about Mathematical Logic that we need.
For more details, see for instance [CLO00| or [Mar(02].

Given an algebraic structure, we are concerned with its underlying language,
which consists of symbols for the distinguished constants, the operations and the

relations of the structure. For instance, the underlying language L, for the structure
ZS = (Z[S_1]7 = 07 1a =+, |)
is the set
LO = {:7 O» 17 +) |}7
and the underlying language £, for the structure
is the set
Ll - {:a]F)0717+7 |7f — tf}

A set of variables has been previously fixed. Here we will use the letters z, y
and so on for variables. For our purposes, we shall assume that the set of variables
is numerable.

Terms of the language are finite words that are made of variables, constants of
the language and operations of the language, following the usual building rules of

mathematics (using parenthesis as delimiters). For example, the word
r+1+1+4y

19



CHAPTER 1. LOGICAL BACKGROUND

is a term of Ly, and the word
(txt+ D+ (1+1ty+txtxt+1

is a term of £;. We use the usual priority reading conventions and abbreviations, so
for instance we may write 2 in the formulas instead of 1+ 1, and ¢ instead of ¢ x t.

So the second term that we wrote above takes the usual form
#+ Do+ 2ty +° + 1.

Hence, for the language Ly, the terms are the degree one polynomial functions over
N, while for £, they are the degree one polynomial functions over F. Note that we
cannot write xy in a term because we do not have multiplication in our languages
(in £ the multiplication is only “multiplication by ¢”).

An atomic formula is a relation of terms, where the relation is taken from the

language. So for instance the words

P+ Ve +2ty+2+ 1=tz +22+1
and

P+ Dz +2y+2+1 |t +22+1

are atomic formulas of £;. The atomic formulas with equality can have a “minus

symbol”, with its obvious meaning, so for instance we may write
E+Dr+2y+2+1—t'v—22-1=0

for the above atomic formula.
A quantifier-free formula is built from atomic formulas and logical connectives in
the usual way, and following the usual conventions. In our context they are always

finite words. So for instance, the word
(FPr+y+3ty+zAtz=2+1)=a=12

is a quantifier-free formula in £;.
We obtain formulas from quantifier-free formulas by adding existential or

universal quantifiers on the variables (in our context, quantification on sets is not

20



allowed — this is the difference between first-oder and higher-order predicate logic).

So for instance
Jy(tPr+y+3 |ty +zAtz=2+1) = Vz(z = 2)

is a formula in £;.

A sentence is a formula in which every variable is quantified. A sentence may be
true or false depending on the structure in which we interpret it. For instance, the
sentence

Voedy(x =y +1)

is true in the structure (Z;1,+), but is false in (N; 1, +).

The universal closure of a formula ¢ is obtained from ¢ by adding in front of
it a universal quantifier for each free variable in ¢ (“free” means “not quantified”).
Two formulas ¢ and 1 are said to be logically equivalent if the universal closure of
@ <= 1 is true in every structure. A basic theorem of first-order predicate logic
says that every formula is logically equivalent to a formula in prenez form, namely,
in which all the quantifiers appear at the beginning (what come after the quantifiers
is then called the free part of the prenex form).

An ezistential formula is a formula whose prenex form has only existential
quantifiers. A positive existential formula is an existential formula whose prenex
form has no negation in its free part.

A theory is a set of sentences. An existential theory is a set of existential sentences
(namely, existential formulas which are sentences). A positive existential theory is a
set of positive existential sentences.

The (full) theory of a structure is the set of all the sentences that are true in
the structure. The existential theory of a structure is the set of all the existential
sentences that are true in the structure. The positive existential theory of a structure
is the set of all the positive existential sentences that are true in the structure.

Let T denote the (resp. existential, resp. positive existential) theory of a
structure. We say that 7T is decidable if there is an algorithm (i.e. Turing machine,
for instance), that takes as input an arbitrary (resp. existential, resp. positive

existential) sentence, and outputs after finitely many steps an answer YES or NO,

21



CHAPTER 1. LOGICAL BACKGROUND

depending on whether the sentence is true or not in the structure. It is obvious that if
the theory of a structure is decidable, then also the existential theory and the positive
existential theory of that structure are decidable. In the three cases, we say that T is
undecidable if it is not decidable. So if the positive existential theory of a structure
is undecidable, then also the existential theory and the theory of that structure are
undecidable. A famous theorem by Presburger (see [St84]) says that the full theory
of (N;0,1,+) is decidable. On the other hand, a consequence of Matiyasevich’s
theorem, mentioned in the introduction, is that the positive existential theory of
(Z;0,1,+,-) is undecidable.

We need another concept from mathematical logic which is the key ingredient for
our work. Given an algebraic structure M with underlying set M, a natural number
n>1,and A C M™, we say that A is definable if there is a formula (x4, ..., x,) so
that the following happens: (aq,...,a,) € A if and only if the formula ¢(ay, ..., a,),
obtained from ¢(z1, ..., x,) by substituting z; by a;, is true in the structure. We also
say that a function f: M™ — M is definable if its graph is definable. For example,
it follows from Lagrange’s four square theorem, that N is definable in (Z,0,1, +, )
by the formula

2 2 2 2
Axy, xo, x5, va(x = 27 + x5 + 25 + 7).

We say that A C M™ is existentially (resp. positive-existentially) definable if it is
definable by an existential (resp. positive existential) formula.

Definability is of utmost importance because it allows to transfer undecidability
results from a structure to another. To be more precise, if we have two structures M
and My with the same underlying set M such that, the theory of M, is undecidable,
and the constants, operations and relations of M; are definable in Ms, then the
theory of M, is also undecidable, as definability allows to translate formulas from
one language to the other. We will finish these preliminaries with a more formal
explanation of how this works in our situation.

Let ¢(x,y,2) be a formula that positive-existentially defines multiplication in
the structure Zg. This means that for any triple (a,b,c) € Z[S™']?, we have ¢ = ab
if and only if p(a,b,c) is true in Zg. Assume that there exists an algorithm A

to decide whether a positive existential sentence is true or false in Zg. Here is

22



an algorithm that would decide the truth of any positive existential sentence in
(Z]S71;0,1,+,-), contradicting a result by Julia Robinson. Given a sentence 1 in
the language (0, 1, +, -), we can transform it into a positive existential sentence v in
the language L, using our formula ¢ to get rid of each occurrence of multiplication,
in such a way that 1) is true in Zg if and only if ¢ is true in (Z[S7'];0, 1, +, -). Using
the algorithm A, we could decide whether 1 is true in Zg, hence we could decide
whether 9 is true in (Z[S™!];0,1,+, ).

It is important to realize that the transformation of 1 into ¥ can be done by
an algorithm (the algorithm should not depend on the specific ¢ that we want to
transform, but only on the languages involved). To illustrate the idea, we just give
one example of transformation, and let the reader convince himself that one can

write a general algorithm. So, for instance, the sentence
Fu, v(uv + 2 = 3)
is true in (Z[S™'];0,1,+, ) if and only if the sentence
Fz,u,v(p(u, v, 2) Az +2 =3)

is true in Zg.

23






Chapter 2

The Diophantine problem for
addition and divisibility over

subrings of the rationals.

This chapter is dedicated to prove the first part of Theorem 1.

2.1 Preliminaries

We need to introduce some notations and definitions which will be used throughout

this chapter.

Notation 2.1. 1. The notation

as(z, y)
stands for the formula
zly Aylx
(namely, x and y are associate).
2. The notation
rtylwtz

stands for

r+ylwt+zAz—y|w-—=z.

25



CHAPTER 2. THE DIOPHANTINE PROBLEM FOR ADDITION AND
DIVISIBILITY

3. If v = (m,...,vm) s a vector of natural numbers, then p? will denote the

product
M
17"
i=1
4. We may write v =w (mod [) instead of | | v — w in some formulas.

5. If p is a prime number and x is a rational number, we will denote by ord,(z)

the usual order at p of x.

We now introduce a concept of norm for elements of Z[S™!]|, which will play a

central role in our proof.

Definition 2.2. We will call norm function the map N: Z[S™'| — Z defined by

NGy = Lo
if £ #£0, and N(0) = 0.

It is immediate to see that the function N satisfies the following properties. For

every x,y € Z[S™'], we have:
1. N(zy) = N(z)N(y).
2. N(z) =0 if only if x = 0.
3. x divides y (in Z[S™!]) if only if N(z) divides N(y) (in Z).

4. The norm of a unit is £1.

2.2 Undecidability of the structure Z

We recall that Zg is by definition the structure (Z[S™'];=,0,1,+,|). We first show
that the relation “different from 0” is positive-existentially definable in Zg. In order
to do this we need the following result of F. Pappalardi (see Theorem 3.1 [Pap97]).

Let p1, ..., pa be prime numbers. Let I'" denote the subgroup of Q* generated
by p1, ..., pa. For each prime ¢ different from any of py, ..., par, we consider the
reduction I'y of I' modulo ¢q. The group I'; can be viewed as a subgroup of F;. We

denote by Nr(z) the number of primes ¢ < x such that

26
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e ¢ is not equal to any of pq, ..., py, and

OFZ:F

.
Theorem 2.3 (Pappalardi, ’97). There exist constants cr and or, depending only

on I', such that
x

Np(aj) S 6p + CF(

T
log = loglog )M log

Moreover, ér < 1 and it can be explicitly computed.
Lemma 2.4. Let S be a non-empty set of prime numbers. There exists a prime q

not in S, and an integer b € {1,...,q—1}, such that gz +b is never a unit of Z[S™']

as x varies in Z[S™.

Proof. From Theorem 2.3 and the Prime Number Theorem, we can find a prime

number ¢ ¢ S so that I'y # F}, because since dr < 1, we have

cr x x
N, <[4 ~ )
r(@) < ( Tt (1oglogx)M) log = log x (@)

Choose b € {1,...,q — 1} whose class modulo ¢ is an element of F; \ I';. It is

straightforward to check that ¢ and b are as required. O
Lemma 2.5. The relation “#” is positive-existentially definable in the structure Zg.

Proof. Let q and b be the integers given by Lemma 2.4. We will show that the
formula

Ye(y) : 3A, B,x(y | ANgr +b| BANA+ B =1)

defines the relation “y # 07 in Zg.

First note that the formula 1 (y) translates to “There exist r, s, 2 € Z[S™!] such
that ry + s(qx +b) =17 in Zg.

If y = 0, then the formula is false, since by Lemma 2.4, gx + b is never a unit in
Z[S™.

Assume y # 0. Since ¢ and b are relatively prime, by Dirichlet’s theorem on
primes in arithmetic progression, there exists z such that gx + b is a prime number,
and furthermore coprime with N(y). By Bézout’s identity, there are integers r" and
s such that

' N(y) + s(qz + b) = 1.
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Since y = N(y)u, where u is a unit, we have

/

%y+s(qm—|—b) =1
[l

Remark 2.6. Lemma 2.5 allows us to write in our formulas expressions of the form

T #£y.

Lemma 2.7. Let x, y, z and v be arbitrary elements of Z[S™. If for all i such
that 1 < i < M, we have ord,, x # ord,, y, ord,, z # ord, v and, furthermore

as(x £y, z ) holds in Zg, then either xv = yz or rz = yv.
Proof. From as(z + y, z + v) there are units u; and uy such that
r+y=u(z+v) and z—y=u(z—v). (2.1)

Observe that since ord,, x # ord,, y, we have

ord,, (z +y) = min{ord,, =, ord,, y} = ord,, (z — y)
and since ord,, z # ord,, v, we have

ord,, (z + v) = min{ord,, z, ord,, v} = ord,,(z — v)
for all 1 <7 < M. Thus, for each 1 < i < M, we have

ord,, u; + min{ord,, z, ord,, v} = min{ord,, x, ord,, y}

ord,, us + min{ord,, z, ord,, v} = min{ord,, =, ord,, y}
so that ord,, u; = ord,, us (note that the hypothesis of the Lemma implies that all
the terms in these equalities are actual integers). This implies that either u; = ug

or u; = —uy. We proceed by cases.

If u; = us, then from Equations (2.1), we have
T+ Y =uz+ uv

and

T — Y = U2 — ULD.
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By adding and subtracting these equations, we obtain x = w2 and y = uyv, hence
TV = Yz,

If u; = —ugy, then from Equations (2.1), we have x +y = w1z + wyv and © —y =
—u1z + uv. By adding and subtracting these equations again, we obtain x = ujv

and y = uy 2, hence xz = yov. O]

The next Lemma is a fundamental step to show that the squaring function among

units of Z[S™!] is positive-existentially definable in Zg(see Proposition 2.9).

Lemma 2.8. Let z,y be units in Z[S™'] with x # +1 and y # 1. If for all i such
that 1 <1 < M, we have ord,, x # ord,, y, then y = z* if and only if as(z +1,y+ )
holds in Zg.

Proof. If y = x? then trivially as(z+1, y4x) holds in Zg (since x is a unit). Suppose
that as(z + 1,y £ x) is true in Z[S™!]. By Lemma 2.7, either y = 22 or zy = .

Since x is a unit and y # 1, we conclude that y = 22 O
Proposition 2.9. The set

SQu = {(2,%): z,y are units in Z[S™'] and y = 2*}
is positive-existentially definable in the structure Zg.

Proof. Write I = {0,1,2,3}. The formula

Sau(w,y): x [ TAY [ 1A \as(pz +1,p"y +pa)
yel

where v = (71, ...,7m), defines the set SQ,,.
Assume that Sqy(x,y) holds. In particular, the formula

as(p’z £ 1,p"y £ p'x)
holds for v being such that
1
v € {0,1,2,3}\ { —ord,, =, ) ord,, y,ord,, x — ord,, y

for each 7. We have
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e ordy,, p"xr = ; + ord,, v # 0,
e ord,, p*'y = 2v; + ord,, y # 0 and
e ord,, p'x — ord,, p*’y = v; + ord,, x — 2; — ord,, y # 0,

so that pYz and p*y satisfy the hypothesis of Lemma 2.8. We conclude that y =
22, O

Remark 2.10. Proposition 2.9 allows us to write in our formulas expressions of the

form 2%, 2%, ... whenever x is a unit.

The next Lemma is the first step to show that multiplication between units and

arbitrary elements is definable. Write v(x,y, z) for the formula
as(y £ 1,z £7) ANas(y £ o,z + 2?).

Lemma 2.11. Let x be a unit in Z[S™'] with x # +1. If for all i such that 1 < i <
M, we have ord,, y # 0, ord,, z # ord,, x, ord,, y # ord,, x and ord,, z # ord,, 2?,
then z = xy if and only if Zg satisfies v(x,y, z).

Proof. Assume that the formula v(z,y, z) holds in Z5. By Lemma 2.7, since as(y +
1,z £ z) holds, we have that either z = zy or x = yz. Again by Lemma 2.7, since
as(y + z, 2 + ?) holds, we have that either 2 = zy or 2* = yz. So the only case in
which we may have z # 2y is when = yz and 2® = yz, which would imply that

r==+1. [
Proposition 2.12. The set

P={(x,y,z) : x is a unit and z = xy}
15 positive-existentially definable in the structure Zg.

Proof. Write I = {0,1,2,3}*. The formula

Pro(z,y,2z): x| 1 A /\ V(p7x>péy>l)6ﬂz)
(0,y)eIxI
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defines the set P. Note that if z = zy, then Pro(z,y,z) is trivially satisfied for
(x,y,z) € P, since px is a unit. We now prove the converse. We choose §; such
that

9; €40,1,2,3} \ {—ord,, y,ord,, x — ord,, z}.

Once 6; has been chosen, we choose ; such that
v €40,1,2,3}\ {—ord,, z,d; + ord,, y — ord,, x,d; + ord,, z — 2ord,, x}.
From ~; # — ord,,  we have p"z # £1. In addition for each ¢, we have
e ord,, p’y = §; + ord,, y # 0,
e ord,, p°"z — ord,, p’z = §; + ord,, z — ord,, ¥ # 0,
e ord,, p’y — ord,, p’x = 6; + ord,, y — v; — ord,, x # 0 and
e ord,, p°*7z — ord,, p*'a? = §; + ord,, z — v; — 2ord,, © # 0,

so that pYz, p’y and p?*T7z satisfy the hypothesis of Lemma 2.11. Since we assumed
that Pro(x,y,2) holds, in particular v(pz,p’y, p°*7z) holds, so we can conclude

that z = zy. O

Remark 2.13. Proposition 2.12 allows us to write in our formulas polynomial
expressions with coefficients in 7 whenever the variable is a unit. For example,

we can write the term ag + a1 + axx? + asx® as follows:
Pro(x,z,y) A Pro(x,y,2) Aw = ay + a1 + asy + asz.
In particular, we can write expressions of the form (x £ 1)" whenever x is a unit.

Lemma 2.14. Given xy,...,x, # 0 in Z[S™!|, there exists a unit u # 1 such that

each x; divides u — 1.

Proof. Choose any prime ¢ in S and consider

u = qlcm{go(\N(xi)D: i=1,...,n}

where “lem” stands for “least common multiple”. Since N(z;) divides

NG _
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in Z (by Euler’s theorem - note that N(z;) is prime with ¢ by definition of the norm),

also it divides u — 1, hence

ordp; ;
r; = N(z;) Hpj
divides u — 1 in Z[S™']. O

The following formulas are inspired by the ones in Lemma 3 of [Ph87b|. The
adjustment that is needed is due to the fact that we are dealing with a non discrete
structure.

Let I := {0,1}™. We will write u instead of (uj,us,us,us). The following

formula will allow us to define the quadratic function in the structure Zg.
4 3
o(@,y): Ju(N\wi | LA N wi # 1A go(z,y,u),
i=1 i=1
where g (z,y,u) is the conjunction of the following formulas:

o1(x,up): /\péle:l | ug — 1,

oel

pa(y,un): Npy+1]u -1,
yel

es(up):pr...pmw+1]u —1
oa(ug, ug): (ug — 1)8M | ug — 1,

ws(ug, uz): ug — 1| ug — 1,

U3—1
U

Ug—l

P6(2, uz, us, ug): 4=z (mod uy — 1),

us — 1 2
©7(Y, U2, us, Ua): ( ° u4) =y (mod uy —1).

Uy — 1
Remark 2.15. It is worth mentioning that in the formulas pg and @7 we are using
(abusing of ) the congruence notation in order to make the forthcoming arguments
more transparent.

However, for sake of completeness we spell out, in gory details, the formula yg.
us — 1

First note that = 2 s equivalent to

U —

32 (ug — 1= 2" — 2 A Pro(ug, 2, 2)).
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2.2. UNDECIDABILITY OF THE STRUCTURE Z

Hence, g(x, ug, ug, us) can be written as:

32, 2" (ug — 12" — 2 APro(uy, 2, 2") A ug — 1 =2"— 2 A Pro(us, 2, ).
Lemma 2.16. Let x and y in Z[S™Y. If o(x,y) holds in Zg, then y = 2.
Proof. Let 0,v € I be such that, for each 1 < j < M, we have

ord,, P’z #0 and ord,, p"y # 0.

Write a = N(z) and b = N(y), and for each i, a; = ord,, x and ; = ord,, y, so that

Since ¢y (z,u1) holds, we have that N([]pYz + 1) divides N(uy — 1), hence if

x # 0, then each «; is non zero and

N =) > [V (142 T]p)
= [N (1a] P
— la H p;li'f‘(si:l: H pi_ai_éi

a;+6;2>0 o;+6;<0

Analogously, since ¢o(y, u1) holds, if y # 0, then each (; is non zero and we have

b H piz‘+'y¢:l: H p;ﬁi*“ﬁ

Bi+v:>0 Bi+v:<0

< |N(w —1)].

Therefore, for each ¢ such that 1 <i < M, we have

;

max{al, [b], pi* " pl" 7} if 2 £ 0 and y #£0,

7

IN(ur = 1)] = ¢ max{|p|, p/!+7} if x =0 and y # 0, (2.2)

max{|al, pl*il+o:} if % 0andy=0,
\
We prove that in all cases, we have

IN(y — 2%)| < |N(ug — 1)]. (2.3)
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Indeed, if x and y are non zero, then we have

N(y—a%)| = |N (e ]Tw" - [T #2™)
= N(priF2ai—a2>

—2a; >0 Bi—2a; <0
i —2a; 20—
<|b H pr=at I 2
Bi— 2a1>0 Bi—2a; <0

< |N(U1 - 1)|8M
< |N(U2 - 1)|7

where the strict inequality is justified by Equation (2.2) and the fact that
IN(uy —1)| > 3

(since @3(up) holds), and the last inequality by the fact that ¢s(uq,u2) holds.
Similarly, if = 0 and y # 0, we have

[Nl = [o] < [N(ur — D™ < [N(uz - 1),
and if z # 0 and y = 0, then
IN(2?)] = a® < [N(ur = D* < [N(up —1)].

On the other hand, since yg(x, uz, us, us) and @7 (y, ug, us, uy) hold, us — 1 divides

y — 22, Hence, if y — 2% # 0, then
IN(y —2*)| > [N(uz — 1),
which contradicts the strict inequality (2.3). O
Lemma 2.17. The set
SQ = {(x,y): z,y are in Z[S™'] and y = x*}

18 positive existentially definable in the structure Zg.
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Proof. We claim that the formula

Sq(z,y): (z=0Ay=0)V\/(z=4p Ay=p"")Ve(x,y),
oel

defines the set S@Q. Indeed, if the formula holds, then it is immediate from Lemma
2.16 that y = 2.

Suppose that (z,y) € SQ. If z =0 or z = £p~° for some § € I, then Sq(z,y) is
trivially satisfied. Hence we can suppose x # 0 and x # +p~? for every 6 € 1.

For each § € I, since x # +p~°, we have p’z £+ 1 # 0. We prove that p’y+1 # 0
for every 6. If p’y = +1, then p’2? = +1, hence §; + 2ord,, x = 0, so that §; is
even, namely ¢; = 0 (since d; € {0,1}). So we have x = +1, which contradicts our
hypothesis on .

From Lemma 2.14, there is a unit u; distinct from 1 such that the formulas
o1(x,u1), w2(y,ur) and ps3(uy) are satisfied. Because u; — 1 is not zero we deduce,
from Lemma 2.14 again, that there is a unit uy different from 1 such that the formula
pa(ug, ug) is satisfied. If we put

— ,IN(@)]
U3 — UQ 3

then ug is different from 1 (recall that x # 0), so that the formula @5 (u2, u3) is also
satisfied.
Since

uz — 1 IN(2)|~1
BT |
w1 Us + +

and the right-hand side of this equality has |N(x)| summands, we deduce that

U3—1_

IN(x)| (mod uy —1).

UQ—]__

If we choose

“ T NGy

then the formulas pg(x,us, us,uy) and @7(y, us, ug,us) are satisfied. Thus, the

formula p(z,y) is satisfied. O

Remark 2.18. From Lemma 2.17 is possible to define multiplication in the structure

Zg. Indeed, is sufficient to use the following equivalence:

z = xy if and only if (x +y)? = 2% + 22 + ¢
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Chapter 3

Definability in rings of polynomials
over finite fields of positive

characteristic.

In this chapter we will prove the second part of Theorem 1. So from now on we fix

an arbitrary finite field F of odd characteristic, and a non-empty finite set

S:{Qla---aQM}

of M irreducible polynomials. We want to define multiplication in the structure

Fs = (ST'F[t];=,F,0,1,+,|, f > tf).

3.1 Definability of “to be distinct”

We start by proving that the relation “different from 07 is positive-existentially
definable in Fg. In order to do this, we need the following results. The first one
is an analogue of Dirichlet theorem for primes in arithmetic progressions — see

|[KorLan19].

Theorem 3.1 (Kornblum, '19). Let a,m € F[t] be two relatively prime polynomials.

If m has positive degree, then the set
I'={p € F[t]: p=a (mod m), pis irreducible}
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has positive Dirichlet density. In particular, T is infinite.
Before stating the next result, we need to introduce some notation:

K is a function field in one variable over a finite field.

F is a finite Galois extension of K.

C C Gal(F/K) is a union of conjugacy classes.

W is a finitely generated subgroup of K*, of rank » > 1 modulo its torsion

subgroup.

k is an integer relatively prime with the characteristic p of K.

If p is a prime of K, (p, F'/K) will denote the Frobenius symbol.
Let M = M(K, F,C, W, k) denote the set of primes p so that:

L (b, F/K) C C,

2. ordy(w) =0 for all w € W, and

3. ity W — K: denote the quotient map to the unit subgroup of the residue
class field, then the index of ¢(WW) in 7; divides k.

Lenstra |Le77| found a formula for the Dirichlet density of M. In order to state
this formula, we need to introduce some further notation. Consider K, F', C, W
and k as above. For a prime number ¢ # p, let ¢(¢) be the smallest power of ¢ not

dividing k& and let
Le=K (qu), Wﬁ)
be the field obtained by adjoining all ¢(¢)-roots of the elements of W to K. If n is a

positive square-free integer, relatively prime to p, then define L,, to be the composite

of the fields L, so that ¢|n and ¢ is a prime number. Define
Cp={oe€Gal(F L,/K): oyp € C, and oy, # idy, for all {|n}
and

=Y
" [F-Ly: K]
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Note that if n divides m, then a,, > a,, > 0. It follows that the sequence (a,) has
a limit as n ranges over all square free integers relatively prime to p, ordered by

divisibility. Let a = lim a,,.

Theorem 3.2 (Lenstra, '77). If K is a function field in one variable over a finite
field then the set M has Dirichlet density a.

Now, we are ready to prove the analogue of Lemma 2.4.

Lemma 3.3. There exists an irreducible polynomial q¢ not in S, and a polynomial
b € F[t] of degree less than q, such that qx + b is never a unit of S™'F[t] as x varies
over ST1F[t].

Proof. Let K = F = F(t), C = {ldg},k = 2 and let W be the multiplicative
subgroup of K* generated by F* U S. Observe that if p ¢ M(K, F,C,W, k), then
the index of (W) in F: does not divide 2. In particular, (W) # F; Since S is
non-empty, the identity is not in C),, hence a,, < 1 for each possible n > 1, so by
Lenstra’s theorem, the Dirichlet density of M is less than 1.

Choose q = (¢) ¢ M such that ¢ € K is irreducible and different from all @);,
and b a polynomial of degree less than the degree of ¢ whose class modulo ¢ lies in

7: \ ©(W). The polynomials ¢ and b trivially satisfy the desired condition. ]

In order to conclude this section, observe that Bézout’s identity holds in any
Euclidean domain, and that our concept of norm (see Definition 2.2) extends
naturally to our situation (we will use it also in the next section). So the proof
of the following lemma works exactly like the proof of Lemma 2.5, using Lemma 3.3
instead of Lemma 2.4, and Kornblum’s theorem instead of Dirichlet’s theorem on

primes in arithmetic progression.

Lemma 3.4. The relation # is positive-existentially definable in the structure Fg.

3.2 Definability of multiplication

Given R € F(t)*, define Cp(R) to be the unique a € F such that

CLPO

R =
P’
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and Py and P; are monic polynomials. By ord,, R we mean the difference of degrees
deg P, — deg Fy. In order to have simpler statements along this Chapter, we may

write ordg_ instead of ords. It is easy to see that
Cp(F - 1) = Cp(Ry) - Cp(F1),
and if ord,, Py # ord,, P;, then
Cp(Po + P1) € {Cp(H), Cp(F1)}-

The next lemma is the analogue of Lemma 2.7 for the structure Fg. The proof
goes along the same lines, but we need some extra care for the leading coefficient of

the polynomials.

Lemma 3.5. Let z, y, 2 and v be arbitrary elements of ST F[t]. Assume that for all
i€ {oo,1,..., M} we have ordg, x # ordg, y and ordg, z # ordg, v. If the formula

as(x £y, z £ v) holds in Fg, then either we have xv = yz or rz = yv.

Proof. Let uy, us be units such that
r+y=u(z+wv) and r—1y=us(z—0) (3.1)

Proceeding as in the proof of Lemma 2.7, we get u; = aus for some a € F*. In order
to be able to finish the proof as in Lemma 2.7, it is sufficient to show that we have
a= =*1.

Since ord,, x # ord,, y and ord,, z # ord,, v we have
Cp(xr+y)==xCp(zr —y) and Cp(z+v)==xCp(z—v).

On the other hand, since we have

Cp(z +y)
Cp(z +v)

Cp(z —y)

Cp(ul) = Cp(Z _ 'U)7

and Cp(ug) =
we get a = £1. O

Lemma 3.6. Let x and y be units in S™'F[t] such that x # &1 and y # 1. Assume
that for alli € {o0,1,..., M} we have ordg, x # ordg, y. We have:

y = 2 if and only if F satisfies as(x + 1,y + x).
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Proof. Tt follows from Lemma 3.5, the same way that Lemma 2.8 follows from Lemma

2.7. [l

From Lemma 3.6, we can show that the squaring function between units is

positive-existentially definable.

Proposition 3.7. The set
SQu = {(z,y): z,y are units in ST'F[X] and y = 2°}
is positive-existentially definable in the structure Fg.

Proof. The proof follows the proof of Proposition 2.9, except that we need more
elements in I on order to deal with the order at infinity. So, write I = {0,1,2, 3,4}

and consider the formula
Saa(e,y): 2 [ 1Ay [ 1A A as(@z £ 1,07y + Q'x)
yel

where v reads as (71, ...,7wm) (see Notation 2.1).
Assume that Sq,(z,y) holds. In particular, as in the proof of Proposition 2.9,

for each ~; in

1
v € {0,1,2,3,4} \ {— ordg, =, —3 ordg, y,ordg, © — ordg, y} ,

Q'z and Q*y satisfy the hypothesis of Lemma 3.6 except maybe for the order at

infinity. So we have to make sure that

ords, Q*y — orde Q7 # 0,

hence that .
orde, vy — orde T + Z ord,, Q) # 0,

i=1
which clearly can be done since we still have two degrees of liberty for choosing ~,

(say). O

The analogues of Lemma 2.11 and Proposition 2.12 are proved in exactly the

same way, so we can now multiply a unit by an arbitrary element in a positive
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existential way, and therefore we can write in our formulas polynomial expressions
with coefficients in F[t] whenever the variable is a unit.

Also, the analogue of Lemma 2.14 for F[t] is proven in an analogous way, using
the well-known version of Euler’s Theorem for polynomial rings over finite fields.

We state it for further reference.

Lemma 3.8. Given xy,...,x, € STHF]\ {0}, there exists a unit u # 1 so that each

of x1, ..., and x, divides u — 1.

At this step of the proof, the analogy between Z and F[t] breaks down and the
proof goes in a different direction.

Write I = {0,1}*. Consider the formula ¢(z,y)
FJuiFu(uy | 1Au # IAu # IATHT [ ugr—1AY+1 | uy— 1A (u— 1) [ u—1A@(, y))
where @g(z,y) is defined as:
/\ r+Qu |y — QM
el

Lemma 3.9. Let x,y € S™'F[t]. Assume that for all i € {o0,1,..., M} we have
ordg, z # 0, ordg, y # 0. If p(x,y) holds in Fs, then y = x°.

Proof. Write

M

M M
e=fle" y=g]]Q" ad u=x]]Q7
i=1 i=1

i=1
where f (and g) is a polynomial relatively prime with each @;, and x € F*. From
ordg,  # 0 and ordg, y # 0 we have
Na+1)=fJ] e+ ] @™
a; >0 ;<0

and

Ny+D)=g][@+]] @™

B:>0 B:<0
Since x 4 1 divides u; — 1, also N(z + 1) divides N(u; — 1) in F[t], hence in

particular, since u; is not 1, we have

deg(N(z + 1)) < deg(N(u1 — 1)).
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On the other hand, since x has non-zero order at infinity, the degree of N(z + 1) is

equal to either

deg(f) + Z %
a; >0
or
Z <_az)7
a; <0
so that we have u
deg(f) + ) los| < 2deg(N(us — 1)) (3.2)
i=1
Analogously, we have
deg(g) + Z 8:] < 2deg(N(uy — 1)) (33)

From Equations (3.2) and (3.3) and because u is not 1 by hypothesis, we have

Z(Zdeg +2Z\o¢z\—|—deg +Z|5z><12deg( (ug — 1))

< 16 deg(N(u; — 1))

hence

2deg(f +2Z!azl + deg(yg +Z!@

i=1

< deg(N(u—1)) — (Z |ai| + Z (a; — 5i)> . (3.4)

On other hand, we have
y— 2 =P (Q H in*Zai _ f2 H Q?%&)
Bi—2a; >0 Bi—2a; <0
where P is a product of powers of the polynomials @);, hence

deg(N(y — 7)) < deg (g H QUm0 _ 42 H Q@?%—Lﬁ)

Bi— 20’1>0 Bi— 20&1 <0

< 2deg(f +22\Oéz|+deg +Z‘ﬂz

=1
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so from the relation (3.4), we get

deg(N(y — 2?)) < deg(N(u — 1)) — (Z || + Z (ov; — 5Z)> ) (3.5)
=1 a; >0;

For the sake of contradiction, assume that y is not equal to z2. Since we assume
that o(z,y) holds, in particular by choosing ; € {0,1} \ {a; — 0;} for each i, we

have

vt [[Qruly—]]QI
Since also

x £ H QY| x* — H QY
by taking the difference, we obtain

v+ [[QIuly -2,
therefore
deg ( r+ HQ% ) < deg(N(y — z?)). (3.6)
We claim that either

deg(N(u—1)) Z|az| < deg( ($+HQ;{U))

or

deg(N (u — 1) Z o] < deg(N(z — [] @7'w))
hence by (3.5), either
deg(N(y — o)) < deg(N(z + [ [ @7'w))

deg(N(y — %)) < deg(N(z - [ [ Q7'w))

which contradicts (3.6).

In order to prove the claim, note that

deg(N(u—1)) < Z 10l
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hence

deg(N(u—1)) - (Z\O@\ + ) (a ¢—5¢)>

i=1 a;>0;

is less than or equal to

im - (ZM:]ai] + > (o —51.)) .

=1 =1 a; >0

On other hand, for some choice of the sign (and from our choice of the ;) we

have that deg(N(z =[] @] ")) is equal to the maximum value between

deg(f)+ Y (ai— (7 +06))

a;>7i+0;

and

Z (7 + 6 — )

a; <v;i+6;
(indeed, only choice of sign may produce cancelation in x+][ Q}*u). Hence it suffices

to show that

Z (Z |ci| + Z —5i)) < Z (v + 0 — ).

o >0; a;<7vi+0;

We have

z|5|—(z|az|+z >)— S (o d—a)

a;>0; a;<vyi+9d;
SZ’@—%\ - Z(Oéi—5i)— Z (Vi +6i — i)
a;>0; a;<v;+90;
= > (Gi—a)— Y (itdi—)
;<0; o; <v;+0;
< Z(5i—04i)— Z(%"’(Si_ai) <0.
a;<9; 0; <05

Write J = {0,1,2}* and consider the following formula v (x,y):

N ¢ (Qz,Q%y) .

oeJ

Proposition 3.10. If ¢(z,y) holds in Fg, then y = x>,
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Proof. This is an immediate consequence of Lemma 3.9, noting that there exists a
choice of § for which we have ordg, @’z # 0 and ordg, Q*°y # 0 for each i (from the
definition of J). O

We can now conclude.

Lemma 3.11. The set
SQ = {(x,9): z,y are in ST'F[t] and y = 2*}

15 existentially definable in the structure Fg.

Proof. We claim that the formula

Sa(z,y): (x=0Ay=0)V \/(z=+Q Ay =Q *) Vi(z,y),

seJ
defines the set SQ. Indeed, if the formula holds, then it is immediate from
Proposition 3.10 that y = 22
Assume (z,y) € SQ. Without loss of generality, we can assume z # 0 and,
v # Q% and v # —Q° for all 6 € J. For each § € J, since |z| # Q~°, we have
Q°|x| — 1 # 0, hence also Q¥|y| + 1 # 0.
From Lemma 3.8, there is a unit u; distinct from 1 such that Q%z + 1 divides
up — 1 and Q¥y £ 1 divides u; — 1. Because u; — 1 is not zero we deduce, from

Lemma 3.8 again, that there is a unit u different from 1 such that (u; —1)'® | u — 1.

In addition, we have /\ Q4+ Qu | Q®°y — Q¥ wu? Thus, the formula ¢ (z,y)

(6,y)eIxI
is satisfied. O]
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