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Abstract

This thesis deals with curves, i.e. smooth projective algebraic varieties of
dimension one, and their fields of moduli. Given a curve X defined over
an algebraically closed field F , we say that a subfield L of F is a field of
definition of X if there exists a curve defined over L which is isomorphic to
X over F . The field of moduli FX of X is the intersection of all fields of
definition of X. Thus, if FX is a field of definition, it is a minimal field with
such property. This motivates the following question.

Question. Given a curve, is its field of moduli a field of definition?

The answer is not always positive for curves of genus g ≥ 2 and it is
strictly related to the structure of the automorphism group of the curve.
The aim of this thesis is to provide new criteria which guarantee that a
curve can be defined over its field of moduli and to give new examples
of non-hyperelliptic curves which do not satisfy such property. The main
results are Theorem 2.10 and Theorem 2.15, which are proved in Chapter 2.
The first one implies definability in terms of a condition on the signature of
a Galois covering X → X/NAut(X)(H), where NAut(X)(H) is the normalizer
of a group H which is “unique up to conjugation” (in particular this holds
if H = NAut(X)(H) is the full automorphism group of X).

Theorem 1. Let X be a smooth projective curve of genus g ≥ 2 defined
over an algebraically closed field F and let L ⊂ F be a subfield such that
F/L is Galois. If H is a subgroup of Aut(X) unique up to conjugation and
πN : X → X/N is an odd signature covering, where N := NAut(X)(H), then
MF/L(X) is a field of definition for X.

The second theorem generalizes results by B. Huggins [32] and A. Konto-
georgis [39].

Theorem 2. Let F be an infinite perfect field of characteristic p 6= 2, X be
a smooth projective algebraic curve of genus g ≥ 2 defined over F and let H
be a subgroup of the automorphism group of X unique up to conjugation such
that the curve X/H has genus zero. If NAut(X)(H)/H is neither trivial nor
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cyclic, then X can be defined over its field of moduli relative to the extension
F/F .

In Chapters 3, 4 and 5 we explore, mainly by means of Theorem 1, the
problem of definability of different classes of curves. In Chapter 3 we show
that non-normal cyclic q-gonal curves and certain normal cyclic q-gonal
curves with cyclic reduced automorphism group can be defined over their
fields of moduli. In Chapter 4 we show that any plane quartic curve can be
defined over its field of moduli if its automorphism group is either trivial
or has order bigger than 4. This allows to give a complete answer to the
problem of definability for the extension C /R. In Chapter 5 we provide a
complete classification of which hyperelliptic curves of genus four and five
can be defined over their field of moduli, according to their automorphism
group. Partial results are also provided in the non-hyperelliptic case.

Finally, in Chapter 6 we construct models over the field of moduli for
certain hyperelliptic curves whose reduced automorphism group is a dihedral
group. These models are given in terms of the dihedral invariants introduced
in [23].
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Resumen

Los objetos de estudio de esta tesis son curvas, es decir variedades alge-
braicas proyectivas suaves de dimensión uno, y sus cuerpos de móduli. Dada
una curva X definida sobre un cuerpo algebraicamente cerrado F , se dice
que un subcuerpo L de F es un cuerpo de definición de X, si existe una
curva definida sobre L que es isomorfa a X sobre F . El cuerpo de móduli
FX de X es la intersección de todos los cuerpos de definición de X. Luego,
si FX es un cuerpo de definición de X, éste es el cuerpo más pequeño que
verifica tal propiedad. Lo anterior motiva la siguiente pregunta.

Pregunta. Dada una curva, ¿es su cuerpo de móduli un cuerpo de definición?

La respuesta no siempre es positiva para curvas de género g ≥ 2 y está
estrictamente relacionada con la estructura del grupo de automorfismos
de la curva. El objetivo de esta tesis es proporcionar nuevos criterios
para garantizar que una curva se defina sobre su cuerpo de moduli y dar
nuevos ejemplos de curvas no-hipereĺıpticas que no cumplen dicha propiedad.
Los resultados principales son el Teorema 2.10 y el Teorema 2.15, que son
probados en el Caṕıtulo 2. El primer teorema implica la definibilidad en
términos de una condición sobre la signatura de un cubrimiento de Ga-
lois X → X/NAut(X)(H), donde NAut(X)(H) es el normalizador de un
grupo H que es “único bajo conjugación” (en particular, esto se cumple
si H = NAut(X)(H) es el grupo de automorfismos total de X).

Teorema 1. Sea X una curva proyectiva suave de género g ≥ 2 definida
sobre un cuerpo algebraicamente cerrado F y sea L ⊂ F un subcuerpo tal que
F/L es de Galois. Si H es un subgrupo de Aut(X) único bajo conjugación
y πN : X → X/N es un cubrimiento de signatura impar, donde N :=
NAut(X)(H), entonces MF/L(X) es un cuerpo de definición para X.

El segundo teorema generaliza resultados de B. Huggins [32] y A. Konto-
georgis [39].

Teorema 2. Sea F un cuerpo perfecto infinito de caracteŕıstica p 6= 2 y
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sea F una clausura algebraica de F . Sea X una curva de género g ≥ 2
definida sobre F y sea H un subgrupo del grupo de automorfismos Aut(X)
de X único bajo conjugación tal que la curva X/H tiene género cero. Si
NAut(X)(H)/H no es ni trivial ni ćıclico, entonces X se puede definir sobre

su cuerpo de móduli relativo a la extensión F/F .

En los Caṕıtulos 3, 4 y 5 se explora, por medio del Teorema 1, el pro-
blema de la definibilidad para distintas clases de curvas. En el Caṕıtulo
3 mostramos que las curvas q-gonales ćıclicas no normales y ciertas curvas
q-gonales ćıclicas normales con grupo reducido ćıclico se pueden definir so-
bre sus cuerpos de móduli. En el Caṕıtulo 4 mostramos que una cuártica
plana se puede definir sobre su cuerpo de móduli si su grupo de auto-
morfismos es trivial o tiene orden mayor que 4. Esto permite dar una
respuesta completa al problema de la definibilidad para la extensión C /R.
En el Caṕıtulo 5 proporcionamos una clasificación completa de cuales cur-
vas hipereĺıpticas de género cuatro y cinco se pueden definir sobre su cuerpo
de móduli, de acuerdo con su grupo de automorfismos. También damos
resultados parciales en el caso no-hipereĺıptico.

Finalmente, en el Caṕıtulo 6, se construyen modelos sobre el cuerpo de
móduli para ciertas curvas hipereĺıpticas cuyo grupo de automorfismos re-
ducido es un grupo diedral. Estos modelos están dados en términos de los
invariantes diedrales introducidos en [23].
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thank Dr. Vı́ctor González, Dra. Milagros Izquierdo, Dra. Anita Rojas and
Dr. Andrea L. Tironi for agreeing to be part of the jury, reading this work
and for contributing, with comments and suggestions, to the improvement
of this thesis.

Finally, I would like to thank my friends Maŕıa Elisa Valdés and Mariela
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Introduction

The objects of study in this thesis are curves, i.e. smooth projective algebraic
varieties of dimension one, and their fields of moduli. Given a curve X
defined over an algebraically closed field F , we say that a subfield L of F
is a field of definition of X if there exists a curve defined over L which is
isomorphic to X over F . The field of moduli FX of X is the intersection
of all fields of definition of X. Thus, if FX is a field of definition, it is a
minimal field with such property. This motivates the following question.

Question. Given a curve, is its field of moduli a field of definition?

Another common definition of field of moduli is the one relative to a given
field extension L/K (in this case the field of moduli is denoted byML/K(X)).
This notion is related to the previous one, as explained in Section 1.2, and
the analogous of the above question can be asked in this context.

The notion of field of moduli was first introduced by T. Matsusaka [45]
and has been later developed in [54] and [37] in the area of polarized abelian
varieties and curves. It is well know that curves of genus 0 or 1 are definable
over their fields of moduli, but this is not always true for curves of higher
genus. The first examples of hyperelliptic curves which are not definable over
their field of moduli have been given by C. J. Earle [17] and O. Shimura [55].

A fundamental result in this area is a theorem by A. Weil [57] which
provides a criterion for a variety to be defined over a field in terms of a
certain cocycle condition. Such condition allows to prove easily that a curve
with trivial automorphism group is definable over its field of moduli and
shows that the problem of definability is strictly related to the structure of
the automorphism group of the variety. As a consequence of Weil’s theorem,
P. Dèbes and M. Emsalem [16] proved that, given a curve X of genus g ≥ 2
with field of moduli K, the quotient curve X/Aut(X) is definable over K.
Moreover, X is definable over K if a certain model of X/Aut(X) over K
contains a K-rational point. Recently B. Huggins [32] renewed the interest
in this problem proving that a hyperelliptic curve defined over a algebraic
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closure F of a perfect field F of characteristic different to 2 with hyperelliptic
involution ι, can be defined over its field of moduli if either its reduced
automorphism group Aut(X)/〈ι〉 is not cyclic or is cyclic of order divisible by
the characteristic of F . This result has been generalized by A. Kontogeorgis
[39] to the case of normal cyclic q-gonal curves, where q ≥ 2 is a prime.

The aim of this thesis is provide new criteria of definability and to apply
them to discuss definability of different classes of non-hyperelliptic curves.
The main results are two theorems which give a positive answer to the
above question assuming certain properties of Galois coverings defined on
the curve. The first theorem is the following (see [3, Theorem 0.1]).

Theorem 1. Let X be a smooth projective curve of genus g ≥ 2 defined
over an algebraically closed field F and let L ⊂ F be a subfield such that
F/L is Galois. If H is a subgroup of Aut(X) unique up to conjugation and
πN : X → X/N is an odd signature covering, where N := NAut(X)(H), then
MF/L(X) is a field of definition for X .

We recall that the signature of a Galois covering X → X/N with branch
points q1, . . . , qr is the vector (g0; c1, . . . , cr), where g0 is the genus of X/N
and ci is the ramification index of a point in the fiber over qi. We say that
the cover has odd signature if g0 = 0 and some ci appears exactly and odd
number of times. In the statement we assume that the group H is unique
up to conjugation, i.e. that any other subgroup of Aut(X) isomorphic to H
and with the same signature is conjugated to H. This condition on H also
appears in our second main theorem (see [29, Theorem 1.2]).

Theorem 2. Let F be an infinite perfect field of characteristic p 6= 2 and let
F be an algebraic closure of F . Let X be a smooth projective algebraic curve
of genus g ≥ 2 defined over F and let H be a subgroup of the automorphism
group of X unique up to conjugation such that the curve X/H has genus
zero. If NAut(X)(H)/H is neither trivial nor cyclic, then X can be defined

over its field of moduli relative to the extension F/F .

Theorem 2 generalizes the results by B. Huggins and A. Kontogeorgis men-
tioned above. In fact, these can be obtained taking H to be generated by
either the hyperelliptic involution or by a cyclic automorphism of prime
order.

The previous results allow to prove definability of q-gonal curves, plane
quartics and curves of genus four and five. In case the theorems can not be
applied, we provide several new examples of curves which are not definable
over their field of moduli. More precisely, this is the content of this work.
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In the first Chapter we define the notions of field of definition and of field
of moduli for a projective algebraic variety and we explain how these two
concepts are related. In particular we recall the theorems by A. Weil, and
P. Dèbes and M. Emsalem cited above. We also recall the classification of
finite subgroups of PGL2(F ), since this will be an important point in the
proof of Theorem 2.

In Chapter 2 we give the proof of Theorem 1 and Theorem 2.

In Chapter 3 we study cyclic q-gonal curves. As a consequence of Theorem
1, we show that non-normal cyclic q-gonal curves and certain families of
normal cyclic q-gonal curves with cyclic reduced automorphism group can
be defined over their field of moduli. Moreover, we provide new examples of
normal cyclic q-gonal curves not definable over their fields of moduli.

Chapter 4 deals with plane quartics. Theorem 1 implies the following
result (see [3, Corollary 4.1]).

Corollary 1. Let F be an algebraically closed field of characteristic zero.
A plane quartic defined over F can be defined over its field of moduli FX if
its automorphism group is either trivial or of order bigger than four.

In the case of plane quartics with automorphism group isomorphic to Z2
2

we prove that, if the field of moduli is contained in R, then R is a field of
definition. Finally, we give examples of plane quartics with automorphism
group of order two which can not be defined over their field of moduli. This
gives a complete answer to the problem of definability for the extension
C /R.

In Chapter 5 we study curves of genus four and five. In the hyperelliptic
case we provide a complete classification of the ones which can be defined
over their field of moduli, according to their automorphism group.

Corollary 2. A hyperelliptic curve of genus four can be defined over its
field of moduli unless its automorphism group is cyclic of order two or four.
A hyperelliptic curve of genus five can be defined over its field of moduli
unless its automorphism group is cyclic of order six or isomorphic to Z2

2.

Moreover, we prove that a non-hyperelliptic curve X of genus four defined
over C such that the quotient curve X/Aut(X) has genus zero can be defined
over its field of moduli unless Aut(X) is isomorphic to the dihedral group
D3. A similar result is proved for non-hyperelliptic curves of genus five such
that X/Aut(X) has genus zero: we prove that they are definable unless
Aut(X) is isomorphic to either Z4 or Z3

2. Finally, we give an example of a
non-hyperelliptic curve of genus five with automorphism group isomorphic
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to Z3
2 which can not be defined over its field of moduli.

In Chapter 6 we find rational models over the field of moduli for some
hyperelliptic curves whose reduced automorphism group Aut(X)/〈i〉, where
i is the hyperelliptic involution, is a dihedral group. To this aim, we will use
the dihedral invariants introduced in [23].
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Introducción

Los objetos de estudio de esta tesis son curvas, es decir variedades alge-
braicas proyectivas suaves de dimensión uno y sus cuerpos de móduli. Dada
una curva X definida sobre un cuerpo algebraicamente cerrado F , se dice
que un subcuerpo L de F es un cuerpo de definición de X si existe una curva
definida sobre L que es isomorfa a X sobre F . El cuerpo de móduli FX de
X es la intersección de todos los cuerpos de definición de X. Luego, si FX
es un cuerpo de definición de X, éste es el cuerpo mas pequeño que verifica
tal propiedad. Lo anterior motiva la siguiente pregunta.

Pregunta. Dada una curva, ¿es su cuerpo de móduli un cuerpo de definición?

Otra definición común de cuerpo de móduli es la relativa a una extensión de
cuerpos L/K (en este caso el cuerpo de móduli es denotado por ML/K(X)).
Esta noción está relacionada con la anterior, como se explica en la Sección
1.2, y el análogo de la pregunta anterior se puede formular en este contexto.

La noción de cuerpo de móduli fue introducida por primera vez por T.
Matsusaka [45] y más tarde fue desarrollada en [54] y en [37] en el área de
variedades abelianas polarizadas y curvas. Es bien conocido que, las curvas
de género 0 ó 1 son definibles sobre sus cuerpos de móduli, pero esto no
siempre es cierto para curvas de género más alto. Los primeros ejemplos
de curvas hipereĺıpticas que no se pueden definir sobre su cuerpo de móduli
fueron dadas por C. J. Earle [17] y O. Shimura [55].

Un resultado fundamental en esta área es un teorema de A. Weil [57] que
proporciona un criterio para que una variedad algebraica se defina sobre
un cuerpo en términos de una condición de cociclo. Esta condición permite
probar fácilmente que una curva con grupo de automorfismos trivial se define
sobre su cuerpo de móduli, y muestra que el problema de la definibilidad
está estrictamente relacionado con la estructura del grupo de automorfismos
de la variedad. Como consecuencia del teorema de A. Weil, P. Dèbes y M.
Emsalem [16] probaron que, dada una curvaX de género g ≥ 2 con cuerpo de
móduli K, la curva cociente X/Aut(X) se puede definir sobre K. Además,
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X se puede definir sobre K si un cierto modelo de X/Aut(X) sobre K
contiene un punto K-racional. Recientemente, B. Huggins [32] ha renovado
el interés en este problema demostrando que una curva hipereĺıptica definida
sobre una clausura algebraica F de un cuerpo perfecto F de caracteŕıstica
distinta de 2 con involución hipereĺıptica ι, se puede definir sobre su cuerpo
de móduli si su grupo de automorfismos reducido Aut(X)/〈ι〉 no es ćıclico o
bien si es ćıclico de orden divisible por la caracteŕıstica de F . Este resultado
ha sido generalizado por A. Kontogeorgis en [39] para el caso de curvas
q-gonales ćıclicas normales, donde q ≥ 2 es un número primo.

El objetivo de esta tesis es proporcionar nuevos criterios de definibilidad
y aplicarlos para decidir la definibilidad de distintas clases de curvas no-
hipereĺıpticas. Los resultados principales son dos teoremas que dan una
respuesta positiva a la pregunta anterior asumiendo ciertas propiedades para
los cubrimientos de Galois definidos en la curva. El primer teorema es el
siguiente [3, Theorem 0.1].

Teorema 1. Sea X una curva proyectiva suave de género g ≥ 2 definida
sobre un cuerpo algebraicamente cerrado F y sea L ⊂ F un subcuerpo tal
que F/L es de Galois. Si H es un subgrupo de Aut(X) único bajo con-
jugación y πN : X → X/N es un cubrimiento de signatura impar, donde
N = NAut(X)(H), entonces MF/L(X) es un cuerpo de definición para X.

Recordamos que la signatura de un cubrimiento de Galois, X → X/N , con
puntos branch q1, · · · , qr es el vector (g0; c1, · · · , cr), donde g0 es el género
de X/N y ci es el ı́ndice de ramificación de un punto en la fibra sobre qi. Se
dice que un cubrimiento tiene signatura impar si g0 = 0 y si algún ci aparece
exactamente un número impar de veces en la signatura. En el teorema se
asume que el grupo H es único bajo conjugación, esto es que si tomamos
cualquier otro subgrupo de Aut(X) isomorfo a H con la misma signatura
éste es conjugado a H. Esta condición en H también aparece en nuestro
segundo teorema principal [29, Theorem 1.2].

Teorema 2. Sea F un cuerpo perfecto infinito de caracteŕıstica p 6= 2 y sea
F una clausura algebraica de F . Sea X una curva de género g ≥ 2 definida
sobre F y sea H un subgrupo del grupo de automorfismos Aut(X) de X único
bajo conjugación tal que la curva X/H tiene género cero. Si NAut(X)(H)/H
no es ni trivial ni ćıclico, entonces X se pueden definir sobre su cuerpo de
móduli relativo a la extensión F/F .

El Teorema 2 generaliza los resultados de B. Huggins y A. Kontogeorgis
mencionados anteriormente. De hecho, estos se obtienen cuando H es el
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grupo generado por la involución hipereĺıptica o por un automorfismo ćıclico
de orden primo.

Los resultados anteriores permiten probar la definibilidad de curvas q-
gonales ćıclicas, cuárticas planas y curvas de género cuatro y cinco. Por
otro lado, cuando los teoremas no se aplican, proporcionamos varios nuevos
ejemplos de curvas que no se pueden definir sobre su cuerpo de móduli. A
continuación, los contenidos de este trabajo.

En el primer Caṕıtulo definimos la noción de cuerpo de definición y de
cuerpo de móduli para una variedad algebraica proyectiva, y explicamos
como estos dos conceptos están relacionados. En particular, recordamos los
teoremas de A. Weil, y de P. Dèbes y M. Emsalem citados anteriormente.
Además, recordamos la clasificación de los subgrupos finitos de PGL2(F ), ya
que estos serán un ingrediente importante en la demostración del Teorema
2.

En el Caṕıtulo 2 damos la demostración del Teorema 1 y del Teorema 2.

En el Caṕıtulo 3 estudiamos curvas q-gonales ćıclicas. Como consecuencia
del Teorema 1, mostramos que las curvas q-gonales ćıclicas no-normales y
ciertas familias de curvas q-gonales ćıclicas normales cuyo grupo de auto-
morfismos reducido es ćıclico, se pueden definir sobre su cuerpo de móduli.
Por otra parte, damos nuevos ejemplos de curvas q-gonales ćıclicas normales
no definibles sobre sus cuerpos de móduli.

En el Caṕıtulo 4 tratamos cuárticas planas. El Teorema 1 implica el
siguiente resultado [3, Corollary 4.1].

Corolario 1. Sea F un cuerpo algebraicamente cerrado de caracteŕıstica
cero. Una cuártica plana definida sobre F puede definirse sobre su cuerpo
de móduli FX si su grupo de automorfismos es trivial ó de orden mayor que
cuatro.

En el caso de cuárticas planas con grupo de automorfismo isomorfo a Z2
2

probamos que, si el cuerpo de móduli es contenido en el cuerpo de números
reales R, entonces R es un cuerpo de definición. Finalmente, damos ejemplos
de cuárticas planas con grupo de automorfismos de orden dos que no se
puede definir sobre su cuerpo de móduli. Esto da una respuesta completa
al problema de la definibilidad para la extensión C /R.

En el Caṕıtulo 5 estudiamos curvas de género cuatro y cinco. En el caso
de curvas hipereĺıpticas damos una clasificación completa de cuales curvas
se pueden definir sobre su cuerpo de móduli, de acuerdo a su grupo de
automorfismos.

Corolario 2. Una curva hipereĺıptica de género cuatro se puede definir
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sobre su cuerpo de móduli a menos que su grupo de automorfismos sea ćıclico
de orden dos ó cuatro. Una curva hipereĺıptica de género cinco se puede
definir sobre su cuerpo de móduli a menos que su grupo de automorfismos
sea ćıclico de orden seis ó isomorfo a Z2

2.

Por otra parte, en el mismo Caṕıtulo, probamos que una curva no-hipereĺıpti-
ca X de género cuatro definida sobre C tal que la curva cociente X/Aut(X)
tiene género cero, se puede definir sobre sus cuerpos de móduli a menos
que Aut(X) sea isomorfo al grupo diedral D3. Un resultado similar es
probado para curvas no-hipereĺıpticas tal que la curva cociente X/Aut(X)
tiene género cero. Probamos que ellas son definibles sobre sus cuerpos de
móduli al menos que Aut(X) sea isomorfo a Z4 ó Z2

2. Por último, cons-
truimos un ejemplo de una curva no-hipereĺıptica de género cinco con grupo
de automorfismos isomorfo a Z3

2 que no se puede definir sobre su cuerpo de
móduli.

Finalmente, en el Capitulo 6 se encuentra un modelo racional sobre el
cuerpo de móduli para ciertas curvas hipereĺıpticas cuyo grupo de automor-
fismos reducido es un grupo diedral. Estos modelos están dados en términos
de los invariantes diedrales introducidos en [23].
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Chapter 1

Background

This chapter is devoted to summarize the material that constitutes the back-
ground for the rest of the thesis. The contents of Sections 1.1 and 1.2 are
well-known facts about fields of definition and fields of moduli of projective
algebraic varieties. In Section 1.3 we introduce the main theme we study in
this thesis: the relation between the field of moduli and the field of definition
of a projective algebraic variety. In this direction we state two theorems by
A. Weil and by P. Dèbes and Emsalem respectively, which give conditions
such that a projective algebraic variety can be defined over its field of mod-
uli. Finally, in Section 1.4 we recall the classification of finite subgroups of
the 2-dimensional projective general linear groups.

1.1 Fields of definition

Let F be a field, F be an algebraic closure of F , and let PnF be the projective
n-space over F . The following definitions are well known, for further details
see [25].

If T is any set of homogeneous elements of the polynomial ring F [x0, · · · , xn],
we define the zero set of T to be

Z(T ) = {x ∈ PnF : P (x) = 0 for all P ∈ T}.

Since F [x0, · · · , xn] is a noetherian ring, any set of homogeneous elements
T has a finite subset P1, · · · , Pr such that Z(T ) = Z(P1, · · · , Pr).

Definition 1.1. A subset X of PnF is an algebraic set if there exists a set T
of homogeneous elements of F [x0, · · · , xn] such that X = Z(T ). The Zariski
topology on PnF is the topology whose open sets are the complements of the
algebraic sets.
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Definition 1.2. A projective algebraic variety (or simply projective variety)
over F is an algebraic set X in PnF which is irreducible, i.e. it cannot be
expressed as the union X = X1 ∪ X2 of two proper subsets, each one of
which is Zariski-closed in X.

The dimension of X is the length of a maximal chain of proper distinct
irreducible closed subsets of X.

A point x ∈ X is smooth if, given a set f1, · · · , fr of polynomials defining
X in an affine chart containing x, the Jacobian matrix (∂fi/∂xj(x))ij has
maximal rank. A projective variety is smooth or non-singular if all its points
are smooth.

Definition 1.3. Let X ⊂ PnF a be projective algebraic varieties defined
over F . A function f : X → F is regular at a point x ∈ X if there is
an open neighborhood U with x ∈ U ⊆ X, and homogeneous polynomials
g, h ∈ F [x0, · · · , xn], of the same degree, such that h is nowhere zero on U ,
and f = g/h on U . We say that f is regular on X if it is regular at every
point.

Definition 1.4. Let X ⊂ PnF and Y ⊂ PmF be projective algebraic varieties
defined over F .

• A morphism f : X → Y is a continuous map such that for every open
set V ⊆ Y and for every regular function g : V → F , the function
g ◦ f : f−1(V ) → F is regular. An isomorphism is a morphism which
admits an inverse morphism.

• A rational map f : X → Y is an equivalence class of pairs 〈U,ϕU 〉
where U is a nonempty open subset of X, ϕU is a morphism of U to
Y , and where 〈U,ϕU 〉 and 〈V, ϕV 〉 are equivalent if ϕU and ϕV agree
on U ∩ V .

• A birational map f : X → Y is a rational map which admits an inverse,
namely a rational map g : Y → X such that gf = idX and fg = idY
as rational maps. If there is a birational map from X to Y , we say
that X and Y are birationally equivalent, or simply birational. This is
denoted by X 'F Y .

The automorphism group of a projective variety X is the set of birational
maps from X to X and is denoted by Aut(X).

We now introduce one of the important definitions for our work, the field
of definition of a projective algebraic variety.
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Definition 1.5. Let X be a projective algebraic variety defined over F .
A subfield L of F is a field of definition of X if there exists a projective
algebraic variety X ′ defined over L such that X ′ is birationally equivalent
to X over F . Moreover, we say that X is definable over L if there exists a
projective algebraic variety X ′ defined over L such that X ′ is birationally
equivalent to X over F .

It is clear that if L is a field of definition of X, then any extension of L
is also a field of definition of X. Of course the interesting question is the
converse, i.e. given a subfield of L is it true that X can be defined over such
field?

1.2 Fields of moduli

We now introduce the other object of study in our thesis, the field of mod-
uli of a projective algebraic variety. The following definition is given by
S. Koizumi in [37].

Definition 1.6. Let F be an algebraic closure of the field F and X be a
projective algebraic variety defined over F . The field of moduli FX of X is
the intersection of all fields of definition of X, seen as a projective algebraic
variety defined over F .

Definition 1.7. Let L be a subfield of a field F . The group Aut(F/L) is
defined as

Aut(F/L) := {σ ∈ Aut(F ) : σ|L = idL}.

The group Aut(F/L) will be denoted by Gal(F/L) if the extension F/L is
a Galois extension.

We can define an action of the group Aut(F/L) over the ring F [x0, · · · , xn]
as:

Aut(F/L)× F [x0, · · · , xn]→ F [x0, · · · , xn]

(σ, P =
∑

ai0,··· ,inx
i0
0 · · ·x

in
n ) 7→

∑
σ(ai0,··· ,in)xi00 · · ·x

in
n =: P σ.

If X is a projective algebraic variety defined over F , i.e.,

X = {x ∈ PnF : P1(x) = · · · = Ps(x) = 0} ⊂ PnF ,

then by the action above we can define a new projective algebraic variety
Xσ defined over F as:

Xσ := {x ∈ PnF : P σ1 (x) = · · · = P σs (x) = 0} = {σ(x) : x ∈ X} ⊂ PnF .
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If f : X → Y is a morphism of projective varieties, then by the action
above we can define a new morphism of projective varieties fσ : Xσ → Y σ

defined by fσ(σ(x)) = σ(f(x)), for all x ∈ X. Observe that if f is birational,
then fσ is birational.

If C is the set of birational equivalence classes of projective algebraic vari-
eties defined over F , then the group Aut(F/L) acts over the set C as:

Aut(F/L)× C → C, (σ, [X])→ [Xσ].

If [X] ∈ C then the stabilizer of [X] is given by

UF/L(X) = {σ ∈ Aut(F/L) : [Xσ] = [X]} = {σ ∈ Aut(F/L) : Xσ 'F X}.

Another definition for the field of moduli relative to a given field extension
F/L is given as follows.

Definition 1.8. Let X be a projective algebraic variety defined over F . The
field of moduli of X relative to the extension F/L, denoted by MF/L(X), is
the fixed field of the group UF/L(X).

Remark 1.9. Let X be a projective algebraic variety defined over F . Then
by the above definition

L ⊂MF/L(X) ⊂ F.

In what follows a curve defined over F will be a smooth projective algebraic
variety defined over F of dimension 1. It is well know that the automorphism
group of a curve of genus g ≥ 2 is finite.

The following theorem by S. Koizumi [37, Theorem 2.2] shows a relation
between the fields of moduli FX and MF/F (X) for a curve X defined over
F . In particular, it implies that these two fields coincide if F is a perfect
field.

Theorem 1.10 (S. Koizumi [37]). Let X be a curve defined over a field F
and F be an algebraic closure of F . Then MF/F (X) is a purely inseparable
extension of FX .

The next result of P. Dèbes and M. Emsalem [16, Proposition 2.1] is very
important for our work when the extension of fields F/L is a Galois exten-
sion. This result establishes that if the field of moduli is a field of definition,
then it is the smallest field of definition between F and L.

Proposition 1.11 (P. Dèbes and M. Emsalem [16]). Let X be a curve
defined over a field F and L be a subfield of F such that F/L is Galois.
Then
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i) the subgroup UF/L(X) is a closed subgroup of Gal(F/L) for the Krull
topology, that is:

UF/L(X) = Gal(F/MF/L(X));

ii) the field MF/L(X) is contained in each field of definition between L
and F (in particular, MF/L(X) is a finite extension of L);

iii) the field of moduli of X relative to the extension F/MF/L(X) is MF/L(X).

The relationship between the field FX and the fields of moduli of X relative
to Galois extensions is given by the following theorem of B. Huggins [32,
Theorem 1.6.9].

Theorem 1.12 (B. Huggins [32]). Let X be a curve defined over a field F
and FX be the field of moduli of X. Then X is definable over FX if and
only if given any algebraically closed field K ⊇ F , and any subfield L ⊆ K
with K/L Galois, X (seen as a curve defined over K) can be defined over
the field MK/L(X).

We say that the extension F/L is a general Galois extension if for each field
K such that L ⊂ K ⊂ F , the fieldK is the fixed field of the group Aut(F/K).
For example, every Galois extension is a general Galois extension. The
extension C /Q is a general Galois extension but not a Galois extension.

Theorem 1.13. Let L be a subfield of F such that F/L is a general Galois
extension and X ⊂ PnF be a projective algebraic variety defined over F . Then
the field MF/L(X) is contained is each field of definition of X between L and
F .

Proof. Let L ⊂ K ⊂ F be an extension of fields. Suppose that K is a
field of definition of X. Let σ ∈ Aut(F/K) < Aut(F/L). Then we have
Xσ = X, i.e. σ ∈ UF/L(X) which implies Aut(F/K) < UF/L(X). Therefore,

MF/L(X) = FUF/L(X) ⊂ FAut(F/K) = K.

The following Theorem of H. Hammer and F. Herrlich [24, Theorem 5]
guarantees that a curve can be always defined over a finite extension of its
fields of moduli.

Theorem 1.14 (H. Hammer and F. Herrlich [24]). Let L be the prime field
of an algebraically closed field F and let X be a curve defined over F . Then
the curve X is defined over a finite extension of the field MF/L(X).
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We now introduce the definition of field of moduli of a morphism of curves
relative to an extension F/L.

Let Y be a projective algebraic variety defined over L and let φ : X → Y
be a nonconstant morphism defined over F or equivalent a branch covering
defined over F . For each σ ∈ Aut(F/L) we may consider the morphism
φσ : Xσ → Y σ = Y . We say that φ and φσ are equivalent over F if there is
an isomorphism fσ : X → Xσ defined over F so that φσ ◦ fσ = φ.

Definition 1.15. The field of moduli of the covering φ : X → Y relative to
the extension F/L, denoted by MF/L(φ), is the fixed field of the group

UF/L(φ) := {σ ∈ Aut(F/L) : φσ is equivalent to φ over F}.

It is clear from the definition above that MF/L(X) ⊂MF/L(φ).

Remark 1.16. Let X be a curve of genus g ≥ 2 defined over F and FX
be its field of moduli. Let Mg be the coarse moduli space of curves of
genus g viewed as a scheme over the prime field of F . The curve X gives
a morphism SpecF → Mg whose image [X] is a closed point of Mg. Let
F ([X]) be the residue field at [X]. If the characteristic of F is zero then we
have the equality FX = F ([X]), see [4, Theorem 2]. Otherwise the field FX
is a purely inseparable extension of F ([X]), see [50, Proposition 1.7].

1.3 Techniques

Let L be a subfield of a field F and let X be a projective algebraic variety
defined over F . If the extension F/L is a Galois extension, the following
result of A. Weil [57, Theorem 1] gives necessary and sufficient conditions
for L to be a field of definition for X.

Theorem 1.17 (A. Weil [57]). Let X be a projective algebraic variety defined
over a field F and let F/L be a Galois extension. If for every σ ∈ Gal(F/L)
there is a birational map fσ : X → Xσ defined over F such that the com-
patibility condition

fστ = fστ ◦ fσ holds for all σ, τ ∈ Gal(F/L), (1.1)

then there exist a projective algebraic variety Y defined over L and a bira-
tional map g : X → Y defined over F such that gσ ◦ fσ = g.

The reciprocal of Weil’s Theorem is always true. In fact, assume now that
L is a field of definition of a projective algebraic variety X defined over F ,
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i.e. there exists a birational map g : X → Y , where Y is defined over L. If
σ ∈ Gal(F/L), then fσ := (gσ)−1 ◦ g : X → Xσ is a birational map (observe
that Y = Y σ) and fστ = fστ ◦ fσ holds for all σ, τ ∈ Aut(F/L).

The following corollary is an immediate consequence of Theorem 1.17.

Corollary 1.18. Let X be a projective algebraic variety with no nontrivial
automorphisms defined over F and let F/L be a Galois extension. Then X
can be defined over its field of moduli relative to the extension F/L.

Remark 1.19. Let X, Y be projective algebraic varieties and fσ : X → Xσ,
g : X → Y be birational maps as in Theorem 1.17. Then

• if fσ : X → Xσ is an isomorphism for all σ ∈ Gal(F/L), then g : X →
Y can be chosen to be an isomorphism ([27, Chapter 3]);

• if X is a (smooth) curve, then all birational maps fσ : X → Xσ are
isomorphisms.

Definition 1.20. Let X ⊂ PnF be a projective algebraic variety defined over
F . A point [x0 : · · · : xn] ∈ X is L-rational if for every σ ∈ Aut(F/L) it
holds that

σ([x0 : · · · : xn]) = [σ(x0) : · · · : σ(xn)] = [x0 : · · · : xn].

The following result by P. Dèbes and M. Emsalem [16, Theorem 3.1] is a
consequence of Weil’s Theorem and provides a sufficient condition for the
curve X to be defined over the field MF/L(X). We will give the proof of the
theorem since this will inspire the results in Chapter 2.

Theorem 1.21 (P. Dèbes and M. Emsalem [16]). Let F/L be a Galois ex-
tension and X be a curve defined over F with L := MF/L(X). Then there
exist a curve B isomorphic to X/Aut(X) defined over L and an isomor-
phism R : X/Aut(X) → B defined over F , so that MF/L(φ) = L, where
φ := R ◦ π. Moreover, if B contains at least one L-rational point outside of
the branch locus of φ, then L is also a field of definition of X.

Proof. (1) Let σ ∈ Gal(F/L). Then

1. Aut(X)σ = {hσ : h ∈ Aut(X)} = Aut(Xσ).

2. Xσ/Aut(Xσ) is canonically isomorphic to (X/Aut(X))σ.
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Since L is the field of moduli of X, there exists an isomorphism fσ : X →
Xσ defined over F . This isomorphism induces an isomorphism (uniquely
determined by σ) gσ : X/Aut(X)→ (X/Aut(X))σ that makes the following
diagram commute:

X

π

��

fσ //Xσ

πσ

��
X/Aut(X)

gσ //(X/Aut(X))σ

Note that, for all σ, τ ∈ Gal(F/L), we have fστ ◦ fσ ◦ f−1
στ ∈ Aut(Xστ ). In

particular,
πστ = πστ ◦ fστ ◦ fσ ◦ f−1

στ .

Since
πστ ◦ fστ = (πτ ◦ fτ )σ = (gτ ◦ π)σ = gστ ◦ πσ,

this is equivalent to the equality

gστ ◦ π = πστ ◦ fστ = gστ ◦ πσ ◦ fσ = gστ ◦ gσ ◦ π.

Since that the maps gη are uniquely determine, this last equality is equiv-
alent to having

gστ = gστ ◦ gσ,

i.e., the family {gη}η∈Gal(F/L) satisfies the Weil’s co-cycle conditions.
From Weil’s Theorem we conclude that there exists a modelB ofX/Aut(X)

defined over L and an isomorphism R : X/Aut(X)→ B defined over F such
that R = Rσ ◦ gσ for each σ ∈ Gal(F/L).

We now consider φ = R ◦ P : X → B. For each σ ∈ Gal(F/L), we have
that

φσ ◦ fσ = Rσ ◦ πσ ◦ fσ = Rσ ◦ gσ ◦ π = R ◦ π = φ.

Then
MF/L(φ) = L.

(2) Suppose that there is a point r ∈ B −Bφ that is L-rational, where Bφ
is the locus branch of φ. Let p ∈ X such that φ(p) = r.

If σ ∈ Gal(F/L), then the point σ(p) ∈ Xσ and

φσ(σ(p)) = σ(φ(p)) = σ(r) = r.

Then there exists hσ ∈ Aut(X) such that

(fσ ◦ hσ)(p) = σ(p).
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Let tσ = fσ ◦ hσ. We have that tσ : X → Xσ is an isomorphism such that

tσ(p) = σ(p).

Note that tσ is uniquely determined by σ. In fact, if we have another
isomorphism t : X → Xσ such that t(p) = σ(p), then h = t−1 ◦ tσ ∈ Aut(X)
and h(p) = p.

Since r ∈ B −Bφ, we should have that h = id, i.e., t = tσ as desired.
The uniqueness of the isomorphisms tσ, σ ∈ Gal(F/L), ensures that the

family {tσ}σ∈Gal(F/L) satisfies Weil’s co-cycle conditions in Theorem 1.17,
thus the curve X can be defined over L.

The following result of B. Huggins [32, Corollay 1.6.6] deals with the case
of finite fields.

Corollary 1.22. Let F/L be a field extension, where L is a finite field, F
be an algebraically closed field and let X be a curve defined over F . Then
X can be defined over L.

1.4 Finite subgroups of PGL2(F )

We denote by Zn the cyclic group of order n, by Dn the dihedral group of
order 2n, by A4 and A5 the alternating groups of order 12 and 60 respec-
tively, and by S4 the symmetric group of order 24. In the next result of
C. R. Valentini and L. M. Madan [56, Theorem 1] all possible finite sub-
groups G of PGL2(F ) = Aut(P1

F ) are described.

Theorem 1.23 (C. R. Valentini and L. M. Madan, [56]). Let F be an
algebraically closed field of characteristic p, and G be a finite subgroup of
PGL2(F ). Then, G is isomorphic to one of the following groups

Zn, Dn, A4, S4, A5 (if p = 0 or if |G| is prime to p),

Ztp, ZtpoZm, PGL2(Fpr), PSL2(Fpr) (if |G| is divisible by p),

where (n, p) = 1, r > 0, t ≤ r, and m is a divisor of pt − 1. Moreover,
the signature of the quotient orbifold P1

F /G is given in Table 1.1, where

α = pr(pr−1)
2 , β = pr+1

2 .
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Case G signature of P1
F /G

1 Zn (n, n)
2 Dn (2, 2, n)
3 A4, p 6= 2, 3 (2, 3, 3)
4 S4, p 6= 2, 3 (2, 3, 4)
5 A5, p 6= 2, 3, 5 (2, 3, 5)

A5, p = 3 (6, 5)
6 Ztp (pt)

7 ZtpoZm (mpt,m)

8 PSL2(Fpr), p 6= 2 (α, β)
9 PGL2(Fpr) (2α, 2β)

Table 1.1: Finite subgroups of PGL2(F )

The following result is proved in [33, Lemma 3.3].

Lemma 1.24. Let NPGL2(F )(G) be the normalizer of G in PGL2(F ). Then

• NPGL2(F )(Zn) =

{(
a 0
0 1

)
,

(
0 a
1 0

)
: a ∈ F×

}
if n > 1,

• NPGL2(F )(D4) = S4,

• NPGL2(F )(D2n) = D4n if n > 2,

• NPGL2(F )(A4) = S4,

• NPGL2(F )(S4) = S4,

• NPGL2(F )(A5) = A5,

• NPGL2(F )(PSL2(Fpr)) = PGL2(Fpr),

• NPGL2(F )(PGL2(Fpr)) = PGL2(Fpr).
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Chapter 2

Curves which are definable
over their fields of moduli

In this chapter we study the field of moduli of a curve. We begin with Sec-
tion 2.1, where we present a summary of existing results about fields mod-
uli vs fields of definition of curves. In Section 2.2 we give definitions and
some basic properties. In Section 2.3 we present a first result for curves,
joint with M. Artebani. We show that curves X such that the covering
X → X/Aut(X) has odd signature can always be defined over their fields
of moduli. In Section 2.4 we present a second result, joint with R.A. Hi-
dalgo, which generalizes the theorems of B. Huggins [32, Theorem 4.1.1] and
A. Kontogeorgis [39, Theorem 1].

2.1 Previous results about fields of moduli of curves

The first examples of hyperelliptic curves over C with are not definable
over their fields of moduli relative to the extension C /R were given by G.
Shimura [55] and C. L. Earle [17]. These curves have automorphism group of
order two and even genus. Such examples have been constructed by means
of the criterion of definability by A. Weil given in Theorem 1.17, which is a
fundamental tool in this area. More recently P. Dèbes and M. Emsalem [16],
by means of previous results by P. Dèbes and J. C. Douai [15], provided new
criteria for the field of moduli to be a field of definition, showing in particular
that X can be defined over its field of moduli K if a canonical model of the
quotient X/Aut(X) has a K-rational point (see Theorem 1.21).

For curves of genus two and fields of characteristic not equal to two G.
Cardona and J. Quer proved the following result [13, Theorem 2].
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Theorem 2.1 (G. Cardona and J. Quer [13]). Let F be a perfect field of
characteristic not equal to two and F be an algebraic closure of F . Let X
be a curve of genus two defined over F with hyperelliptic involution ι. If the
group Aut(X)/〈ι〉 is not trivial, then its field of moduli is a field of definition.

The previous result is completed in [12, Theorem 22], where the authors
prove that curves of genus two defined over fields of characteristic two are
always definable over their field of moduli.

B. Huggins has given a generalization of Theorem 2.1 for hyperelliptic
curves of higher genus in [32, Theorem 4.1.1] or [33, Theorem 5.1].

Theorem 2.2 (B. Huggins [32, 33]). Let F be a perfect field of characteristic
not equal to 2 and let F be an algebraic closure of F . Let X be a hyperelliptic
curve over F with hyperelliptic involution ι. If the group Aut(X)/〈ι〉 is not
cyclic or is cyclic of order divisible by the characteristic of F , then X can
be defined over its field of moduli relative to the extension F/F .

Moreover [32, Proposition 5.0.5] gives the classification of hyperelliptic
curves which are not definable over their field of moduli relative to the
extension C /R, completing previous work by E. Bujalance and P. Turbek
[11].

A. Kontogeorgis generalized Theorem 2.2 to normal cyclic q-gonal curves
in [39, Theorem 1].

Theorem 2.3 (A. Kontogeorgis [39]). Let F be a perfect field of charac-
teristic not equal to 2 and let F be an algebraic closure of F . Let X be a
normal cyclic q-gonal curve over F such that Aut(X)/Zq is not cyclic or is
cyclic of order divisible by the characteristic of F . Then X can be defined
over its field of moduli relative to the extension F/F .

The first examples of non-hyperelliptic curves which can not be defined
over their field of moduli relative to the extension C /R have been given by
B. Huggins [32] and R. A. Hidalgo [26]. The example by R. A. Hidalgo is
a curve of genus 17 with automorphism group isomorphic to Z5

2 and is a
covering of the genus two curve constructed by C. L. Earle.

Other recent works in this area are by J. Gutierrez and T. Shaska [23] for
hyperelliptic curves with extra involutions, D. Sevilla and T. Shaska [51] for
hyperelliptic curves with reduced automorphism group isomorphic to A5,
Y. Fuertes [18] for hyperelliptic curves of odd genus, R. A. Hidalgo and S.
Reyes [30] for classical Humbert curves, and R. Lercier and C. Ritzenthaler
[42] for hyperelliptic curves.
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2.2 Definitions and basic properties

Let X be a curve of genus g ≥ 2 defined over a field F , and let H be a
subgroup of the automorphism group Aut(X) of X.

We consider a branched Galois covering φH : X → X/H between curves
defined over F and let q1, · · · , qr be its branch points. The signature of φH
(and of the quotient orbifold X/H) is defined as sig(X/H) = sig(πH) :=
(g0; c1, · · · , cr), where g0 is the genus of the curve X/H and ci is the rami-
fication index of any point in φ−1

H (qi).

Definition 2.4. Let H be a subgroup of the group Aut(X). We will say that
H is unique up to conjugation if, for any subgroup K of Aut(X) isomorphic
to H with sig(X/H) = sig(X/K), there is α ∈ Aut(X) such that K =
αHα−1.

Example 2.5. Examples of groups H which are unique up to conjugation
are the following ones.

• H = Aut(X).

• H generated by the hyperelliptic involution.

• H ∼= Zl, where l is a prime and C/H has genus zero [20].

• H ∼= Z3
k and C/H has signature (0, 4; k, k, k, k) [19].

• H ∼= Znl , where l is a prime and C/H of signature (0, n+ 1;
n+1

l, . . . , l) [21].

• H a l-group and C/H of genus zero, where l is a prime large enough with
respect to the number of branch points of C/H [44].

The branch divisor of φH , denoted by D(φH), is the divisor of X/H defined
by D(φH) :=

∑r
i=1 ciqi.

Definition 2.6. Let X be a curve of genus g ≥ 2 defined over F . The
covering φH : X → X/H has odd signature if its signature is of the form
(0; c1, · · · , cr) where some ci appears exactly an odd number of times. More-
over, the curve X is called a curve of odd signature if H = Aut(X).

Definition 2.7. Let B be a curve defined over a field L. A divisor D =
p1 + · · ·+ pr of B is called L-rational if for each σ ∈ Aut(L/L) we have that
Dσ := σ(p1) + · · ·+ σ(pr) = D.
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The following is an easy consequence of Riemann-Roch theorem and the
fact that a curve of genus zero with an L-rational point is isomorphic to P1

L

(see also [32, Lemma 4.0.4.]).

Lemma 2.8. Let B be a curve of genus 0 defined over an infinite field L
and suppose that B has an L-rational divisor D of odd degree. Then B has
infinitely many L-rational points.

Lemma 2.9. Let L be a subfield of the field F . Given a Galois branched
covering φH : X → X/H as before defined over F , we have D(φσH) =
D(φH)σ for any σ ∈ Aut(F/L).

Proof. Observe that we have the following commutative diagram:

X

φH
��

σ //Xσ

φσH
��

X/H
σ //(X/H)σ

i.e., σ ◦ φH = φσH ◦ σ, where we denote by σ the bijection acting on the
coordinates of the points of X and X/H. Thus qi belongs to the support
of D(φH) if and only if σ(qi) is in the support of D(φσH) and the fibers over
the two points have the same cardinality.

2.3 Curves of odd signature

Let X be a curve of genus g ≥ 2 defined over a field F , and let H be a sub-
group of the group Aut(X). We will denote by NAut(X)(H) the normalizer
of H in Aut(X).

Theorem 2.10. Let X be a smooth projective curve of genus g ≥ 2 defined
over an algebraically closed field F and let L ⊂ F be a subfield such that
F/L is Galois. If H is a subgroup of Aut(X) unique up to conjugation and
πN : X → X/N is an odd signature covering, then MF/L(X) is a field of
definition for X, where N := NAut(X)(H).

Proof. (1) By Proposition 1.11 we can assume that MF/L(X) = L. Let
σ ∈ Gal(F/L) (this coincides with UF/L(X) by Proposition 1.11), then
there is an isomorphism fσ : X → Xσ. As H is unique up to conjugation
(the same holds for Hσ), we can also assume that

fσHf
−1
σ = Hσ,

14



in particular,
fσNAut(X)(H)f−1

σ = NAut(Xσ)(H
σ). (2.1)

It follows the existence of isomorphisms (elements of PGL2(F )) gσ : X/H →
(X/H)σ and hσ : X/N → (X/N)σ such that the following diagram is com-
mutative

X

πH

��

fσ //Xσ

πσH
��

X/H

πK
��

gσ //(X/H)σ

πσK
��

X/N
hσ //(X/N)σ

i.e., gσ ◦ πH = πσH ◦ fσ and hσ ◦ πN = πσN ◦ fσ, where πN := πK ◦ πH and
K := N/H.

Notice that gσ and hσ is uniquely determined by the pair (σ, fσ). Moreover,
we claim that hσ is uniquely determined by σ. In fact, if we have another
isomorphism f̂σ : X → Xσ with f̂σHf̂

−1
σ = Hσ and ĥσ ◦πN = πσN ◦ f̂σ, then

• f−1
σ ◦ f̂σ = n ∈ NAut(X)(H), and

• ĥσ ◦ πN = πσN ◦ f̂σ = πσN ◦ fσ ◦ n = πσN ◦ nσ ◦ fσ = πσN ◦ fσ = hσ ◦ πN ,

where nσ ∈ NAut(X)(H
σ). So ĥσ = hσ.

Now, the uniqueness of the isomorphisms hσ ensures that the family
{hσ}σ∈Gal(F/L) satisfies Weil’s co-cycle conditions in Theorem 1.17, thus
there is a curve B of genus zero defined over L and there is an isomorphism
R : X/N → B such that the following diagram is commutative

X/N
gσ //

R ""

(X/N)σ

Rσzz
B

i.e., R = Rσ ◦ hσ, for each σ ∈ Gal(F/L).
(2) Let φ = R ◦ πN . The fact that fσ is an isomorphism and Lemma 2.9

imply that D(φ) = D(φσ) = D(φ)σ, i.e. D(φ) is an L-rational divisor. Also,
as R is an isomorphism, D(φ) = R(D(πN )) and φ has the same signature
of πN . If q1, · · · , q2k+1 are the points in the support of D(φ) with the same
coefficient ci, then the divisor q1 + · · ·+ q2k+1 is an L-rational divisor of odd
degree.

15



If L is infinite this implies, by Lemma 2.8, that B has an L-rational point
outside of the branch locus of φ, thus X can be defined over L by Theorem
1.21. In case L is finite the result follows from Corollary 1.22 or [33, Corollary
2.11].

Corollary 2.11. Let X be a smooth projective curve of genus g ≥ 2 defined
over an algebraically closed field F and let L ⊂ F be a subfield such that
F/L is Galois. If X is an odd signature curve, then MF/L(X) is a field of
definition for X.

Proof. This follows from Theorem 2.10 with H = Aut(X).

Corollary 2.12. Let X be a smooth projective curve of genus g ≥ 2 defined
over a field K. If X is an odd signature curve, then KX is a field of definition
for X.

Proof. This follows from Corollary 2.11 and Theorem 1.12.

In case X/Aut(X) has genus zero we have the following result.

Proposition 2.13. Let L be a subfield of an algebraically closed field F
such that F/L is Galois and let X be a smooth curve of genus g ≥ 2 defined
over F such that X/Aut(X) is of genus zero, then X can be defined over an
extension of degree at most two of its field of moduli relative to the extension
F/L.

Proof. We will use the same notation of the proof of Theorem 2.10 and the
results proved there. We recall that the branch divisor D = D(φ) is L-
rational. If X has odd signature, then the statement follows from Theorem
2.10. Otherwise, if deg(D) = m is even, consider the degree two divisor
D+ m−2

2 K, where K is a canonical divisor of B defined over L. By Riemann
Roch Theorem this is linearly equivalent to an L-rational effective divisor
E = q1 + q2. Then we have the following two cases:
i) If q1 is an L-rational point and L is infinite then, by Lemma 2.8, B has
an L-rational point outside of the branch locus of φ, thus X can be defined
over L by Theorem 1.21. In case L is finite the result follows from Corollary
1.22.
ii) If q1 is not an L-rational point, let L′ := L(q1). Then [L′ : L] = 2
and q2 ∈ L′ since {q1, q2} is invariant for the action of the Galois group
Gal(F/L). Thus we may proceed as in case above to obtain that X can be
defined over the field L′.
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Proposition 2.14. Let X be a smooth curve of genus g ≥ 2 defined over a
field F . If X/Aut(X) has genus zero, then X can be defined over its field
of moduli FX or an extension of degree two of it.

Proof. This follows from Theorem 2.13 and Theorem 1.12.

2.4 Curves with non-cyclic reduced automorphism
group

In this Section we provide a generalization of Theorems 2.2 and 2.3.

Theorem 2.15. Let L be an infinite perfect field of characteristic p 6= 2 and
let F be an algebraic closure of L. Let X be a smooth projective algebraic
curve of genus g ≥ 2 defined over F and let H be a subgroup of Aut(X)
unique up to conjugation so that X/H has genus zero. If NAut(X)(H)/H
is neither trivial nor cyclic, then X can be defined over its field of moduli
relative to the extension F/L, where NAut(X)(H) is the normalizer of H in
Aut(X).

Proof. As a consequence of Theorems 1.10 and 1.14, there is no loss of
generality if we assume that L = MF/L(X). We set Γ = Gal(F/L).

Let us consider a Galois branched covering P : X → P1 with deck(P ) =
H. Clearly, there is a subgroup J of PGL2(F ) and there is a surjective
homomorphism Θ : NAut(X)(H)→ J with ker(Θ) = H and P ◦h = Θ(h)◦P ,
for every h ∈ NAut(X)(H); so J ∼= NAut(X)(H)/H.

We recall that by Theorem 1.23 the group J is isomorphic to one the
following groups:

Zn, Dn, A4, S4, A5 (if p = 0 or if |G| is prime to p),

Ztp, ZtpoZm, PGL2(Fpr), PSL2(Fpr) (if |G| is divisible by p),

where (n, p) = 1, r > 0, t ≤ r, and m is a divisor of pt − 1.

Case 1. Assume that J is either isomorphic toDn or A4 or A5 or S4 (this is
the only case if p = 0). Let us consider a Galois branched covering Q : P1 →
P1 with deck(Q) = J and branch values set equal to B = {b1, b2, b3}. As
PGL2(F ) acts triply-transitive, we may assume that B = {b1, b2, b3} := {[0 :
1], [1 : 1], [1 : 0]}. The map S := Q ◦ P : X → P1 is then a regular branched
covering map with deck(S) = NAut(X)(H) and branch locus containing B.
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If σ ∈ Γ, then (by the definition of field of moduli) there is a (not neces-
sarily unique) isomorphism fσ : X → Xσ. As H is unique up to conjugation
(the same holds for Hσ), we may also assume that

fσHf
−1
σ = Hσ, (2.2)

in particular,

fσNAut(X)(H)f−1
σ = NAut(Xσ)(H

σ). (2.3)

It follows the existence of isomorphisms (elements of PGL2(F )) gσ : P1 →
P1 and hσ : P1 → P1 such that the following diagram is commutative

X

P
��

fσ //Xσ

Pσ

��
P1

Q

��

gσ //P1

Qσ

��
P1 hσ //P1

As a consequence of (2.3) we must have that gσJg
−1
σ = Jσ; so hσ(B) =

σ(B) = B. Notice that gσ and hσ are uniquely determined by the pair
(σ, fσ). Moreover we claim that hσ is uniquely determined by σ. In fact,
if we have another isomorphism f̂σ : X → Xσ with f̂σHf̂

−1
σ = Hσ and

ĥσ ◦ S = Sσ ◦ f̂σ, then

• f−1
σ ◦ f̂σ = n ∈ NAut(X)(H), and

• ĥσ ◦ S = Sσ ◦ f̂σ = Sσ ◦ fσ ◦ n = Sσ ◦ nσ ◦ fσ = Sσ ◦ fσ = hσ ◦ S,

where nσ ∈ NAut(Xσ)(H
σ). So ĥσ = hσ. The uniqueness of the isomorphisms

hσ ensures that the family {hσ}σ∈Γ satisfies Weil’s co-cycle conditions in
Theorem 1.17, so there is a smooth curve B of genus zero, defined over L,
and there is an isomorphism R : P1 → B such that the following diagram is
commutative

P1 hσ //

R   

P1

Rσ~~
B
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As hσ(B) = B, the divisor D = [R(b1)] + [R(b2)] + [R(b3)] satisfies the
following

Dσ = [σ(R(b1))] + [σ(R(b2))] + [σ(R(b3))]

= [Rσ(b1)] + [Rσ(b2)] + [Rσ(b3)]

= [R ◦ h−1
σ (b1)] + [R ◦ h−1

σ (b2)] + [R ◦ h−1
σ (b3)]

= D,

i.e. D is a L-rational divisor of degree 3. Now, since B has genus zero and
L is infinite, Lemma 2.8 ensures that B has a L-rational point outside of
the branch locus of T := R ◦ S.

Now let r ∈ B − BT be a L-rational point and x ∈ X such that T (x) = r,
where BT is the branch locus of T .

If σ ∈ Γ, then σ(x) ∈ Xσ and T σ(σ(x)) = r. Also, T σ(fσ(x)) = Rσ ◦
Sσ ◦ fσ(x) = Rσ ◦ hσ ◦ S(x) = R ◦ S(x) = T (x) = r. Thus, there is some
ασ ∈ NAut(X)(H) such that tσ(x) := (fσ ◦ασ)(x) = σ(x). Clearly, t|σ : X →
Xσ is an isomorphism so that tσHt

−1
σ = Hσ. We claim that tσ is uniquely

determined by σ. In fact, if we have another isomorphism t : X → Xσ

such that t(x) = σ(x) and tHt−1 = Hσ, then t−1 ◦ tσ ∈ NAut(X)(H) and
(t−1 ◦ tσ)(x) = x. But as the NAut(X)(H)-stabilizer of x is trivial, we have
t = tσ as desired.

The uniqueness of the isomorphisms tσ, σ ∈ Γ, ensures that the family
{tσ}σ∈Γ satisfies Weil’s co-cycle conditions in Theorem 1.17; thus the curve
X is definable over L.

Case 2. Let us now assume that J is isomorphic to one of the left cases
(this only happens if p 6= 0). Observe that in all these cases X/H is still P1.

If J = Ztp we may proceed as in the previous case by considering a Galois
branched covering Q : P1 → P1 with J as its deck group and with B = {b}
where b is the unique branch value of Q with total order, see Table 1.1.

If J is either isomorphic to either ZtpoZm, PSL2(Fpr) or PGL2(Fpr), then
the Galois branched covering Q : P1 → P1 with deck(Q) = J has branch
values set equal to B = {b1, b2} and the divisor D = [R(b1)] + [R(b2)] is L-
rational. Since the two branch points b1 and b2 have different ramification
index, see Table 1.1, we may proceed as in the previous case by considering
a L-rational divisor D′ = [R(bi)] of degree one, where i = 1, 2.

Corollary 2.16. Let X be a smooth projective algebraic curve of genus
g ≥ 2, defined over the complex number field C, and let H be a subgroup of
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Aut(X), which is unique up to conjugation, so that X/H has genus zero.
If NAut(X)(H)/H is neither trivial or cyclic, then X can be defined over its
field of moduli relative to the non-Galois extension C /Q.

Proof. Let L ⊂ C be the field of moduli of X relative to the extension C /Q.
By the results due to Koizumi [37] (see also [24]), we may assume that X is
defined over L (the algebraic closure of L in C). As Aut(X) is a finite group,
all the automorphisms of X are also defined over L by [36, Lemma 1.12 ].
Then the result is consequence of Theorem 2.15 with F = L and p = 0.

Example 2.17 (Generalized Fermat curves). Let l be a prime and n ≥ 2
be an integer. A smooth complex projective algebraic curve X (i.e. a closed
Riemann surface) is called a generalized Fermat curve of type (l, n) if there
exists H < Aut(X) with H ∼= Znl with X/H being an orbifold of genus zero
with exactly n+ 1 branch points, each one of order l, i.e.,

X :



xl1 + xl2 + xl3 = 0
λ1x

l
1 + xl2 + xl4 = 0

λ2x
l
1 + xl2 + xl5 = 0
...

...
λn−2x

l
1 + xl2 + xln+1 = 0


⊂ PnC.

If (l, n) /∈ {(2, 3), (3, 2), (3, 3)}, then the genus of X is bigger or equal to 2
and it is non-hyperelliptic [28]. In [21] it was proved that H is unique up to
conjugation. It follows from Corollary 2.16 that, in the case NAut(X)(H)/H
is neither trivial or cyclic, the curve X can be defined over its field of mod-
uli relative to the non-Galois extension C /Q. Let us also notice that if
NAut(X)(H) = H and n is even, then it is possible to prove that the same
fact holds.
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Chapter 3

Cyclic q-gonal curves

This chapter is devoted to the study of cyclic q-gonal curves and their fields
of definition. In Section 3.1 we give the definition and some basic properties
of cyclic q-gonal curves. In Section 3.2 we study the definability of normal
cyclic q-gonal curves over their fields of moduli and we observe in Corollary
3.5 that each such curve of odd signature is defined over its field of moduli.
In Section 3.3 we construct families of normal cyclic q-gonal curves with
field of moduli R, relative to the extension C/R, not definable over R. In
Section 3.4 we consider non-normal cyclic q-gonal curves and we prove in
Corollary 3.12 that each such curve can be defined over its field of moduli.

3.1 Definitions and basic properties

Let F be an algebraically closed field of characteristic p 6= 2.

Definition 3.1. Let X be a curve of genus g ≥ 2 defined over F . If the
automorphism group Aut(X) of X contains a cyclic subgroup Zq of prime
order q, such that the curve X/Zq has genus zero, then the curve X is called
a cyclic q-gonal curve.

Theorem 3.2 (G. González-Diez [20], G. Gromadzki [22]). Let X be a cyclic
q-gonal curve defined over a field F of characteristic zero. Then the cyclic
group Zq is unique up to conjugation in Aut(X).

Proof. See, [20, Theorem 1] and [22, Theorem 2.1].

The cyclic group Zq is not always a normal subgroup of the automorphism
group Aut(X), see [38].
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Definition 3.3. Let X be a cyclic q-gonal curve defined over F . The curve
X is called a normal cyclic q-gonal curve if the group Zq is a normal subgroup
of Aut(X). In this case we define the reduced automorphism group of X as
Aut(X) := Aut(X)/Zq.

The group Aut(X) is isomorphic to a finite subgroup of PGL2(F ) and
therefore, by Theorem 1.23, is isomorphic to one of

Zn, Dn, A4, S4, A5 (if p = 0 or if |G| is prime to p),

Ztp, ZtpoZm, PGL2(Fpr), PSL2(Fpr) (if |G| is divisible by p),

where (n, p) = 1, r > 0, t ≤ r, and m is a divisor of pt − 1.

Theorem 3.4 (R. D. M. Accola [1, Corollary 3]). If X is a cyclic q-gonal
curve of genus g defined over a field F of characteristic zero and g > (q−1)2.
Then X is a normal cyclic q-gonal curve defined over F .

If (p, q) = 1, then every cyclic q-gonal curve defined over F , after a bira-
tional transformation, can be written in the form:

X : yq =
s∏
i=1

(x− ai)di , di ∈ Z>0,

and the cyclic group Zq is generated by (x, y) → (x, ζqy) where ζq is a
primitive q-th root of unity.

1. If 0 < di < q and d :=
∑

i=1 di ≡ 0 (mod q) then the covering π :
X → X/Zq does not ramify at infinity. The only branch points of the
covering π are the points ai and the corresponding ramification indices
are given by

ei :=
q

(q, di)
.

Moreover if (q, di) = 1 then the points ai are ramified completely and
the Riemann-Hurwitz formula implies that the curve X has genus

g =
(q − 1)(s− 2)

2
.

Notice that the condition g ≥ 2 is equivalent to s ≥ 2 q+1
q−1 . In particu-

lar, s > 2.

2. If 0 < di < q − 1 and d :=
∑

i=1 di ≡ 1 (mod q) then the covering π :
X → X/Zq does ramify over infinity and over the points ai. Moreover
the Riemann-Hurwitz formula implies that the curve X has genus

g =
(q − 1)(s− 1)

2
.
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3.2 Fields of moduli of normal cyclic q-gonal curves

Let X be a normal cyclic q-gonal curve defined over a field F with auto-
morphism group G := Aut(X) and reduced automorphism group G and let
πG : X → X/G be the natural covering. We recall that G acts on X/G ∼= P1.

In case G is not a cyclic group, B. Huggins Theorem 2.2 and A. Kontoge-
orgis Theorem 2.3 proved that a normal cyclic q-gonal curve is defined over
its filed of moduli.

If G ∼= 〈ν〉 is a cyclic group of order n, then it is generated by ν(x) = ζnx
up to a change of coordinates, where ζn is a primitive n-th root of unity. If
p = 0, then the normal cyclic q-gonal curve X is isomorphic to a curve:

X ′ : yq = f(x),

where f(x) is as given in Table 3.1 (for further details see [49]).
The three cases in Table 3.1 differ by the number N of branch points of

the cover X → X/Zq fixed by ν.

N signature of πG f(x)

0 (0;n, n, q, . . . , q) xnt + · · ·+ aix
n(t−i) + · · ·+ at−1x

n + 1

where q|nt
1 (0;n, nq, q, . . . , q) xnt + · · ·+ aix

n(t−i) + · · ·+ at−1x
n + 1

where q 6 |nt
2 (0;nq, nq, q, . . . , q) x(xnt + · · ·+ aix

n(t−i) + · · ·+ at−1x
n + 1)

where q 6 |nt+ 1

Table 3.1: Cyclic q-gonal curves with G = Zn

Corollary 3.5. Let X be a normal cyclic q-gonal curve of genus g ≥ 2
defined over a field F of characteristic zero such that G is cyclic of order
n ≥ 2 and let N be as above. If either N = 1, or N = 0 and 2g−2+2q

n(q−1) is odd,

or N = 2 and 2g
n(q−1) is odd, then X is definable over FX .

Proof. The signature of the covering πG : X → X/G is given in Table 3.1. If
N = 1 then clearly X has odd signature. Otherwise, if N = 0, the number
of branch points with ramification index q equals 2g−2+2q

n(q−1) by the Riemann-
Hurwitz formula, thus again X has odd signature. Similarly for N = 2.
Thus the result follows from Corollary 2.12.
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3.3 Curves which are not definable over their field
of moduli

In this section, we construct examples of normal cyclic q-gonal curves not
definable over their field of moduli following [32, 33].

Let m,n > 1 be two integers, a1, . . . , am ∈ C and let ā be the complex
conjugate of a ∈ C. Consider the polynomial

f(x) :=
∏

1≤i≤m
(xn − ai)(xn + 1/āi). (3.1)

Observe that the polynomial is invariant for the automorphism ν : x 7→
ζnx, where ζn is a primitive nth root of unity. We will look for such an f(x)
with the following properties:

1. |ai| 6= |aj | if i 6= j,

2. ai/āi 6= aj/āj if i 6= j,

3. |ai| 6= |1/aj | for all i, j,

4. f(0) = −1,

5. if n = 3, the following automorphism does not map the zero set of
f(x) into itself:

τ : x 7→ −(x−
√

3− 1)

x(
√

3− 1) + 1
.

We now show that such polynomials exist for anym,n. Let κ be a primitive
m-th root of (−1)m−1. For n 6= 3 it can be easily shown that the following
polynomial satisfies all the above conditions:

f(x) =
∏

1≤l≤m
(xn − (l + 1)κl)(xn +

κl

l + 1
).

For n = 3, let α = −(2 +
√

3) and consider the polynomial:

f(x) = (x3 − α3)(x3 +
1

α3
)

∏
1≤l≤m−1

(x3 − (l + 1)κl)(x3 +
κl

l + 1
).

Again, it can be easily checked that f(x) satisfies conditions 1-4 since |α3| 6∈
Q. Now assume that f(x) does not satisfy condition 5, i.e. the automor-
phism τ preserves the roots of f(x). Observe that τ(α) = α, so that the
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orbit of α under the action of the group 〈ν, τ〉 contains ντν2(α) = 1. Thus
1 should be a root of f(x), giving a contradiction.

Similarly, the polynomial g(x) ∈ C[x] given by

g(x) := xf(x) (3.2)

where f(x) is a polynomial as in (3.1), satisfies properties 1-4 and f(1 +√
3) 6= 0.

Lemma 3.6. Let X be a normal cyclic q-gonal curve over C given by yq =
f(x), where f(x) is as in (3.1) and satisfies the properties mentioned above.
Then:

i) the group G := Aut(X) is generated by ι(x, y) = (x, ζqy) and ν(x, y) =
(ζnx, y);

ii) the signature of πG is (0; q, . . . , q, n, n) if q|2mn and (0; q, . . . , q, n, qn)
otherwise, where q appears 2m-times.

Proof. Observe that ii) is obvious by Table 3.1. If n 6= 3, then i) follows from
[33, Lemma 6.1] and its proof (which does not depend on the fact that m is
odd). For n = 3 we need to exclude the missing case 〈ν〉 < G ∼= A4, where
ν is the image of ν in G. Suppose we are in this case, then by [11, Corollary
3.2] τ would be an automorphism of f(x), giving a contradiction.

Lemma 3.7. Let X be a normal cyclic q-gonal curve over C given by yq =
xf(x), where f(x) is as in (3.1). Then:

i) the group G := Aut(X) is generated by η(x, y) = (ζqqnx, ζqny);

ii) the signature of πG is (0; q, . . . , q, n, qn) if q|2mn+1 or (0; q, . . . , q, qn, qn)
otherwise, where q appears 2m-times.

Proof. Again ii) is obvious by Table 3.1. To prove i), suppose that G is not
cyclic of order n. Thus G is isomorphic to either Zn′ with n′ > n, D2n′ with
n′ ≥ n, A4, S4 or A5.

Note that the case when 〈ν〉 is contained in a cyclic subgroup G′ of G of
order n′ > n, the case n > 2 when 〈ν〉 is contained in a dihedral subgroup
of G, or the case when n = 2 and 〈ν〉 is contained in a subgroup of G
isomorphic to D4, follow from [33, Lemma 6.1] and its proof.

Now assume that n = 2 and that G ∼= D2n′ with n′ > 1 and odd. Then
there exists an element M of PGL2(C) so that MG(M)−1 = D2n′ . Suppose
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that M is the image in PGL2(C) of the matrix

M :=

(
a b
c d

)
.

Let

h(x) := (−cx+ a)4m+1(dx− b)f
( dx− b
−cx+ a

)
∈ C[x].

Let Y be the q-gonal curve given by yq = h(x). Observe that the curves X
and Y are isomorphic by the isomorphism

ϕ(x, y) =
(ax+ b

cx+ d
,

ey

(cx+ d)2(2m+1)/q

)
,

where e ∈ C×. We see that Aut(Y )/Zq ∼= D2n′ . Consider the conjugate
curve X̄ given by

yq = x
∏

1≤i≤m
(x2 − āi)(x2 + 1/ai).

The curves X, X̄ are isomorphic by the isomorphism

µ(x, y) =

(
1

ix
,

i1/qy

x2(2m+1)/q

)
,

where i2 = −1. So the curves Y , Ȳ are isomorphic by the isomorphism
ϕ̄µϕ−1. By Lemmas 4.2 and 3.3 in [33], the image in PGL2(C) of the matrix(

ā b̄
c̄ d̄

)(
0 1
i 0

)(
d −b
−c a

)
=

(
b̄di− āc aā− bb̄i
dd̄i− cc̄ ac̄− bd̄i

)
is in D4n′ that is the normalizer of D2n′ by Lemma 1.24. Since aā− bb̄i 6= 0,
we must have b̄di = āc and ac̄ = bd̄i. Taking the complex conjugate of both
sides of the first equation, we see that either a = d = 0 or b = c = 0. Then
bb̄
cc̄ i or aā

dd̄
i is a (2n′)th root of unity. Since n′ is odd, this is a contradiction.

For n = 3 we need to exclude the missing case 〈ν〉 < G ∼= A4, where ν
is the image of ν under the quotient map G → G. In this case, by [11,
Corollary 3.2], τ is an automorphism of f(x). Then τ(0) = 1 +

√
3 is a zero

of f(x), contradicting the hypothesis on f(x).

For hyperelliptic curves B. Huggins in [32, Proposition 5.0.5] stated the
following theorem.
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Theorem 3.8. Let X be a hyperelliptic curve over C given by y2 = f(x),
where f(x) is as in (3.1). The field of moduli of X relative to the extension
C/R is R and is not a field of definition of X if and only if either m and n
are even, or m is odd and n > 1.

Similarly, if X is defined by y2 = xf(x), then the field of moduli of X
relative to the extension C/R is R and is not a field of definition of X if and
only if either m is odd and n even, or m is even and n > 1.

Proof. Let X be a curve defined by y2 = f(x). Consider the conjugate curve
X given by

y2 =
∏

1≤i≤m
(xn − āi)(xn + 1/ai).

For m odd, this follows from [33, Proposition 6.2]. For m even the curves
X, X are isomorphic by the isomorphism

µ(x, y) = (
1

ωx
,
iy

xmn
),

where ωn = −1.
By Lemma 3.6, the automorphism group of X is Aut(X) = 〈ι〉 ⊕ 〈ν〉,

thus any isomorphism X −→ X is given by µιjνk, where 0 ≤ j ≤ 1 and
0 ≤ k ≤ n− 1. We have µι = ιµ, and

µν(x, y) = (
1

ωζx
,

iy

(ζx)mn
) = ν̄µ(x, y),

and

µ̄µ(x, y) = µ̄(
1

ωx
,
iy

xmn
) = (ω2x, y) = νl, for some l.

Now we compute

(µνk)µνk = µ̄ν−kµνk = µ̄µν2k = ν2k+l 6= id

and
(µινk)µινk = µ̄ιν−kµινk = µ̄µν2k = ν2k+l 6= id.

Therefore Weil’s cocycle condition from Theorem 1.17 does not hold, so
X cannot be defined over R.

Let X be a curve defined by y2 = g(x), where g(x) is as in (3.2). Consider
the conjugate curve X given by

y2 = x
∏

1≤i≤m
(xn − āi)(xn + 1/ai).
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The curves X, X are isomorphic by the isomorphism

µ(x, y) = (
1

ωx
,
ω(n−1)/2y

xnm+1
),

where ωn = −1.

By Lemma 3.7, the automorphism group of X is Aut(X) = 〈η〉, thus any
isomorphism X → X is given by µηk, for some 0 ≤ k ≤ 2n− 1. We have

µη(x, y) = (
1

ωζ2x
,
ω(n−1)/2y

xnm+1ζ
) = η̄µ(x, y),

and

µ̄µ(x, y) = µ̄(
1

ωx
,
ω(n−1)/2y

xnm+1
) = (ω2x, (−1)mωy) = ηl, for some l.

Now we compute

(µηk)µηk(x, y) = µ̄(ηk)µηk = µ̄µη2k = η2k+l 6= id.

Therefore Weil’s co-cycle condition from Theorem 1.17 does not hold. So
X cannot be defined over R.

The following Proposition generalizes Theorem 3.8.

Proposition 3.9. Let X be a cyclic q-gonal curve over C given by yq =
f(x), where q > 2, f(x) is as in (3.1) and satisfies the properties mentioned
above, m,n > 1 and q|mn. The field of moduli of X relative to the extension
C/R is R and is a field of definition of X if and only if n is odd.

Similarly, if X is defined by yq = xf(x), where q > 2, f(x) is as in (3.1)
and satisfies the properties mentioned above, m,n > 1 and q|mn + 1. The
field of moduli of X relative to the extension C/R is R and is a field of
definition of X if and only if n is odd.

Proof. Observe that X is isomorphic to the conjugate curve

X̄ : yq =
∏

1≤i≤m
(xn − āi)(xn + 1/ai)

by the isomorphism

µ(x, y) =

(
1

ζ2nx
,
ζ2qy

x2mn/q

)
.
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By Lemma 3.6 the automorphism group of X is generated by ι and ν, thus
any isomorphism between X and X̄ is of the form µιjνk, where 0 ≤ j ≤ q−1
and 0 ≤ k ≤ n− 1. An easy computation shows that

(µνk)µνk = (τ ′)2k+1ν2k+1,

where τ ′(x, y) = (x, ζ
mn/q
n y) . Moreover, since ι commutes with µ and ν:

(µιjνk)µιjνk = µ̄ι−jνkµιjνk = µ̄νkµνk = (µνk)µνk.

In case n is even the Weil’s co-cycle condition in Theorem 1.17 does not
hold since ν2k+1 6= id for any k, thus X cannot be defined over R. Otherwise,
if n is odd, we have (µνk)µνk = id with k = (n − 1)/2, so that X can be
defined over R.

Let X be a curve defined by yq = g(x). Consider the conjugate curve X̄
given by

yq = x
∏

1≤i≤m
(xn − āi)(xn + 1/ai).

The curves X, X̄ are isomorphic by the isomorphism

µ(x, y) =

(
1

ωx
,
ω(n−1)/qy

x2(nm+1)/q

)
,

where ωn = −1, ω2 = ζqqn. By Lemma 3.7, the automorphism group of X
is Aut(X) = 〈η〉, thus any isomorphism X → X̄ is given by µηk, for some
0 ≤ k ≤ qn− 1. We have

µη(x, y) =

(
1

ωζqqnx
,

ω(n−1)/qy

x2(nm+1)/qζ2mn
qn ζqn

)
,

i.e., η̄µ(x, y) = µητ(x, y), where τ(x, y) = (x, ζ2mn
qn y). Moreover ητ = τη,

and

µ̄µ(x, y) = (ω2x, ω2mn/qω2/qy) = (ζqqnx, ζ
mn
qn ζqny) = τ ′η(x, y),

where τ ′(x, y) = (x, ζmnqn y) and τ ′η = ητ ′, τ ′2 = τ . Now we compute

(µηk)µηk = µ̄ηkµηk = µ̄ηk−1η̄µηk = µ̄ηk−1µητηk = µ̄ηk−1µτηk+1

= µ̄µτkη2k = µ̄µ(τ ′)2kη2k = (τ ′)2k+1η2k+1

In case n is even the Weil’s co-cycle condition in Theorem 1.17 does not
hold since η2k+1 6= id for any k, since qn is even, thus X cannot be defined
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over R. Otherwise, if n is odd, we have (µηk)µηk = id with k = (qn− 1)/2,
since qn is odd, so that X can be defined over R.

Remark 3.10. Observe that if q does not divide mn, then X : yq = f(x)
is an odd signature curve by the previous Lemma, thus it can be defined
over its field of moduli relative to the extension C/R.

If X be a normal cyclic q-gonal curve over C given by yq = f(x) or
yq = xf(x), where f(x) is as in (3.1) and satisfies the properties mentioned
above, then X can be defined over its field of moduli or an extension of
degree two of it.

3.4 Non-normal cyclic q-gonal curves

Theorem 3.11 (A. Wootton [58]). If X is a non-normal q-gonal curve
defined over an algebraically closed field F of characteristic zero, then the full
automorphism group G := Aut(X) of X, the signature of πG : X → X/G,
the genus of X and where appropriate the different possibilities for q are
given in the Table 3.2.

q signature of πG g G

3 (0; 2, 3, 8) 2 GL(2, 3)

3 (0; 2, 3, 12) 3 SL(2, 3)/CD

5 (0; 2, 4, 5) 4 S5

7 (0; 2, 3, 7) 3 PSL(2, 7)

q ≥ 5 (0; 2, 3, 2q) (q−1)(q−2)
2 (Zq ×Zq)o S3

q ≥ 3 (0; 2, 2, 2, q) (q − 1)2 (Zq ×Zq)o V4

q ≥ 3 (0; 2, 4, 2q) (q − 1)2 (Zq ×Zq)oD4

Table 3.2: Non-normal q-gonal curves.

Proof. See [58, Theorem 8.1].

Corollary 3.12. Let X be a non-normal q-gonal curve defined over a field
F of characteristic zero. Then X is definable over FX .

Proof. By Theorem 3.11 the signature of πX is given in Table 3.2. In any
case X has odd signature, thus the result follows from Corollary 2.12.
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Chapter 4

Plane quartics

This chapter is devoted to the study of smooth plane quartics defined over
an algebraically closed field of characteristic zero and their fields of defi-
nition. In Section 4.1 we determine the automorphism group of a plane
quartic X and the ramification of structure of the cover X → X/Aut(X).
In Section 4.2 we study the definability of smooth plane quartics over their
field of moduli and we prove in Corollary 4.2 that each plane quartic with
automorphism group not isomorphic to either Z2 or Z2×Z2 can be defined
over its field of moduli. Moreover we construct examples of plane quartics
with automorphism group isomorphic to Z2 which can not be defined over
their field of moduli. In Section 4.3 we study smooth plane quartics with
automorphism group isomorphic to Z2×Z2 and we prove in Theorem 4.7
that their field of moduli relative to the extension C /R is always a field of
definition.

4.1 Automorphism groups of plane quartics

Let F be an algebraically closed field of characteristic zero and let X be a
smooth plane quartic defined over F i.e., a non-hyperelliptic genus 3 curve
embedded in P2

F by its canonical linear system.

The following Theorem classifies smooth plane quartics with non-trivial
automorphism group.

Theorem 4.1 (F. Bars [5], S. A. Broughton [8]). The following Table 4.1
lists all possible automorphism groups of smooth plane quartics defined over
F . For each group G, it gives the equation of a smooth plane quartic having
G as automorphism group (n.a. means “not above”, i.e. not isomorphic to
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other models above it in the table) and the signature of the covering πG :
X → X/G.

Proof. See, [5, Theorem 16 and §2.3] and [8, Theorem 4.1].

G equation signature of πG
PSL2(7) z3y + y3x+ x3z (0; 2, 3, 7)

S3 z4 + az2yx+ z(y3 + x3) + by2x2 (0; 2, 2, 2, 2, 3)
a 6= b, ab 6= 0

Z2×Z2 x4 + y4 + z4 + ax2y2 + bx2z2 + cy2z2 (0; 2, 2, 2, 2, 2, 2)
a 6= b, a 6= c, b 6= c

D4 x4 + y4 + z4 + az2(y2 + x2) + by2x2 (0; 2, 2, 2, 2, 2)
a 6= b, a 6= 0

S4 x4 + y4 + z4 + a(z2y2 + z2x2 + y2x2) (0; 2, 2, 2, 3)

a 6= 0, −1±
√
−7

2

Z2
4oS3 z4 + y4 + x4 (0; 2, 3, 8)

Z4 }(Z2)2 z4 + y4 + x4 + az2y2 (0; 2, 2, 2, 4)
a 6= 0,±2,±6,±(2

√
−3)

Z4 }A4 x4 + y4 + xz3 (0; 2, 3, 12)

Z6 z4 + az2y2 + y4 + yx3 (0; 2, 3, 3, 6)
a 6= 0

Z9 z4 + zy3 + yx3 (0; 3, 9, 9)

Z3 z3L1(y, x) + L4(y, x) (n.a) (0; 3, 3, 3, 3, 3)

Z2 z4 + z2L2(y, x) + L4(y, x) (n.a.) (1; 2, 2, 2, 2)

Table 4.1: Automorphism groups of plane quartics.

4.2 Fields of moduli of plane quartics

Let X be a smooth plane quartic defined over an algebraically closed field
of characteristic zero with automorphism group Aut(X).

Corollary 4.2. Let X be a smooth plane quartic defined over an alge-
braically closed field F of characteristic zero. If either Aut(X) is trivial
or |Aut(X)| > 4, then X is definable over FX .

Proof. In case the group Aut(X) is trivial this follows from Corollary 1.18
and Theorem 1.12. In case |Aut(X)| > 4 it follows from Theorem 4.1 and
Corollary 2.12 because it has odd signature.
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Remark 4.3. Observe that the hypothesis in the Corollary is equivalent to
ask that Aut(X) is not isomorphic to either Z2 or Z2×Z2.

We will now construct a smooth plane quartic X with Aut(X) ∼= Z2 and
of field of moduli R but not definable over R. Consider the family Xa1,a2,a3

of plane quartics defined by

y4 + y2(x− a1z)(x+
1

a1
z) + (x− a2z)(x+

1

ā2
z)(x− a3z)(x+

1

ā3
z) = 0,

where a1 ∈ R and a2, a3 ∈ C so that a2a3 ∈ R.

The following Lemma implies that the generic curve in the family is smooth
and has automorphism group of order two.

Lemma 4.4. The plane quartic Xa1,a2,a3 with a1 = 1, a2 = 1 − i and a3 =
2(i− 1) is smooth and its automorphism group is generated by ν(x : y : z) =
(x : −y : z).

Proof. We recall that any automorphism of a smooth plane quartic is in-
duced by an element of PGL(3,C). If Aut(Xa1,a2,a3) properly contains the
cyclic group generated by ν, then it contains a subgroup isomorphic to either
Z2×Z2,Z6 or S3 by [5, pag. 26]. We will now exclude each of these cases.

The first case can be excluded because an explicit computation shows that
there is no involution, except for ν, which preserves the four fixed points of
ν.

Now suppose that Aut(Xa1,a2,a3) contains a cyclic subgroup of order 6
generated by α with ν = α3. The automorphism τ := α2 induces an order
three automorphism τ on the elliptic curve E := Xa1,a2,a3/〈ν〉 having fixed
points. This is a contradiction since the curve E (whose equation can be
obtained replacing y2 with y in the equation of Xa1,a2,a3) has j-invariant
distinct from zero.

Finally, suppose that Aut(Xa1,a2,a3) contains a subgroup 〈ν, γ〉 isomorphic
to S3. Here we will apply a method suggested by F. Bars [5]. By [5, Theorem
29], up to a change of coordinates the equation ofXa1,a2,a3 takes the following
form:

(u3 + v3)w + u2v2 + auvw2 + bw4 = 0.

and the generators of S3 with respect to the coordinates (u, v, w) are

α :=

 0 1 0
1 0 0
0 0 1

 , β :=

 ζ3 0 0
0 ζ2

3 0
0 0 1

 .
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Thus there exists A ∈ PGL(3,C) such that AαA−1 = ν,AβA−1 = γ. The
first condition implies that A is an invertible matrix of the following form

A =

 a a c
d −d 0
g g l

 .

Note that Xa1,a2,a3 has exactly four bitangents x = sjz, j = 1, 2, 3, 4 invari-
ant under the action of the involution ν, where sj are the zeros of

4 = (x2 − 1)2 − 4(x− (1 + i))(x+
1

1− i
)(x− 2(−1 + i))(x− 1

2(1 + i)
).

Let bj1 = (sj , qj , 1), bj2 = (sj ,−qj , 1) be the two tangency points of the line
x = sjz. On the other hand, observe that the line w = 0 is invariant for
α and it is bitangent to Xa1,a2,a3 at p1 = (1 : 0 : 0), p2 = (0 : 1 : 0). Thus
for some j we have {Ap1, Ap2} = {bj1, bj2}, from which we get a = sjg,
d = ±qjg. By means of these remarks and using the Magma [7] code avail-
able at this webpage

https://sites.google.com/site/squispeme/home/fieldsofmoduli

we proved that γ = AβA−1 is not an automorphism of Xa1,a2,a3 .

Proposition 4.5. Let Xa1,a2,a3 be as defined previously with
Aut(Xa1,a2,a3) ∼= Z2. Then the field of moduli of Xa1,a2,a3 relative to the
extension C/R is R and is not a field of definition for X.

Proof. Observe that the following is an isomorphism between X := Xa1,a2,a3

and its conjugate X:

µ(x : y : z) = (−z : iy : x).

Since Aut(X) is generated by ν(x : y : z) = (x : −y : z), the only iso-
morphisms between X and X are µ and µν. Observe that µ̄µ = ν and
(µν)µν = ν. Therefore Weil’s co-cycle condition from Theorem 1.17 does
not hold, so X cannot be defined over R.

4.3 Plane quartics with Aut(X) ∼= Z2×Z2

By [31, Proposition 2] up to change of coordinate any plane quartic with
Aut(X) ∼= Z2×Z2 is isomorphic to a curve in the following family:
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Xa,b,c : x4 + y4 + z4 + ax2y2 + bx2z2 + cy2z2 = 0,

where a, b, c ∈ C. It can be easily checked that Xa,b,c is smooth unless
a2 + b2 + c2 − abc = 4 or some of a2, b2, c2 is equal to 4. A subgroup of
Aut(Xa,b,c) isomorphic to Z2×Z2 is generated by the involutions:

ι1(x : y : z) = (−x : y : z), ι2(x : y : z) = (x : −y : z).

We will denote by G ∼= S3 n (Z2×Z2) the group acting on the triples
(a, b, c) ∈ C3 generated by

g1(a, b, c) = (b, a, c), g2(a, b, c) = (b, c, a),

g3(a, b, c) = (−a,−b, c), g4(a, b, c) = (a,−b,−c).

The following comes from a result by E.W. Howe [31, Proposition 2], ob-
serving that any isomorphism between Xa,b,c and Xg(a,b,c), g ∈ G, is defined
over Q(i).

Proposition 4.6. If a2, b2, c2 are pairwise distinct, then Aut(Xa,b,c) ∼=
Z2×Z2. Moreover, if F is a field containing Q(i), then a plane quartic
Xa′,b′,c′ is isomorphic to Xa,b,c over F if and only if g(a, b, c) = (a′, b′, c′) for
some g ∈ G

Theorem 4.7. Let X be a smooth plane quartic over C which is isomorphic
to its conjugate. If Aut(X) is not cyclic of order two, then X can be defined
over R.

The following result and Corollary 4.2 prove Theorem 4.7.

Corollary 4.8. Let Xa,b,c as before with a2, b2, c2 pairwise distinct. If the
field of moduli of Xa,b,c relative to the extension C/R is R, then it is a field
of definition for Xa,b,c.

Proof. By Proposition 4.6, the curve Xa,b,c and its conjugate Xā,b̄,c̄ are iso-
morphic over C if and only if g(a, b, c) = (ā, b̄, c̄) for some g ∈ G. It is enough
to consider the generators of G.

i) If (ā, b̄, c̄) = g1(a, b, c) = (b, a, c) then µ : Xa,b,c → Xb,a,c, µ(x : y : z) =
(x : z : y) is an isomorphism and µ̄µ = id.

ii) If (ā, b̄, c̄) = g2(a, b, c) = (b, c, a), i.e., ā = b, b̄ = c, c̄ = a, then
a = b = c ∈ R, contradicting the hypothesis on a, b, c. So this case
does not appear.
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iii) If (ā, b̄, c̄) = g3(a, b, c) = (−a,−b, c) then µ : Xa,b,c → X−a,−b,c, µ(x :
y : z) = (ix : y : z) is an isomorphism and µ̄µ = id.

iv) If (ā, b̄, c̄) = g4(a, b, c) = (a,−b,−c) then µ : Xa,b,c → Xa,−b,−c, µ(x :
y : z) = (x : y : iz) is an isomorphism and µ̄µ = id.

Therefore by Weil’s Theorem we conclude that Xa,b,c can be defined over
R.

We now determine the field of moduli of a plane quartic in the family.
Consider the following polynomials invariant for G:

j1(a, b, c) = abc, j2(a, b, c) = a2 + b2 + c2, j3(a, b, c) = a4 + b4 + c4.

Proposition 4.9. Let F/L be a general Galois extension with Q(i) ⊂ F ⊂ C
and let a, b, c ∈ F such that a2, b2, c2 are pairwise distinct and Xa,b,c is
smooth. The field of moduli of Xa,b,c relative to the extension F/L equals
L(j1, j2, j3).

Proof. The morphism ϕ(a, b, c) = (abc, a2 + b2 + c2, a4 + b4 + c4) has de-
gree 24 = |G| and clearly ϕ(g(a, b, c)) = ϕ(a, b, c) for any g ∈ G. Thus,
by Proposition 4.6, Xa,b,c is isomorphic to Xa′,b′,c′ over F if and only if
jk(a, b, c) = jk(a

′, b′, c′) for k = 1, 2, 3. Observe that Xσ
a,b,c = Xσ(a),σ(b),σ(c)

is isomorphic to Xa,b,c over F if and only if for k = 1, 2, 3 we have

jk := jk(a, b, c) = jk(σ(a), σ(b), σ(c)) = σ(jk(a, b, c)).

Thus UF/L(Xa,b,c) = {σ ∈ Aut(F/L) : Xσ
a,b,c
∼= Xa,b,c} = Aut(F/L(j1, j2, j3)).

Since F/L is a general Galois extension we deduce that

MF/L(Xa,b,c) = Fix(UF/L(Xa,b,c)) = L(j1, j2, j3).

Remark 4.10. Proposition 4.6 can be generalized to the case when F
does not contain Q(i). In this case Xa′,b′,c′ is isomorphic to Xa,b,c over
F if and only if g(a, b, c) = (a′, b′, c′) for some g ∈ 〈g1, g2〉 and the field of
moduli relative to a general Galois extension F/L equals L(j2, j4, j5) where
j4(a, b, c) = a+ b+ c, j5(a, b, c) = a3 + b3 + c3.

We now consider the Galois extension Q(a, b, c)/Q(j1, j2, j3), assuming
that Q(i) ⊂ Q(a, b, c). If σ belongs to the Galois group of such extension,
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then Xσ
a,b,c
∼= Xa,b,c and σ acts on (a, b, c) as some gσ ∈ G by Proposition

4.6. Thus we can define a natural injective group homomorphism

ψ : Aut(Q(a, b, c)/Q(j1, j2, j3))→ G, σ 7→ gσ.

Observe that, if a, b, c ∈ C are generic, then ψ is an isomorphism since the
degree of the extension Q(a, b, c)/Q(j1, j2, j3) is 24 = |G|.

Proposition 4.11. Let a, b, c ∈ C such that a2, b2, c2 are pairwise distinct,
Xa,b,c is smooth and Q(i) ⊂ Q(a, b, c). If Im(ψ) ⊂ 〈g1, g2〉, then Xa,b,c can
be defined over Q(j1, j2, j3) = MQ(a,b,c)/Q(j1,j2,j3)(Xa,b,c).

Proof. According to Weil’s Theorem 1.17 we need to choose an isomorphism
fσ : Xa,b,c → Xσ(a),σ(b),σ(c) for any σ ∈ Aut(Q(a, b, c)/Q(j1, j2, j3)) such that
the following condition holds for all σ, τ :

fστ = fστ ◦ fσ. (4.1)

We assume that Im(ψ) = 〈g1, g2〉, the case when there is just an inclusion
is similar. Let σ1 = ψ−1(g1) and σ2 = ψ−1(g2). We choose fσ1(x : y : z) =
(x : z : y), fσ2(x : y : z) := (z : x : y) and fσ := fsσ2 ◦ f

r
σ1 if σ = σr1 ◦ σs2.

Observe that fτ is always defined over Q, so that fστ = fτ . Thus condition
(4.1) clearly holds.

Example 4.12. Consider a plane quartic X = Xa,b,c where a = α, b = ᾱ
with α ∈ Q(i) and c ∈ Q such that a2, b2, c2 are pairwise distinct and the
curve is smooth. By Proposition 4.9 the field of moduli of the curve relative
to the extension Q ⊂ Q(a, b, c) = Q(i) is Q. The Galois group Aut(Q(i)/Q)
is generated by the complex conjugation σ(z) = z̄ and ψ(σ) = g1. An
isomorphism between X and Xσ is given by fσ(x : y : z) = (x : z : y). Since
id = fσ2 = fσσ ◦ fσ = (fσ)2, then X can be defined over Q.
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Chapter 5

Curves of genus 4 and 5

In this chapter we study curves of genus four and five and their fields of
definition. In Section 5.1 we recall what are the possible subgroups G of the
automorphism group of a curve of genus four and five and the ramification
structure of the covering πG : X → X/G. In Sections 5.2 and 5.3 we
completely characterize when a curve X of genus four and five respectively
can be defined over its field of moduli, in case that the curve X/G is of genus
zero.

5.1 Automorphism groups of curves of genus 4 and
5

Let X be a curve of genus four defined over an algebraically closed field F
of characteristic zero. The curve X can be either hyperelliptic (h) (defined
by an equation of the form y2 = h(x) where h has degree 9 or 10) or
non-hyperelliptic (n.h) (defined as the intersection of a quadric and a cubic
hypersurface in P3

F ).

The following Theorem is a consequence of [40, §2] and [14, Lemma 3.1].

Theorem 5.1. In Table 5.1 we list all possible automorphism group G of a
curve of genus four. Moreover, for each such group G, we give the signature
of the covering πG : X → X/G.

Now let X be a curve of genus five defined over an algebraically closed
field F of characteristic zero. The curve X can be either hyperelliptic (h)
(defined by an equation of the form y2 = h(x) where h has degree 11 or
12) or non-hyperelliptic (n.h) (if X is not trigonal, then it is a complete
intersection of three quadric hypersurfaces in P4

F ).
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The following Theorem is a consequence of [41, §1] and [6, Lemma 2.1].

Theorem 5.2. In Table 5.2 we list all possible automorphism group of a
curve of genus five. Moreover, for each such group G, we give the signature
of the covering πG : X → X/G.

5.2 Curves of genus 4 definable over their field of
moduli

Let X be a curve of genus four with automorphism group Aut(X).

Theorem 5.3. Let X be a hyperelliptic curve of genus four defined over an
algebraically closed field F of characteristic zero. If either Aut(X) is trivial
or Aut(X) � Z2,Z4, then X is definable over FX .

Proof. In case the group Aut(X) is trivial it follows from Corollary 1.18
and Theorem 1.12, otherwise this follows from Theorem 5.1 and Corollary
2.12.

On the other hand, it is easy to exhibit examples of genus four curves with
automorphism group isomorphic to either Z2 or Z4 which can not be defined
over their field of moduli relative to the extension C /R;

Example 5.4. Consider a hyperelliptic curve X of genus four defined by

X : y2 = a0x
5+(a1x

6−ā1x
4)+(a2x

7+ā2x
3)+(a3x

8−ā3x
2)+(a4x

9+ā4x)+(x10−1),

where a0 ∈ R and a1, a2, a3, a4 ∈ C. Then

• Aut(X) ∼= 〈ι〉, where ι(x, y) = (x,−y) is the hyperelliptic involution
of X (see [55]);

• the field of moduli of X relative to the extension C/R is R and is not a
field of definition of X. In fact, consider the conjugate curve X given
by

y2 = a0x
5+(ā1x

6−a1x
4)+(ā2x

7+a2x
3)+(ā3x

8−a3x
2)+(ā4x

9+a4x)+(x10−1).

The curves X, X are isomorphic by the isomorphism

µ(x, y) = (
1

−x
,
iy

x5
).
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As the automorphism group of X is Aut(X) = 〈ι〉, any isomorphism
X −→ X is given by µιj , where 0 ≤ j ≤ 1. We have µι = ιµ, and

µ̄µ(x, y) = µ̄(
1

−x
,
iy

x5
) = (x,−y).

and

(µιj)µιj = µ̄ιjµιj = µ̄µ = ι 6= id.

Therefore Weil’s cocycle condition from Theorem 1.17 does not hold.
So X cannot be defined over R.

Example 5.5. Consider a hyperelliptic curve X of genus four defined by

X : y2 = x(x2 − a1)(x2 + 1/ā1)(x2 − a2)(x2 + 1/ā2),

where a1, a2 ∈ C with |a1| 6= |a2|, a1/ā1 6= a2/ā2, |a1| 6= |1/a2| and
a1a2/ā1ā2 = 1. Then

• Aut(X) ∼= 〈η〉, where η(x, y) = (ζ2
4x, ζ4y) (see, Lemma 3.7);

• by Theorem 3.8 with m = 2 and n = 2, X has field of moduli R but
cannot be defined over R.

Remark 5.6. Let X be a hyperelliptic curve of genus four defined over an
algebraically closed field F of characteristic zero. If Aut(X) ∼= Z2,Z4, then
X is defined over an extension of degree at most two of the field FX .

Theorem 5.7. Let X be a non hyperelliptic curve of genus four defined
over an algebraically closed field F of characteristic zero such that the curve
X/Aut(X) has genus zero. If either Aut(X) is trivial or Aut(X) � D3,
then X is definable over FX .

Proof. In case the group Aut(X) is trivial it follows from Corollary 1.18
and Theorem 1.12, otherwise this follows from Theorem 5.1 and Corollary
2.12.

Remark 5.8. If Aut(X) ∼= D3, then X is definable over FX or over an
extension of degree two of it by Theorem 5.1 and Proposition 2.14.

Now we study the case of curve of genus four defined over C.

Definition 5.9. We will say that a simple abelian variety V is of CM -type if
there is a number field K with [K : Q] = 2dim(V ) such that K ⊂ End0(V ).
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Proposition 5.10. Let L be a subfield of C and consider the following curve
Xλ,µ,ν over C defined by:

y3 = x(x− 1)(x− λ)(x− µ)(x− ν), λ, µ, ν ∈ C−{0, 1}. (5.1)

Then

i) Aut(Xλ,µ,ν) ∼= Z3,

ii) the jacobian variety J(Xλ,µ,ν) of the curve Xλ,µ,ν is of CM -type,

iii) the curve Xλ,µ,ν is defined over its field moduli relative to the extension
C /L.

Proof. i) Follows of [35, Theorem 2], ii) follows of [34, §1], iii) follows of
Theorem in [46, 47].

Proposition 5.11. Let L be a subfield of C and consider the following curve
Xλ over C defined by:

Xλ : y5 = x(x− 1)(x− λ), λ ∈ C−{0, 1}. (5.2)

Then

i) Aut(Xλ) ∼= Z5,

ii) the jacobian variety J(Xλ) of the curve Xλ is of CM -type,

iii) the curve Xλ is defined over its field moduli relative to the extension
C /L.

Proof. i) Follows of [35, Theorem 1], ii) follows of [34, §1], iii) follows of
Theorem in [46, 47].

Theorem 5.12. Let Xλ be the curve given in (5.2). Then the field of moduli
of Xλ relative to the extension C/Q is Q(j(λ)) and is a field of definition
for Xλ, where

j(λ) = 28 (1− λ+ λ2)3

λ2(1− λ)2
.

Proof. Let σ ∈ Aut(C /Q). By Corollary of the Theorem 2.1 in [48], the
curve Xλ is isomorphic to the curve Xσ

λ := Xσ(λ) over C if and only if
σ(λ) ∈ S, where

S := {λ, 1/λ, 1− λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1)}.
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Observe that Xσ(λ) is isomorphic to Xλ over C if and only if we have

j(λ) := σ(j(λ)).

Thus

UC /Q(Xλ) = {σ ∈ Aut(C /Q) : Xσ
λ
∼= Xλ} = Aut(C /Q(j(λ)))

Since C /Q is a general Galois extension we deduce that

MC /Q(Xλ) = Fix(UC /Q(Xλ)) = Q(j(λ)).

Then, the result follows from Proposition 5.11.

5.3 Curves of genus 5 definable over their field of
moduli

Let X be a curve of genus five with automorphism group Aut(X).

Theorem 5.13. Let X be a hyperelliptic curve of genus five defined over an
algebraically closed field F of characteristic zero. If either Aut(X) is trivial
or Aut(X) � Z6,Z2×Z2, then X is definable over FX .

Proof. In case the group Aut(X) is trivial it follows from Corollary 1.18 and
Theorem 1.12. In case Aut(X) � D4,Z2 this follows from Theorem 5.2 and
Corollary 2.12. In case Aut(X) ∼= D4 this follows of Theorem 2.15. In case
Aut(X) ∼= Z2 this follows of [42, Proposition 4.14].

On the other hand, it is easy to exhibit examples of genus five curves with
automorphism group isomorphic to either Z2×Z2 or Z6 which can not be
defined over their field of moduli relative to the extension C /R;

Example 5.14. Consider a hyperelliptic curve X of genus five defined by

X : y2 = (x2 − a1)(x2 + 1/ā1)(x2 − a2)(x2 + 1/ā2)(x2 − a3)(x2 + 1/ā3),

where a1, a2, a3 ∈ C with |ai| 6= |aj |, ai/āi 6= aj/āj if i 6= j, |ai| 6= |1/aj | for
all i, j, and a1a2a3/ā1ā2ā3 = −1. Then

• Aut(X) is generated by ι(x, y) = (x,−y) and ν(x, y) = (−x, y) (see,
Lemma 3.6);
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• by Theorem 3.8 with m = 3 and n = 2, X has field of moduli R but
cannot be defined over R.

Example 5.15. Consider a hyperelliptic curve X of genus five defined by

X : y2 = (x3 − a1)(x3 + 1/ā1)(x3 − a2)(x3 + 1/ā2),

where a1, a2 ∈ C with |a1| 6= |a2|, a1/ā1 6= a2/ā2, |a1| 6= |1/a2| and
a1a2/ā1ā2 = −1. Then

• Aut(X) is generated by ι(x, y) = (x,−y) and ν(x, y) = (ζ3x, y) (see,
Lemma 3.6);

• by Theorem 3.8 with m = 2 and n = 3, X has field of moduli R but
cannot be defined over R.

Remark 5.16. Let X be a hyperelliptic curve of genus five defined over an
algebraically closed field F of characteristic zero with automorphism group
isomorphic to either Z2×Z2 or Z6. Then X is defined over an extension of
degree at most two of FX .

Theorem 5.17. Let X be a non hyperelliptic curve of genus five defined
over an algebraically closed field F of characteristic zero such that the curve
X/Aut(X) has genus zero. If either Aut(X) is trivial or Aut(X) is not
isomorphic to either Z4 or Z2×Z2×Z2, then X is definable over FX .

Proof. This follows from Theorem 5.2 and Corollary 2.12.

Proposition 5.18. Let X be a non hyperelliptic curve of genus five defined
over an algebraically closed field F of characteristic zero such that the curve
X/Aut(X) has genus zero. If Aut(X) ∼= Z4, then X is definable over FX
or an extension of degree two of it.

Proof. Its follows from Theorem 5.2 and Proposition 2.14.

We now study the case of a non hyperelliptic curve of genus five defined
over C with automorphism group isomorphic to Z2×Z2×Z2.

In [28] R. A. Hidalgo proved that the following curve C ⊂ P5 of genus 17
has field of moduli contained in R but is not definable over R:

C :=


x2

1 + x2
2 + x2

3 = 0
−r2x1 + x2

2 + x2
4 = 0

reiθx2
1 + x2

2 + x2
5 = 0

−reiθx2
1 + x2

2 + x2
6 = 0,
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where r > 1 is an integer and θ ∈ Q and eiθ 6= ±1,±i.

The automorphism group of C contains the group H ∼= Z5
2 generated by

the automorphisms a1, . . . , a5, where ai acts as the multiplication of xi by
−1. We now consider the subgroup K = 〈a1a2, a3a4〉 ∼= Z2

2 of H and the
quotient curve D := C/K.

Lemma 5.19. The curve D is isomorphic to the following smooth curve in
P4, in particular it is non-hyperelliptic of genus five:

w2
2 = w2

0 − 2reiθw0w1

w2
3 = w1(−w0 + reiθw1)

w2
4 = w2

0 + (r2 − 2reiθ − 1)w0w1 − (reiθ + 1)(r2 − reiθ)w2
1.

Proof. We work in affine coordinates putting x6 = 1. The ring of invariants
C[x1, . . . , x5]K is generated by

y1 = x2
1, y2 = x2

2, y3 = x2
3, y4 = x2

4, y5 = x5, y6 = x1x2, y7 = x3x4.

Thus the quotient curve C/K is defined by

y1 + y2 + y3 = 0
−r2y1 + y2 + y4 = 0
reiθy1 + y2 + y2

5 = 0
−reiθy1 + y2 + 1 = 0
y2

6 = y1y2

y2
7 = y3y4

which gives, after eliminating variables and taking homogeneous coordinates,
the model of D in the statement, where y1 = w1/w0, y5 = w2/w0, y6 =
w3/w0, y7 = w4/w0. A computation with MAGMA [7] shows that the model
ofD is a smooth curve. Since it is the complete intersection of three quadrics,
it is a curve of genus 5 embedded by its canonical divisor, in particular it is
not hyperelliptic.

Observe that the automorphism group of the curve D contains the sub-
group L ∼= Z3

2 generated by the automorphisms induced by a1, a3, a5.

Lemma 5.20. Let {rθ} = {−(
√

1 + cos(θ)2 − cos(θ))2,−(
√

1 + cos(θ)2 +
cos(θ))2} ∩ (1,+∞). If r 6= rθ, then Aut(D) = L.
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Proof. By checking in the list of automorphism groups of compact Riemann
surfaces of genus five in Theorem 5.2, one can see that, when the automor-
phism group contains properly a subgroup isomorphic to L, then this is con-
tained in an abelian subgroup L′ with index two. Thus L induces an involu-
tion ofD/L ∼= P1 which preserves the branch points {∞, 0, 1,−r2, eiθ,−reiθ}.
This is not possible if r 6= rθ (ver [28]).

We now prove the following:

Theorem 5.21. The field of moduli of D is contained in R but D can not
be defined over R.

Proof. The curve C carries the following anti-conformal automorphism of
order 4:

τ([x1 : x2 : x3 : x4 : x5 : x6]) = [x̄2 : irx̄1 : x̄4 : irx̄3 :
√
reiθx̄6 : i

√
reiθx̄5].

The previous automorphism satisfies τKτ−1 = K, thus it induces an anti-
conformal automorphism η on D, which still has order 4 since τ2 is not in K.
This implies that D has field of moduli contained in R, i.e. it is isomorphic
to its conjugate D.

Now assume that D admits an anti-conformal involution θ. Thus η−1θ is
a conformal automorphism of D, which equals L = H/K = 〈α1, α2, α3〉 by
Lemma 5.20. This gives that

θ ∈ {ηα1, ηα2, ηα3, ηα1α2, ηα2α3, ηα1α2α3}.

Observe that any lifting of θ to C is of the form τaρ, where ρ ∈ K and
a ∈ H. Since θ2 = id, thus (τaρ)2 ∈ K. It can be easily proved that this
does not happen for any ρ ∈ K, a ∈ H:

(τa1ρ)2 = τa1ρτa1ρ = (a2a3a5)ρ∗ρ

(τa3ρ)2 = τa3ρτa3ρ = (a1a4a5)ρ∗ρ

(τa5ρ)2 = τa5ρτa5ρ = (a2a4a5)ρ∗ρ

(τa1a3ρ)2 = τa1a3ρτa1a3ρ = (a2a4a5)ρ∗ρ

(τa1a5ρ)2 = τa1ρτa1a5ρ = (a1a4a5)ρ∗ρ

(τa3a5ρ)2 = τa3a5ρτa3a5ρ = (a2a4a5)ρ∗ρ

(τa1a3a5ρ)2 = τa1a3a5ρτa1a3a5ρ = (a1a3a5)ρ∗ρ,

where ρ∗ ∈ K.
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n |G| signature of πG G Information

1 (2; 2, 2) Z2 n.h
2 2 (1; 2, 2, 2, 2, 2, 2) Z2 n.h
3 (0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) Z2 h

4 (2; ..) Z3 n.h
5 3 (1; 3, 3, 3) Z3 n.h
6 (0; 3, 3, 3, 3, 3, 3) Z3 n.h

7 (0; 2, 2, 2, 2, 4, 4) Z4 h
8 4 (0; 2, 4, 4, 4, 4) Z4 n.h
9 (1; 2, 2, 2) Z2×Z2 n.h
10 (0; 2, 2, 2, 2, 2, 2, 2) Z2×Z2 h

11 5 (0; 5, 5, 5, 5) Z5 n.h

12 (0; 2, 2, 2, 2, 2, 2) D3 n.h
13 6 (0; 2, 6, 6, 6) Z6 n.h
14 (0; 2, 2, 2, 3, 6) Z6 h
15 (0; 2, 2, 3, 3, 3) Z6, D3 n.h

16 8 (0; 2, 2, 2, 2, 4) D4 h, n.h
17 (0; 2, 4, 4, 4) G2 h

18 (0; 4, 6, 12) Z12 n.h
19 12 (0; 2, 2, 3, 6) Z6×Z2, D6 n.h
20 (0; 2, 2, 2, 2, 2) D6 n.h
21 (0; 2, 3, 3, 3) A4 n.h

22 15 (0; 3, 5, 15) Z15 n.h

21 16 (0; 2, 2, 2, 8) D8 h

22 18 (0; 2, 9, 18) Z18 h

23 20 (0; 2, 2, 2, 5) D10 h

24 (0; 3, 4, 6) SL2(3) h
25 24 (0; 2, 2, 2, 4) S4 n.h

26 32 (0; 2, 4, 16) U8 h

27 36 (0; 2, 2, 2, 3) D3 ×D3 n.h

28 40 (0; 2, 4, 10) V10 h

29 72 (0; 2, 4, 6) (Z3×Z3)oD4 n.h
30 (0; 2, 3, 12) S4 × Z3 n.h

31 120 (0; 2, 4, 5) S5 n.h

Table 5.1: Automorphism groups of curves of genus four.
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n |G| signature of πG G Information

1 (0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) Z2 h
2 2 (1; 2, 2, 2, 2, 2, 2, 2, 2) Z2 n.h
3 (2; 2, 2, 2, 2) Z2 n.h
4 (3; ..) Z2 n.h

5 3 (0; 3, 3, 3, 3, 3, 3, 3) Z3 n.h
6 (1; 3, 3, 3, 3) Z3 n.h

7 (0; 2, 2, 2, 2, 2, 2, 2, 2) Z2×Z2 h
8 (0; 2, 2, 2, 2, 2, 4, 4) Z4 h
9 4 (0; 2, 2, 4, 4, 4, 4) Z4 n.h
10 (1; 2, 2, 2, 2) Z4,Z2×Z2 n.h
11 (1; 2, 4, 4) Z4 n.h

12 (0; 2, 2, 2, 2, 3, 3) Z6 h
D3 n.h

13 (0; 2, 3, 3, 3, 6) Z6 n.h
14 6 (0; 2, 2, 3, 6, 6) Z6 n.h

15 8 (0; 2, 2, 2, 2, 2, 2) Z2×Z2×Z2, D4 n.h, h
16 (0; 2, 2, 2, 4, 4) Z4×Z2, D4 h
17 (0; 2, 4, 8, 8) Z8

18 10 (0, 2, 2, 2, 2, 5) D5 n.h

19 11 (0; 11, 11, 11) Z11 n.h

20 (0; 2, 2, 2, 2, 3) D6 h
21 12 (0; 2, 3, 4, 4) Z3oZ4 h

22 16 (0; 2, 2, 2, 2, 2) Z4
2, D8, D4 × Z2, n.h

23 20 (0; 2, 2, 2, 10) D10 h

24 22 (0; 2, 11, 22) Z22 h

25 24 (0; 2, 2, 2, 6) D6 × Z2 h
(Z6×Z2)o Z2 n.h

26 30 (0; 2, 6, 15) D5 × Z3 n.h

27 32 (0; 2, 2, 2, 4) Z4
2oZ2 n.h

(Z4×Z2×Z2)o Z2 n.h
(D4 × Z2)o Z2 n.h

28 40 (0; 2, 4, 20) D5 × Z4 h

29 48 (0; 2, 2, 2, 3) S4 × Z2 n.h
30 (0; 2, 4, 12) (Z12×Z12)o Z2 h

31 96 (0; 2, 4, 6) (A4 × Z2×Z2)o Z2 n.h

32 120 (0; 2, 3, 10) A5 × Z2 h

33 160 (0; 2, 4, 5) ((Z4
2)o Z5)o Z2 n.h

34 192 (0; 2, 3, 8) (((Z4×Z2)o Z4)o Z3)o Z2 n.h

Table 5.2: Automorphism groups of curves of genus five.
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Chapter 6

Rational models of curves
with reduced dihedral
automorphism group

In this chapter we find rational models of curves over their field of mod-
uli. In Section 6.1 we give a brief description of the dihedral invariants
defined in [23] and how they are used to describe the loci of curves with
fixed automorphism group. In Section 6.2 we construct rational models
for hyperelliptic curves whose reduced automorphism group is isomorphic
to a dihedral group. In Section 6.3 we construct rational models for some
hyperelliptic curves of genus four and five.

6.1 Dihedral invariants of hyperelliptic curves

Let F be an algebraically closed field of characteristic zero and X be a
hyperelliptic curve of genus g ≥ 2 defined over F . Let Aut(X) be its auto-
morphism group and ι be the hyperelliptic involution of X. We recall that
the reduced automorphism group of X is Aut(X) := Aut(X)/〈ι〉. We say
that X has an extra involution when there is a non-hyperelliptic involution
in Aut(X). An involution in Aut(X) is called an extra involution if it is
the image of an extra involution of Aut(X). The following is given in [53,
Theorem 5.1].

Proposition 6.1. Let X be a hyperelliptic curve of genus g defined over an
algebraically closed field F of characteristic zero and let α be an automor-
phism of X of order m which does not fix any of the Weierstrass points.
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Then X is isomorphic to a curve given by the equation:

y2 = f(xm), (6.1)

with f(x) = xd+ad−1x
d−1 + · · ·+a1x+1, where a1, · · · , ad−1 ∈ F , m = 2 or

m is odd and md = 2g + 2 and ∆(a1, · · · , ad−1) 6= 0 (∆ is the discriminant
of the right-hand side).

The equation (6.1) is called the normal equation of the curve X. The
automorphism ᾱ : x → ζmx, where ζm is a primitive m-th root of unity,
in Aut(X) determines the coordinate x up to a coordinate change by γ ∈
PGL2(F ) centralizing α. So x is determined up to a coordinate change
by the subgroup Dd := 〈τ1, τ2〉 < PGL2(F ) generated by τ1(x) = ζdx and
τ2(x) = 1

x , where ζd is a primitive d-th root of unity. Hence Dd := 〈τ1, τ2〉
acts on F (a1, · · · , ad−1) as follows:

τ1(ai) = ζsid ai, τ2(ai) = ad−i, for 1 ≤ i ≤ d− 1.

The invariants of such action are:

ui := ad−i1 ai + ad−id−1ad−i, for 1 ≤ i ≤ d− 1,

and are called dihedral invariants of the curve X. It is easily seen that
(u1, · · · , ud−1) = (0, · · · , 0) if and only if a1 = ad−1 = 0. In this case,
replacing a1, ad−1 by a2, ad−2 in the formula above gives new invariants.

Lemma 6.2. If a := (a1, · · · , ad−1) ∈ F d−1 with 4(a) 6= 0, then the equa-
tion (6.1) defines a hyperelliptic curve of genus g defined over F such that
its reduced automorphism group contains the automorphism α : x → ζmx.
Two such curves (X,α) and (X ′, α′) are isomorphic if and only if the cor-
responding dihedral invariants are the same.

Proof. For m = 2, see [23, Lemma 3.5]. The proof for m > 2 is similar.

The following result, proved by Gutierrez and Shaska in [23, Theorem 3.6],
explains the modular interpretation of the dihedral invariants.

Theorem 6.3. Let X be a hyperelliptic curve of genus g ≥ 2 defined over
F . The tuples u = (u1, · · · , ud−1) ∈ F d−1 with 4 6= 0 bijectively classify the
isomorphism classes of pairs (X, ᾱ) where ᾱ is an order m automorphism
in Aut(X). In particular, a given curve will have as many tuples of these
invariants as its reduced automorphism group has conjugacy classes of order
m automorphisms.
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We observe the following.

Corollary 6.4. Let X : y2 = f(xm) be a hyperelliptic curve of genus
g ≥ 2 defined over a field F and let K be a subfield of F such that the
extension F/K is Galois. If Aut(X) contains a unique conjugacy class of
automorphisms of order m, then the dihedral invariants generate the field of
moduli of X over K.

Proof. Let σ ∈ Gal(F/K). Since Aut(X) contains a unique conjugacy class
of order m automorphisms, then by Theorem 6.3 we have that X and Xσ

are isomorphic if and only if they have the same dihedral invariants, i.e.

ui(X) = ui(X
σ) = σ(ui(X))

for all i = 1, . . . , d − 1. Thus UF/K(X) = Gal(F/K(u1, . . . , ud−1)). Since
the extension is Galois, this implies that MF/K(X) = Fix(UF/K(X)) =
K(u1, . . . , ud−1).

Remark 6.5. In case m = 2, if the group Aut(X) is isomorphic to either
Zn with even n, or to Dn with odd n, then the dihedral invariants generate
the field of moduli by Corollary 6.4. The conclusion of Corollary 6.4 also
holds if m = 2, Aut(X) ∼= Dn with even n and u1, . . . , ug are the dihedral
invariants associated to an involution α such that ᾱ generates the center of
Aut(X).

6.2 Rational models over the field of moduli

Let X be a hyperelliptic curve of genus g defined over an algebraically closed
field F of characteristic zero such that Aut(X) = Dn. In this case the field
of moduli K ⊂ F of X is a field of definition by Theorem 2.15. If X ′ is
a curve defined over K and isomorphic to X over F , we say that X ′ is a
rational model of X over its field of moduli.

Lemma 6.6. Let X be a genus g ≥ 2 hyperelliptic curve with Aut(X) ∼= Dn.
Then, Aut(X), the equation of X, and the signature of π : X → X/Aut(X)
are given in Table 6.1.

Proof. See, [10, Theorem 2.1] and [52, §3].

Remark 6.7. Let X be a hyperelliptic curve of genus g ≥ 2 with Aut(X) ∼=
Dn. Then
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] Aut(X) t equation of X : y2 = f(x) signature of π

1 Z2×Dn
g+1
n

∏t
i=1(x2n + aix

n + 1) (0;

t︷ ︸︸ ︷
2, · · · , 2, 2, 2, n)

2 Vn
g+1
n −

1
2 (xn − 1)

∏t
i=1(x2n + aix

n + 1) (0;

t︷ ︸︸ ︷
2, · · · , 2, 2, 4, n)

3 D2n
g
n x

∏t
i=1(x2n + aix

n + 1) (0;

t︷ ︸︸ ︷
2, · · · , 2, 2, 2, 2n)

4 Hn
g+1
n − 1 (x2n − 1)

∏t
i=1(x2n + aix

n + 1) (0;

t︷ ︸︸ ︷
2, · · · , 2, 4, 4, n)

5 Un
g
n −

1
2 x(xn − 1)

∏t
i=1(x2n + aix

n + 1) (0;

t︷ ︸︸ ︷
2, · · · , 2, 2, 4, 2n)

6 Gn
g
n − 1 x(x2n − 1)

∏t
i=1(x2n + aix

n + 1) (0;

t︷ ︸︸ ︷
2, · · · , 2, 4, 4, 2n)

Table 6.1: Hyperelliptic curves with reduced automorphism group Dn.

• the curve X has an extra involution in the cases 1, 2, 3, 4, 5 of Table
6.1;

• the curve X has no extra involution in the case 6 of Table 6.1;

• by [9, Corollary 2.6] for any given genus g ≥ 2, the maximum order of
a dihedral group of automorphisms acting on a curve of genus g is:

i) 4g + 4 if g is even, in which case Aut(X) ∼= Z2×Dg+1 and the
signature of π : X → X/Aut(X) is given by (0; g + 1, 2, 2, 2);

ii) 4g if g is odd, in which case Aut(X) ∼= D2g and the signature of
π : X → X/Aut(X) is given by (0; 2g, 2, 2, 2).

Observe that in both cases n is odd.

Theorem 6.8. Let X be a hyperelliptic curve of genus g ≥ 2 such that
Aut(X) ∼= Dn, with n ≥ 4 an even integer. Let α be an extra involution
of X such that ᾱ generates the center of Aut(X) and let u1, · · · , ug be the
corresponding dihedral invariants of X. If u1 6= 0, then there is a rational
model of X over its field of moduli given by

X ′ : y2 = u1x
2g+2 + u1x

2g + u2x
2g−2 + u3x

2g−4 + · · ·+ ugx
2 + 2.

Proof. See [23, Theorem 4.5] and Remark 6.5.
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Theorem 6.9. Let X be a hyperelliptic curve of genus g ≥ 2 with automor-
phism group isomorphic to either Z2×Dg+1 or D2g and let u1, · · · , ug be the
corresponding dihedral invariants. Then

i) If g is even and ug 6= 0, then there is a rational model of X over its
field of moduli given by

X ′ : y2 = a2x2g+2 + a2xg+1 + 1,

where a2 =
4ug−8(g+1)2(2g+1)2

ug−2(g+1)2
.

ii) If g is odd and ug 6= 0, then there is a rational model of X over its
field of moduli given by

X ′ : y2 = x(b2x2g + b2xg + 1),

where b2 =
4ug−8(g(2g−1)−1)2

ug−2(g+1)2
.

Proof. i) By Remark 6.7 and Lemma 6.6 the curve X can be given by the
equation

X : y2 = x2g+2 + axg+1 + 1.

By applying the transformations (x, y) 7→ (x+1
x−1 ,

y
(x−1)g+1 ) and (x, y) 7→

( 2g+2
√
θx, y), with θ = 2−a

2+a , one obtains that the curve X is isomorphic to
the curve

X ′ : y2 = x2g+2+
1

2− a

g∑
i=1

(
2

(
2g + 2

2i

)
+(−1)ia

(
g + 1

i

))
2g+2
√
θ2g+2−2ix2g+2−2i+1.

Thus

ug =
8(g + 1)2(2g + 1)2 − 2a2(g + 1)2)

4− a2
.

Eliminating we get a2 =
4ug−8(g+1)2(2g+1)2

ug−2(g+1)2
. Moreover, by applying the

transformation (x, y)→ ( g+1
√
ax, y) we see that the curve X is isomorphic

to the curve

X ′′ : y2 = a2x2g+2 + a2xg+1 + 1,

which is defined over its field of moduli.
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ii) By Remark 6.7 and Lemma 6.6 the curve X is given by

X : y2 = x(x2g + bxg + 1).

As before, by applying the transformations (x, y) → (x+1
x−1 ,

y
(x−1)g+1 ) and

(x, y)→ ( 2g+2
√
θx, y), where θ = b−2

b+2 , we obtain a normal form for X.

Eliminating b we get

b2 =
4ug − 8(g(2g − 1)− 1)2

ug − 2(g + 1)2
.

Moreover, by applying the transformation (x, y) → ( g
√
bx, 2g
√
by) we see

that the curve X is isomorphic to the curve

X ′ : y2 = x(b2x2g + b2xg + 1).

This completes the proof.

Example 6.10. Let X be a curve of genus 3 with Aut(X) ∼= D6. By
Remark 6.7 and Lemma 6.6 the curve X is given by

X : y2 = x(x6 + ax3 + 1).

By Theorem 6.9 ii) we have a2 = 4(u3−392)
u3−32 and the curve X is isomorphic

to the curve

X ′ : y2 = x(4(u3 − 392)x6 + 4(u3 − 392)x3 + u3 − 32).

6.3 Rational models of hyperelliptic curves of genus
4 and 5

By the results of Chapter 5 we have that a curve of genus 4 is definable over
its field of moduli if its automorphisms group is not isomorphic to either Z2

or Z4.

Theorem 6.11. Let X be a hyperelliptic curve of genus four defined over a
field F with automorphism group Aut(X) isomorphic to either D8 or Z2×D5

and u1, · · · , u4, s = 3 be the corresponding dihedral invariants. Then X has
a rational model over its field of moduli given by:
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i) if Aut(X) ∼= D8, then

y2 = (15u2
4−u3u4)x10+(15u2

4−u3u4)x8+(450u4−30u3−u2
4)x6+2u3x

4+2u4x
2+4,

such that 2u2
3 − 60u3u4 − u2

4 + 450u2
4 = 0;

ii) if Aut(X) ∼= Z2×D5, then

y2 = 4(u4 − 4050)x10 + 4(u4 − 4050)x5 + u4 − 50;

Proof. ii) follows from Theorem 6.9 i) with g = 4 and a2 = 4(u4−4050)
u4−50 . To

prove i), by Lemma 6.6 the curve X is given by

X : y2 = x(x8 + ax4 + 1).

By applying the transformations (x, y) 7−→ (x+1
x−1 ,

y
(x−1)5

) and (x, y)→ (x, iy),

the curve X is isomorphic to the curve

X ′ : y2 = x10 +
5a− 54

2 + a
x8 +

84 + 10a

2 + a
x6 +

84 + 10a

2 + a
x4 +

5a− 54

2 + a
x2 + 1.

Now we compute the dihedral invariants, we obtain

u1 = 2

(
5a− 54

2 + a

)5

,

u2 = 2

(
5a− 54

2 + a

)3 84 + 10a

2 + a
,

u3 = 2

(
5a− 54

2 + a

)2 84 + 10a

2 + a
,

u4 = 2

(
5a− 54

2 + a

)2

,

such that

2u1+u3u4−15u2
4 = 0, 2u2+30u3+u2

4−450u4 = 0, 2u2
3−60u3u4−u2

4+450u2
4 = 0.

By applying the transformation (x, y) 7→ (
√

5a−54
2+a x, y) we see that the

curve X ′ is isomorphic to the curve

X ′′ : y2 = u1x
10 + u1x

8 + u2x
6 + u3x

4 + u4x
2 + 2.

This concludes the proof.
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In the case of hyperelliptic curves X of genus five, by results of Chapter
5 we have that X is definable over its field of moduli if the automorphisms
group of X is not isomorphic to either Z2, Z6 or Z2×Z2.

Theorem 6.12. Let X be a hyperelliptic curve of genus five defined over
a field F with dihedral reduced automorphism group of order > 4 and let
u1, · · · , u5 be the corresponding dihedral invariants. Then X has a rational
model over its field of moduli given by:

i) If Aut(X) ∼= H3, then

y2 = 4(u5− 392)x6−u5 + 32)(4(u5− 392)x6 + 4(u5− 392)x3 +u5− 32;

ii) If Aut(X) ∼= Z2×D5, then

y2 = x(4(u5 − 3872)x10 + 4(u5 − 3872)x5 + u5 − 72);

iii) If Aut(X) ∼= Z2 ×D3, then

y2 = u2
3x

12 + u2
3x

9 + 2u2x
6 + 2u3x

3 + 4.

iv) If Aut(X) ∼= Z2 ×D6, then

y2 = u5x
12 + u5x

6 + 2.

Proof. Point ii) follows from Theorem 6.9 ii) with g = 5 and a2 = 4(u5−3872)
u5−72 .

In case i), by Lemma 6.6, the curve X is given by

X : y2 = (x6 − 1)(x6 + ax3 + 1).

By the transformation (x, y) 7→ (x+1
x−1 ,

y
(x−1)6

) we see that the curve X is

isomorphic to the curve

X ′ : y2 = x12+
28− 4a

2 + a
x10+

5a− 2

2 + a
x8− 56

2 + a
x6−5a+ 2

2 + a
x4+

28 + 4a

2 + a
x2+

2− a
2 + a

with a 6= 0,±2,±7,±2
5 . Let λ = 2−a

2+a , by the transformation (x, y) 7→
( 12
√
λx, y) we obtain the normal form

X ′′ : y2 = x12 +
28− 4a

2− a
12
√
λ10x10 +

5a− 2

2− a
12
√
λ8x8 −

− 56

2− a
12
√
λ6x6 − 5a+ 2

2− a
12
√
λ4x4 +

28 + 4a

2− a
12
√
λ2x2 + 1.
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Thus we obtain

u5 = 2λ

(
28− 4a

2− a

)(
28 + 4a

2− a

)
.

Eliminating we get a2 = 4(u5−392)
u5−32 . Moreover, by the transformation (x, y) 7→

( 3
√
ax, y), the curve X is isomorphic to a curve with equation

y2 = (a2x6 − 1)(a2x6 + a2x3 + 1).

This concludes the proof in this case.
To prove iii), observe that by Lemma 6.6 the curve X is given by

y2 = x12 + ax9 + bx6 + ax3 + 1.

Computing the dihedral invariants for d = 4 and m = 3, we obtain

u1 = 2a4, u2 = 2a2b, u3 = 2a2.

so that 2u1 − u2
3 = 0. Moreover, by applying the transformation (x, y) 7→

( 3
√
ax, y), we see the curve X is isomorphic to a curve with equation

y2 = a4x12 + a4x9 + a2bx6 + a2x3 + 1.

This concludes the proof in this case.
In case iv), by Lemma 6.6, we have that the curve X is given by

X : y2 = x12 + ax6 + 1.

We now compute the dihedral invariants:

u1 = 2a6, u2 = 2a5, u3 = 2a4, u4 = 2a3, 2a2.

By applying the transformation (x, y) 7→ ( 6
√
ax, y) we see that the curve X

is isomorphic to a curve with equation

X ′ : y2 = a2x12 + a2x6 + 1.

This concludes the proof.
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Conclusion

This thesis deals with fields of moduli of curves, more precisely we considered
the following question:

Question. Given a curve, is its field of moduli a field of definition?

In Chapter two we provide two answers to this question in Theorem 2.10
and Theorem 2.15, giving sufficient conditions for a curve to be defined over
its field of moduli in terms of certain properties of Galois covers defined on
the curve. This allowed to prove definability for cyclic q-gonal curves, plane
quartics and curves of genus four and five.

In this last section we state some open problems related to this work which
we intend to address in the future.

1. In both Theorem 2.10 and Theorem 2.15 we require that the quotient
X/H of the curve by a certain group H of automorphisms has genus
zero. This hypothesis allows to prove more easily the existence of ratio-
nal points which is required to apply the criterion by Debés-Emsalem
[16]. In the future, we would like to think about the following problem.

Problem. Consider a curve X of genus g ≥ 4 such that X/Aut(X)
has genus g ≥ 1. Find conditions such that the field of moduli of X is
a field of definition.

Giving an answer to this question would allow us to complete the
classification of non-hyperelliptic curves of genus four and five which
are definable over their field of moduli. More in general, this is an
important step when studying definability of non-hyperelliptic curves.
In case the quotient curve is a hyperelliptic curve which is definable
over its field of moduli, it would be interesting to find a criterion such
that a covering of it satisfies the same property.
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2. There is a complete classification of hyperelliptic curves which can
be defined over their field of moduli relative to the extension C /R
[32, 11]. In Chapter 3 we have given a partial answer in this direction
for cyclic q-gonal curves.

Problem. Classify which cyclic q-gonal curves can be defined over
their field of moduli relative to the extension C /R.

3. If a curve positively answers to the above Question, a natural problem
is to look for a rational model of the curve over its field of moduli,
i.e. a curve defined over the field of moduli and isomorphic to the
given curve. We addressed this problem in Chapter 6 for hyperelliptic
curves whose reduced automorphism group is a dihedral group. Partial
results for hyperelliptic curves have been given in [23, 2] and very
recently in [43]. For such curves, a more refined question is also asked:
is it possible to find a model over the field of moduli K of the form
y2 = f(x) with f ∈ K[x]? We think that it would be interesting to
generalize these results and the previous question to the case of q-gonal
curves.

Problem. Given a cyclic q-gonal curve X which is definable over its
field of moduli K, find a rational model of X over K and study when
it can be given by an equation of the form yq = f(x) with f ∈ K[x].

4. Another interesting problem is:

Problem. Given a projective algebraic variety X of dimension > 1,
find conditions such that the field of moduli of X is a field of definition.

Little is known about fields of moduli of algebraic projective varieties
of dimension > 1, except for the case of abelian varieties [55].
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