
Universidad de Concepción

Dirección de Postgrado

Facultad de Ciencias Físicas y Matemáticas - Programa Magíster en Matemática

Superficies de Riemann Pseudoreales de
género pequeño.

Pseudoreal Riemann Surfaces
of small genus.

Tesis para optar al grado de Magíster en Matemática

CRISTIAN RENATO REYES MONSALVE

CONCEPCIÓN-CHILE

2016

Profesor Guía: Michela Artebani

Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas

Universidad de Concepción

Profesor co-Guía: Andrea Luigi Tironi

Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas

Universidad de Concepción



Contents

Acknowledgments 4

List of tables 6

List of figures 8

Introduction 9

Introducción 15

1 Preliminaries 21
1.1 Fields of Moduli of projective curves . . . . . . . . . . . . . . . . . . . . 21
1.2 Riemann surfaces, Klein surfaces and their automorphism groups . . . 28

1.2.1 Riemann and Klein surfaces . . . . . . . . . . . . . . . . . . . . 28
1.2.2 NEC and Fuchsian groups . . . . . . . . . . . . . . . . . . . . . 33
1.2.3 NEC and Fuchsian signatures . . . . . . . . . . . . . . . . . . . 38

1.3 Pseudoreal Riemann surfaces . . . . . . . . . . . . . . . . . . . . . . . . 43

2 When X/Aut(X) has genus zero 46
2.1 Dèbes-Emsalem theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Hyperelliptic pseudoreal curves . . . . . . . . . . . . . . . . . . . . . . 48
2.3 Non-hyperelliptic pseudoreal curves . . . . . . . . . . . . . . . . . . . . . 51
2.4 Odd signature curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Pseudoreal Riemann surfaces and NEC groups 60
3.1 Existence for any genus . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Characterization of full groups of pseudoreal Riemann surfaces . . . . . . 61
3.3 Group extensions of degree 2 . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Automorphism groups of pseudoreal Riemann surfaces . . . . . . . . . 70

3.4.1 Conformal groups of Riemann surfaces . . . . . . . . . . . . . . 70
3.4.2 Actions with conformal and anticonformal elements . . . . . . . . 71
3.4.3 Full groups with non finitely maximal NEC signatures . . . . . 73
3.4.4 Maximal full groups . . . . . . . . . . . . . . . . . . . . . . . . 77

2



CONTENTS

4 Classification 81
4.1 Summary of known pseudoreal Riemann surfaces in low genus . . . . . . 81
4.2 Full groups for pseudoreal Riemann surfaces of genus 5 ≤ g ≤ 10 . . . . 84
4.3 Further examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Pseudoreal plane quintics . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Pseudoreal generalized superelliptic curves of low genus . . . . . . . . . 93

5 Magma Programs 95
5.1 J. Paulhus’ program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Our program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 The package pseudoreal.m . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Basic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 The function IsPseudoreal . . . . . . . . . . . . . . . . . . . . . 99
5.3.3 Lemmas in Baginski-Gromadzki’s paper . . . . . . . . . . . . . 100
5.3.4 The function PR . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Appendix A: List of groups 109

Appendix B: Classification tables 110

Appendix C: Pseudoreal generalized superelliptic curves 116

Bibliography 116

3



Acknowledgments

During these ∼ 2, 5 years of my master’s degree I have learned many beautiful things,

and my advisors were crucial in this process. For that reason I want to thank Michela

Artebani and Andrea Tironi, because they took me as an empty bottle and they began

to put little drops of mathematics inside me, according to my learning rhythm. The very

interesting topic of Riemann surfaces and their automorphism groups was an excellent

choice and I am very grateful to them for their wisdom at choosing me a theme. I am

also very grateful to Antonio Laface, because he helped us a lot in Chapter 3 and in the

design of the programs for Magma. I am very grateful of Jennifer Paulhus, because she

was very nice in helping us at explaining her program, which is a crucial part of this

thesis. Also I want to thank Saul Quispe, for his wise comments when I asked him for

help. I also want to thank the Faculty’s broadcast team, for giving me the opportunity

of sharing my love for mathematics with school students, for encouraging me to improve

my ability to expose and for suggesting me to read about physics and astronomy. In

particular I want to thank Valeria Vásquez, Pamela Paredes and Fernando Cortés. In

the same vein, I am very grateful to Ramón Bustos and Daniel Aravena, for showing

me the educational side of mathematics and introducing me to new authors. I want to

thank Alexis Valdebenito for helping me with the latex problems I had in this thesis.

Also I want to thank Rubén Hidalgo and Xavier Vidaux for accepting reading my thesis,

correcting and improving it. Finally, from the bottom of my heart, I want to thank

my family: Cristian Reyes Silva, Mónica Monsalve Alvear, Matías Reyes Monsalve and

Luisa Alvear, because they were always by my side and more important, because with

their company I always felt loved.

4



These studies were funded by CONICYT:

CONICYT PCHA/MagísterNacional/2014/22140855.

Moreover, this work has been supported by Proyectos FONDECYT Regular N. 1130572,

N. 1160897 and Proyecto Anillo CONICYT PIA ACT1415.

5



List of Tables

1.1 Finite subgroups G ≤ PGL(2, F ) . . . . . . . . . . . . . . . . . . . . . 33

1.2 Pairs of non-finitely maximal Fuchsian signatures . . . . . . . . . . . . 42

2.1 Signatures and automorphism groups of non-normal p-gonal curves . . 59

3.1 Automorphism groups of pseudoreal Riemann surfaces of genus 2 . . . 72

3.2 Automorphism groups of pseudoreal Riemann surfaces of genus 3 . . . 73

3.3 Automorphism groups of pseudoreal Riemann surfaces of genus 4 . . . 73

4.1 Automorphism groups of smooth plane quartics . . . . . . . . . . . . . 82

4.2 Automorphism groups of smooth plane quintics . . . . . . . . . . . . . 90

4.3 Possible automorphism groups for pseudoreal plane quintics . . . . . . . 91

5.1 Groups used in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Automorphism groups of pseudoreal Riemann surfaces of genus 5 . . . 110

5.3 Automorphism groups of pseudoreal Riemann surfaces of genus 6 . . . . 111

5.4 Automorphism groups of pseudoreal Riemann surfaces of genus 7 . . . . 111

5.5 Automorphism groups of pseudoreal Riemann surfaces of genus 8 . . . 112

5.6 Automorphism groups of pseudoreal Riemann surfaces of genus 9 . . . 113

5.7 Automorphism groups of pseudoreal Riemann surfaces of genus 10 . . . 115

5.8 Pseudoreal generalized superelliptic curves of genus 3 . . . . . . . . . . 116

5.9 Pseudoreal generalized superelliptic curves of genus 4 . . . . . . . . . . 116

5.10 Pseudoreal generalized superelliptic curves of genus 5 . . . . . . . . . . 116

6



LIST OF TABLES

5.11 Possible pseudoreal generalized superelliptic curves of genus 6 . . . . . 117

5.12 Pseudoreal generalized superelliptic curves of genus 7 . . . . . . . . . . 117

5.13 Pseudoreal generalized superelliptic curves of genus 8 . . . . . . . . . . 117

5.14 Possible pseudoreal generalized superelliptic curves of genus 9 . . . . . 117

5.15 Possible pseudoreal generalized superelliptic curves of genus 10 . . . . . 118

7



List of Figures

1.1 The Mobius strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Earle’s picture of his genus 5 example . . . . . . . . . . . . . . . . . . . 86

8



Introduction

Let X ⊆ PnC be a smooth complex projective curve defined as the zero locus of homoge-

neous polynomials P1, . . . , Pr ∈ C[x0, . . . , xn] and let X be its conjugate, i.e. the zero

locus of the polynomials obtained conjugating the coefficients of every polynomial Pi.

The curve X is called pseudoreal if it is isomorphic to X but is not isomorphic to a

curve defined by polynomials with coefficients in the field R of real numbers. Because of

the equivalence between isomorphism classes of smooth projective complex curves with

conformal classes of compact Riemann surfaces [Har77, Theorem 3.1, p. 441], together

with the fact that the definability of a curve over a field only depends on the isomorphism

class of X, we can define the concept of pseudoreal also for compact Riemann surfaces.

A different but equivalent definition of pseudoreal Riemann surface can be given

as follows. The association X → X defines an involution on the moduli spaceMg of

compact Riemann surfaces of genus g (see [Sch89, Chapter 7]). The fixed locus of such

involution contains the conformal classes of real Riemann surfaces (Definition 1.2.7),

i.e. Riemann surfaces admitting a projective model defined over R, and the conformal

classes of pseudoreal Riemann surfaces, which are Riemann surfaces (seen as Klein

surfaces, Definition 1.2.8) carrying anticonformal automorphisms but no anticonformal

involutions (Definition 1.3.1). In particular, it is known that the locus of pseudoreal

Riemann surfaces is contained in the singular locus ofMg (Lemma 3.2.3).

It can be easily proved that Riemann surfaces of genus 0 and 1 are not pseudoreal

(Proposition 1.1). The first examples of pseudoreal Riemann surfaces of genus g ≥ 2 are

due to C. Earle [Ear71, p. 126] and G. Shimura [Shi72, p. 177] and they are hyperelliptic
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curves of even genus.

In literature, one can find two main approaches to the study of pseudoreal Riemann

surfaces: a number-theoretical approach and an approach through NEC groups. The

first approach deals, more generally, with the problem of deciding whether the field of

moduli of a curve (Definition 1.1.10) is a field of definition (Definition 1.1.1). In this

setting, pseudoreal curves are complex curves whose field of moduli is contained in R,

but it has not R as a field of definition (Definition 1.1.14). A fundamental tool in this

approach is a classical theorem by A. Weil (Theorem 1.1.7), which provides a necessary

and sufficient conditions for a projective variety defined over a field L, to be definable

over a subfield K ⊆ L when the extension is Galois. More recently, P. Dèbes and M.

Emsalem proved that X/Aut(X) can always be defined over the field of moduli of X

and that X has the same property when a suitable model B of X/Aut(X) over the

subfield K ⊆ L has a K-rational point (see [DE99, Corollary 4.3 (c)]). In particular,

this result turns out to be useful when X/Aut(X) has genus zero: this has been applied

by B. Huggins to complete the classification of pseudoreal hyperelliptic curves (see

[Hug05, Proposition 5.0.5]) and it was later generalized by A. Kontogeorgis in [Kon09]

by studying p-gonal curves. Unfortunately, the result of Dèbes-Emsalem is not easy to

apply as soon as X/Aut(X) has genus not equal to zero.

A second approach, specific of compact Riemann surfaces, is through the theory of

Fuchsian groups, and more generally of non-euclidean crystallographic (NEC) groups

(Definition 1.2.19), which are discrete subgroups ∆ of the full automorphism group of

the hyperbolic plane H such that H/∆ is a compact Klein surface (Definition 1.2.8).

In fact, by the uniformization theorem (see [Sch89, Chapter 7]) any Riemann surface

X of genus g ≥ 2 is the quotient of H by a torsion free Fuchsian group ∆. Moreover,

the full automorphism group Aut±(H/∆) of H/∆ is the quotient NAut±(H)(∆)/∆, where

NAut±(H)(∆) is the normalizer of ∆ in Aut±(H) (Theorem 1.2.22), and its conformal

automorphism group Aut+(H/∆) is NAut±(H)(∆)+/∆, where NAut±(H)(∆)+ is the canon-

ical Fuchsian subgroup of NAut±(H)(∆) (Definition 1.2.19). If G is the full automorphism

group of a pseudoreal Riemann surface, then the conformal automorphism group G+ of
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G is an index two subgroup such that G\G+ contains no involutions. Moreover, there

exists an epimorphism ϕ : Γ→ G from a NEC group Γ such that ker(ϕ) is a torsion free

group and ϕ(Γ+) = G+, where Γ+ is the canonical free Fuchsian subgroup of Γ. This

idea allowed D. Singerman to prove the existence of pseudoreal Riemann surfaces of any

genus (Theorem 3.1.1). Moreover, it has been used by E. Bujalance, M. Conder and A.F.

Costa in [BCC10] and [BC14] to classify the full automorphism groups of pseudoreal

Riemann surfaces up to genus 4.

The aim of this thesis is to provide an introduction to both approaches and to show

some known and new results in this topic. The thesis is organized as follows. In Chapter

1, we give the background material for both approaches, defining and dealing with the

concepts of field of definition and fields of moduli (Section 1.1), Riemann and Klein

surfaces, the automorphism groups of such surfaces, Fuchsian and NEC groups, their

signatures (Section 1.2), and the concept of pseudoreal Riemann surface (Section 1.3). In

Chapter 2, we provide the principal tools and results in the problem of the definability of

a curve X over its field of moduli, when X/Aut(X) has genus 0, considering X defined

over a field not necessarily equal to C. We review the main known theorems and we

show the results obtained for hyperelliptic and p-gonal curves. Along this way, we would

like to point out that Section 2.3 contains our first new results, which are the following:

Theorem 1. (Theorem 2.3.5) Let F be an infinite perfect field of characteristic q 6= 2

and let F be an algebraic closure of F . Let X be a curve of genus g ≥ 2 defined over F

and let Z(G) the center of the automorphism group G of X. Suppose X/Z(G) has genus

0, and G/Z(G) is neither trivial, nor cyclic (if q = 0), nor cyclic of order relatively

prime to q (if q 6= 0). In that case X can be defined over MF/F (X).

Corollary 1. (Corollary 2.3.6) If X is a pseudoreal Riemann surface such that the

quotient X/Z (Aut(X)) has genus 0, then Aut(X) must be an Abelian group.

In Chapter 3, we provide the principal tools and results in the NEC group approach,
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such as the existence of pseudoreal Riemann surfaces in every genus, the characteriza-

tion of the full automorphism groups of pseudoreal Riemann surfaces, and the known

classifications of conformal and full automorphism groups of Riemann surfaces with

respect to a fixed genus. We provide new results (Corollary 3.3.5) which give conditions

on the existence of a group which extends another group with degree two, allowing us to

obtain an easier proof of [DE99, Corollary 4.3 (b)] and sufficient conditions for a group

to be the conformal automorphism group of a pseudoreal Riemann surface.

Theorem 2. (Theorem 3.3.7) If G is a group such that Z(G) = {1} and Inn(G) has

group complement in Aut(G), then any degree two extension of G will be a semidirect

product of C2 and G.

Corollary 2. (Corollary 3.3.8) Let G be the conformal automorphism group of a Rie-

mann surface X. Suppose that Z(G) = {1} and that Inn(G) has group complement in

Aut(G). Then X cannot be a pseudoreal Riemann surface.

Theorem 3. (Corollary 3.3.6) If G is a group such that Z(G) = {1} and Out(G) :=

Aut(G)/Inn(G) has no involutions — where Inn(G) is the group of inner automorphisms

of G —, then any extension of G by C2 is a direct product of G and C2.

Corollary 3. (Corollary 3.3.9) If G is the conformal automorphism group of a Riemann

surface X such that Z(G) = {1} and Out(G) has no involutions, then X cannot be

pseudoreal.

In Section 3.4.3 we complete the work in [BG10] identifying necessary and sufficient

conditions to find full automorphism groups of pseudoreal Riemann surfaces with

NEC signature (3;−; [−]; {−}) (Lemma 3.4.5). Finally, we consider the maximal full

automorphism groups of pseudoreal Riemann surfaces (see Theorem 3.4.6) and we prove

our following results.

12



Theorem 4. (Theorem 3.4.8) If a pseudoreal Riemann surface X has maximal full

automorphism group, then its conformal automorphism group is not Abelian.

Corollary 4. (Corollary 3.4.12) If X is a pseudoreal Riemann surface with maximal

full automorphism group, then it cannot be generalized superelliptic (see Definiton 3.4.11).

Chapter 4 contains a summary of the known full automorphism groups of pseudoreal

Riemann surfaces of genus 2 ≤ g ≤ 4, together with algebraic models that we found in

the literature (Section 4.1). Moreover, we extend the classification of full automorphism

groups until genus 10 in our next result.

Theorem 5. (Theorem 4.2.1) Two finite groups G and G are the conformal and full

automorphism groups of a pseudoreal Riemann surface X of genus 5 ≤ g ≤ 10 if and

only if G = Aut+(X) and G = Aut±(X) in the corresponding table by genus among

Table 5.2, 5.3, 5.4, 5.5, 5.6, 5.3.4, and 5.7.

In Section 4.3 we describe the known algebraic models for pseudoreal Riemann

surfaces in genus 5 ≤ g ≤ 10. We finish the chapter proving our following theorems.

Theorem 6. (Theorem 4.4.1) If X is a pseudoreal plane quintic X, then Aut+(X) and

Aut±(X) must be in a row in Table 4.3.

Theorem 7. (Theorem 4.5.1) Two finite groups G and G are the conformal and full

automorphism groups of a pseudoreal generalized superelliptic curve X of genus 3 ≤ g ≤

10 and cental element τ (remember Definition 3.4.11) if and only if G = Aut+(X) and

G = Aut±(X) in the corresponding table by genus among Table 5.8, 5.9, 5.10, 5.11,

5.12, 5.13, 5.14 and 5.15.
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In Chapter 5 we provide the Magma [BCP97] programs we wrote to carry out the

above classification and to make conjectures about the conformal and full automorphism

groups of pseudoreal Riemann surfaces.

Finally, in Appendix A we give the list of all the groups we used in this thesis, together

with a presentation, their orders and ID numbers when possible. In Appendix B we

give the classification tables of conformal and full automorphism groups of pseudoreal

Riemann surfaces of genus 5 ≤ g ≤ 10. Appendix C contains the classification tables of

conformal and full automorphism groups of pseudoreal generalized superelliptic curves

of genus 3 ≤ g ≤ 10.
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Introducción

Sea X ⊆ PnC una curva proyectiva compleja suave definida como el lugar de ceros de

los polinomios homogéneos P1, . . . , Pr ∈ C[x0, . . . , xn] y sea X su conjugada, es decir, el

lugar de ceros de los polinomios obtenidos al conjugar los coeficientes de cada polinomio

Pi. La curva X se dice pseudoreal si es isomorfa a X pero no es isomorfa a una curva

definida por polinomios con coeficientes en el cuerpo R de los números reales. Por la

equivalencia entre clases de isomorfismos de curvas complejas proyectivas suaves y clases

conformales de superficies de Riemann compactas [Har77, Teorema 3.1, p. 441], junto

con el hecho de que la definibilidad de una curva sobre un cuerpo solo depende de la

clase de isomorfismo de X, también podemos definir el concepto de pseudoreal para

superficies de Riemann compactas.

Una definición distinta pero equivalente de superficie de Riemann pseudoreal puede

ser dada como sigue. La aplicación X → X define una involución en el espacio de

moduli Mg de superficies de Riemann compactas de género g (ver [Sch89, Capítulo

7]). El lugar fijo de dicha involución contiene las clases conformales de superficies

de Riemann reles (Definición 1.2.7), es decir, superficies de Riemann que admiten un

modelo proyectivo definido sobre R, y las clases conformales de superficies de Riemann

pseudoreales, las cuales son superficies de Riemann (vistas como superficies de Klein,

Definición 1.2.8) que poseen automorfismos anticonformales pero ninguna involución

anticonformal (Definición 1.3.1). En particular, se sabe que el lugar de superficies de

Riemann pseudoreales está contenido en el lugar singular deMg (Lema 3.2.3).

Se puede probar fácilmente que las superficies de Riemann de género 0 y 1 no son

pseudoreales (Proposición 1.1). Los primeros ejemplos de superficies de Riemann
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pseudoreales de género g ≥ 2 son de C. Earle [Ear71, p. 126] y G. Shimura [Shi72, p. 177]

y son curvas hiperelípticas de género par.

En la literatura uno puede encontrar dos grandes enfoques al estudio de superficies

de Riemann pseudoreales: un enfoque de teoría de números y un enfoque a través de

los grupos NEC. El primer enfoque trata, de manera general, el problema de decidir

cuando el cuerpo de moduli de una curva (Definición 1.1.10) es un cuerpo de definición

(Definición 1.1.1). En este contexto, las curvas pseudoreales son curvas complejas cuyo

cuerpo de moduli está contenido en R, pero que no tienen a R como un cuerpo de

definición (Definición 1.1.14). Una herramienta fundamental en este enfoque es un

teorema clásico de A. Weil (Teorema 1.1.7), que proporciona condiciones necesarias y

suficientes para que una variedad proyectiva definida sobre un cuerpo L sea definible

sobre un subcuerpo K ⊆ L cuando la extensión es Galois. Más recientemente, P. Dèbes y

M. Emsalem probaron que X/Aut(X) siempre se puede definir sobre el cuerpo de moduli

de X y que X tiene la misma propiedad cuando un determinado modelo B de X/Aut(X)

sobre el subcuerpo K ⊆ L tiene un punto K-racional (ver [DE99, Corolario 4.3 (c)]).

En particular, este resultado resulta muy útil cuando X/Aut(X) tiene género 0: esto ha

sido usado por B. Huggins para completar la clasificación de las curvas hiperelípticas

pseudoreales (ver [Hug05, Proposición 5.0.5]) y fue posteriormente generalizado por A.

Kontogeorgis en [Kon09] estudiando curvas p-gonales. Desafortunadamente, el resultado

de Dèbes-Emsalem nos es fácil de aplicar si X/Aut(X) tiene género distinto de 0.

Un segundo enfoque, especifico de las superficies de Riemann compactas, es a través

de la teoría de los grupos Fuchsianos, y más generalmente de los grupos cristalográficos

no-euclidianos (grupos NEC, Definición 1.2.19), los cuales son subgrupos discretos ∆

del grupo full de automorfismos del plano hiperbólico H tal que H/∆ es una superficie

de Klein compacta (Definición 1.2.8). De hecho, por el teorema de uniformización (ver

[Sch89, Capítulo 7]) cualquier superficie de Riemann X de género g ≥ 2 es el cociente de

H por un grupo Fuchsiano libre de torsión ∆. Más aún, el grupo full de automorfismos

Aut±(H/∆) de H/∆ es el cocienteNAut±(H)(∆)/∆, dondeNAut±(H)(∆) es el normalizador

de ∆ en Aut±(H) (Teorema 1.2.22), y su grupo conformal de automorfismos Aut+(H/∆)
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esNAut±(H)(∆)+/∆, dondeNAut±(H)(∆)+ es el subgrupo Fuchsiano canónico deNAut±(H)(∆)

(Definición 1.2.19). Si G es el grupo full de automorfismos de una superficie de Riemann

pseudoreal, entonces el grupo conformal de automorfismos G+ de G es un subgrupo

de índice dos tal que G\G+ no contiene involuciones. Más aún, existe un epimorfismo

ϕ : Γ→ G de un grupo NEC Γ tal que ker(ϕ) es un grupo libre de torsión y ϕ(Γ+) = G+,

donde Γ+ es el subgrupo Fuchsiano canónico libre de Γ. Esta idea le permitió a D.

Singerman probar la existencia de superficies de Riemann pseudoreales para cada género

(Teorema 3.1.1). Más aún, ha sido usada por E. Bujalance, M. Conder y A.F. Costa

en [BCC10] y [BC14] para clasificar los grupos full de automorfismos de superficies de

Riemann pseudoreales hasta género 4.

El objetivo de esta tesis es proporcionar una introducción a ambos enfoques y mostrar

nuevos resultados en estos tópicos. La tesis está organizada de la siguiente manera.

En el Capítulo 1 entregamos los contenidos básicos de ambos enfoques, definiendo y

explicando los conceptos de cuerpo de definición y cuerpo de moduli (Sección 1.1),

superficies de Riemann y de Klein, los grupos de automorfismos de dichas superficies,

grupos Fuchsianos y NEC, sus signaturas (Sección 1.2), y el concepto de superficie

de Riemann pseudoreal (Sección 1.3). En el Capítulo 2 entregamos las principales

herramientas y resultados del problema de la definibilidad de una curva X sobre su

cuerpo de moduli, cuando X/Aut(X) tiene género 0, considerando X definida sobre un

cuerpo no necesariamente igual a C. Revisamos los principales teoremas y mostramos

los resultados obtenidos para curvas hiperelípticas y p-gonales. Nos gustaría puntualizar

que la Sección 2.3 contiene nuestros primeros resultados nuevos, que son los siguientes:

Teorema 1. (Teorema 2.3.5) Sea F un cuerpo perfecto infinito de característica q 6= 2

y sea F una clausura algebraica de F . Sea X una curva de género g ≥ 2 definida sobre

F y sea Z(G) el centro del grupo de automorfismos G de X. Supongamos que X/Z(G)

tiene género 0, y que G/Z(G) no es ni trivial ni cíclico (si q = 0), ni tampoco cíclico de

orden coprimo con q (si q 6= 0). En este caso X se puede definir sobre MF/F (X).
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Corolario 1. (Corolario 2.3.6) Si X es una superficie de Riemann pseudoreal tal que

el cociente X/Z (Aut(X)) tiene género 0, entonces Aut(X) debe ser un grupo Abeliano.

En el Capítulo 3 entregamos las principales herramientas y resultados en el enfoque

de grupos NEC, como la existencia de superficies de Riemann pseudoreales en cada

género, la caracterización de los grupos full de automorfismos de superficies de Rie-

mann pseudoreales, y las clasificaciones conocidas de grupos conformales y grupos full

de automorfismos de superficies de Riemann con respecto a un género fijo. Entreg-

amos nuevos resultados (Corolario 3.3.5) que nos dan condiciones para la existencia

de una extensión de grado dos de un grupo dado, lo que nos permite obtener una de-

mostración más simple de [DE99, Corolario 4.3 (a)], y condiciones suficientes para que un

grupo sea el grupo conformal de automorfismos de una superficie de Riemann pseudoreal.

Teorema 2. (Teorema 3.3.7) Si G es un grupo tal que Z(G) = {1} y Inn(G) tiene

complemento de grupo en Aut(G), entonces cualquier extensión de grado dos de G será

un producto semidirecto de C2 y G.

Corolario 2. (Corolario 3.3.8) Sea G el grupo conformal de automorfismos de una

superficie de Riemann X. Supongamos que Z(G) = {1} y que Inn(G) tiene complemento

de grupo en Aut(G). Entonces X no puede ser una superficie de Riemann pseudoreal.

Teorema 3. (Corolario 3.3.6) Si G es un grupo tal que Z(G) = {1} y Out(G) :=

Aut(G)/Inn(G) no tiene involuciones — donde Inn(G) es el grupo de automorfismos

internos de G —, entonces cualquier extensión de G por C2 es un producto directo de G

y C2.

Corolario 3. (Corolario 3.3.9) Si G es el grupo conformal de automorfismos de una

superficie de Riemann X tal que Z(G) = {1} y Out(G) no tiene involuciones, entonces

X no puede ser pseudoreal.
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En la Sección 3.4.3 completamos el trabajo realizado en [BG10] identificando condi-

ciones necesarias y suficientes para encontrar grupos full de automorfismos de superficies

de Riemann pseudoreales con signatura NEC (3;−; [−]; {−}) (Lema 3.4.5). Finalmente,

consideramos los grupos full maximales de automorfismos de superficies de Riemann

pseudoreales (ver Teorema 3.4.6) y demostramos los siguientes resultados.

Teorema 4. (Teorema 3.4.8) Si una superficie de Riemann pseudoreal X tiene grupo

full maximal de automorfismos, entonces su grupo conformal de automorfismos no es

Abeliano.

Corolario 4. (Corolario 3.4.12) Si X es una superficie de Riemann pseudoreal con

grupo full maximal de automorfismos, entonces no puede ser una curva superelíptica

generalizada (ver Definición 3.4.11).

El Capítulo 4 contiene un resumen de todos los grupos full de automorfismos de super-

ficies de Riemann pseudoreales de género 2 ≤ g ≤ 4 que se conocen, junto con modelos

algebraicos que encontramos en la literatura (Sección 4.1). Más aún, extendimos la clasifi-

cación de los grupos full de automorfismos hasta género 10 en nuestro siguiente resultado.

Teorema 5. (Teorema 4.2.1) Dos grupos finitos G y G son el grupos conformal y

el grupo full de automorfismos de una superficie de Riemann pseudoreal X de género

5 ≤ g ≤ 10 sí y solo si G = Aut+(X) y G = Aut±(X) en la correspondiente tabla por

género de entre las tablas 5.2, 5.3, 5.4, 5.5, 5.6, 5.3.4, y 5.7.

En la Sección 4.3 describimos los modelos algebraicos conocidos para superficies de

Riemann pseudoreales de género 5 ≤ g ≤ 10. Finalizamos el capítulo proporcionando

nuestros siguientes teoremas.
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Teorema 6. (Teorema 4.4.1) Si X es una quíntica plana pseudoreal X, entonces

G = Aut+(X) y G = Aut±(X) deben estar en una fila de la Tabla 4.3.

Teorema 7. (Teorema 4.5.1) Dos grupos finitos G y G son el grupo conformal y el

grupo full de automorfismos de una curva superelíptica generalizada pseudoreal X de

género 3 ≤ g ≤ 10 y con elemento central τ (recuerde Definición 3.4.11) sí y solo si

G = Aut+(X) y G = Aut±(X) en la correspondiente tabla por género de entre las tablas

5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15.

En el Capítulo 5 entregamos los programas de Magma [BCP97] que escribimos

para llevar a cabo la clasificación en el capítulo anterior, y para hacer conjeturas

sobre los grupos conformales y grupos full de automorfismos de superficies de Riemann

pseudoreales.

Finalmente, en el Apéndice A damos una lista de todos los grupos que utilizamos en

esta tesis, junto con una presentación, sus órdenes y sus ID number cuando es posible.

En el Apéndice B damos las tablas de clasificación de grupos conformales y grupos full

de automorfismos de superficies de Riemann pseudoreales de género 5 ≤ g ≤ 10. El

Apéndice C contiene las tablas de clasificación de grupos conformales y grupos full de

curvas superelípticas generalizadas pseudoreales de género 3 ≤ g ≤ 10.
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Chapter 1

Preliminaries

1.1 Fields of Moduli of projective curves

In this thesis curve is a smooth projective irreducible algebraic curve, a cyclic group is a

monogenous group, and A\B means {x ∈ A : x 6∈ B}.

Definition 1.1.1. Let F be an algebraically closed field and let X ⊆ Pn
F
be a curve

defined as the zero locus of some homogeneous polynomials {pi}ri=0 ⊆ F [x0, . . . , xn], i.e.

X = {x ∈ Pn
F

: pi(x) = 0, i = 0, . . . , r}.

If F/K is a field extension, we say that K is a field of definition of X if there exists a

curve Y ⊆ Pm
F

defined by

Y = {x ∈ Pm
F

: qi(x) = 0, i = 0, . . . , s},

such that {qi}si=0 ⊆ K[x0, . . . , xn] and X is isomorphic to Y over F . In this case, we

say that Y is a K-model for X.

Definition 1.1.2. If f : X −→ Y is a morphism between the curves X and Y , then

we say that f is defined over the field F if the polynomials defining f have all their

coefficients in F .
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1.1. Fields of Moduli of projective curves

Example 1.1.3. The curve X ⊆ P2
C given by

X : x3 + y3 + iz3 = 0

is clearly defined over C, but it has also R (or Q) as a field of definition because we

have the isomorphism

f : X −→ Y , [x : y : z] 7→ [x : y : −zi]

defined over C, where Y is the curve in P2
C defined by

Y : x3 + y3 + z3 = 0.

Definition 1.1.4. If F/K is a field extension, then we define

Aut(F/K) := {σ ∈ Aut(F ) : σ|K = IdK},

where Aut(F ) is the group of all automorphisms of F .

Definition 1.1.5. LetX ⊆ PnF be a curve defined as the zero locus of some homogeneous

polynomials {pi}ri=0 ⊆ F [x0, . . . , xn], and let K ⊆ F be a subfield. If σ ∈ Aut(F/K),

we denote by Xσ the curve defined by the zero locus of the homogeneous polynomials

{pσi }ri=0 ⊆ F [x0, . . . , xn], where pσi is the polynomial given by applying σ to all the

coefficients of pi, for i ∈ {0, . . . , r}.

Let us know now that we can also define an action of Aut(F/K) on a morphism f

as follows.

Definition 1.1.6. If σ ∈ Aut(F/K) and f : X → Y is a morphism, we define

fσ : Xσ −→ Y σ, z 7→ σ(f(σ−1(z))),

where σ[x0 : x1 : . . . : xn] = [σ(x0) : σ(x1) : . . . : σ(xn)].
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1.1. Fields of Moduli of projective curves

By the definition of fσ, we have the following commutative diagram:

X Y

Xσ Y σ

σ

f

fσ

σ

A very important result in this theme is the following

Theorem 1.1.7. (Weil’s Theorem) [Wei56, Theorem 1] Let X be a (not necessarily

smooth) curve defined over F and let F/K be a Galois extension. If for every ρ ∈ Aut(F/

K) there exists a birational map fρ : X −→ Xρ defined over F such that

fστ = fστ ◦ fσ, ∀σ, τ ∈ Aut(F/K),

then there exist a curve Y defined over K and a birational map g : X −→ Y defined

over F such that Y = Y µ and gµ ◦ fµ = g,∀µ ∈ Aut(F/K).

Let us give here a brief sketch of the proof for the existence of the curve Y of the above

theorem. One uses the fact that for every σ ∈ Aut(F/K) there exists a birational map

fσ : X −→ Xσ, and one can build a map σ∗ : F (X) −→ F (X) defined by φ 7→ φσ ◦ fσ,

where F (X) is the rational function field of the curve X (see [Har77, p. 16]). Then one

can build a monomorphism Φ : Aut(F/K) −→ Aut(F (X)/K) defined by σ 7→ σ∗ (see

[Hid10, Lemma 3.3.1]). The group Φ(Aut(F/K)) has a fixed field F in F (X), which is

finitely generated over K (see [Wei55, Proposition 3]), say F = 〈a1, . . . , am〉. Then the

homomorphism

θ : K[x1, . . . , xm] −→ F, xi 7→ ai

has a kernel Ker(θ) which determines a curve Y defined over K with the same rational

function field as X, so they are birational. For more details see [Hid10, Chapter 3].

Remark 1.1.8. In Weil’s theorem, if we assume the fρ : X −→ Xρ are biregular maps,
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1.1. Fields of Moduli of projective curves

then we can find a biregular isomorphism g : X −→ Y defined over F such that Y = Y µ

and gµ ◦ fµ = g,∀µ ∈ Aut(F/K) (see [Hid10, Chapter 3]).

It is natural to ask for the smallest field of definition of a curve, and an obvious

candidate could be the intersection of all its fields of definition.

Definition 1.1.9. [Koi72, Definition 1.1] Let X be a curve defined over a field F , and

consider it inside PnF. The field of moduli FX of X is the intersection of all the fields of

definition of X.

Furthermore, one can define the concept of field of moduli of a curve relative to a

field extension as follows:

Definition 1.1.10. The field of moduli of a curve X relative to a Galois extension

F/K is

MF/K(X) := Fix(FK(X)) := {a ∈ F : σ(a) = a , ∀σ ∈ FK(X)},

where FK(X) = {σ ∈ Aut(F/K) : X ∼=F Xσ} and X ∼=F Xσ means there exists an

isomorphism between X and Xσ defined over F .

Koizumi in [Koi72] proved that MF/P (X) is a purely inseparable extension of FX
[Koi72, Proposition 2.3 (ii)], where P is the prime field of F . The two previous definitions

coincide if F is a perfect field [DF04, Definition, p. 549], so in this case

MF/P (X) ∼= FX .

The main relation between the field of moduli in Definition 1.1.9 and Definition

1.1.10 is the following theorem:

Theorem 1.1.11. [Hug05, Theorem 1.6.9] Let X be a curve defined over a field K and

let KX be the field of moduli of X [ in the sense of Definition 1.1.9]. The curve X is

definable over KX if and only if given any algebraically closed field F such that K ⊆ F ,
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1.1. Fields of Moduli of projective curves

and any subfield L ⊆ F with F/L Galois, XF [X seen as a curve defined over F ] can be

defined over its field of moduli relative to the extension F/L.

Proposition 1.1.12. If F/K is a Galois extension and X is a curve defined over the

field F , then we have the following properties:

1. K ⊆MF/K(X) ⊆ F .

2. MF/R(X) = R, where R = MF/K(X).

3. If X ∼=F Y then MF/K(X) = MF/K(Y ).

4. If F ′ is any field of definition of X such that K ⊆ F ′ ⊆ F , then MF/K(X) ⊆ F ′.

Proof. To prove 1,2 and 3 we only have to understand the definition of field of moduli

relative to a field extension. We will prove here only 4. to show the relevance of the

Galois extension hypothesis.

If F ′ is a field of definition of X, then there exists a curve Y ∼=F X such that Y has all its

coefficients in F ′. Then if we take σ ∈ Aut(F/F ′), because of σ|F ′ = IdF ′ , we know that

σ ∈ Aut(F/K) and also Y = Y σ, so we have σ ∈ FK(Y ). Hence Aut(F/F ′) ≤ FK(Y )

and by definition of field of moduli relative to the extension F/K we have

MF/K(Y ) = Fix(FK(Y )) ⊆ Fix(Aut(F/F ′)) = F ′,

where the last equality comes from the fact that F/K is Galois implies F/F ′ is also

Galois, and we conclude by the Galois correspondence. Finally, since X ∼=F Y , by 3. we

have MF/K(X) ⊆ F ′.

Proposition 1.1.13. If X is a curve defined over a field F , F/K is a Galois extension

and Aut(X) is trivial, then X can be defined over its field of moduli MF/K(X).

Proof. Let R = MF/K(X). Since F/K is a Galois extensions, then F/R is also a Galois

extension. We have

Fix(Aut(F/R)) = Fix(FR(X)),
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1.1. Fields of Moduli of projective curves

because both fields are R. Then by the Galois correspondence we have

Aut(F/R) = FR(X) = {σ ∈ Aut(F/K) : X ∼=F X
σ},

so for every σ, τ ∈ Aut(F/R) there exist isomorphisms

fτσ : X −→ Xτσ, f τσ : Xτ −→ (Xσ)τ = Xτσ, fτ : X −→ Xτ .

Since (fτσ)−1 ◦ f τσ ◦ fτ : X −→ X is an automorphism of X and Aut(X) = {IdX},

then fτσ = f τσ ◦ fτ , and by Weil’s theorem we conclude that X can be defined over

R = MF/K(X).

The field of moduli FX of a curve X defined over a field F may be properly contained

in every field of definition of X, but they coincide when we consider curves of genus 0

and 1.

1. Genus 0 case. If X is a curve of genus 0 defined over a field F , and if we have a

Galois extension F/K, then X is isomorphic to P1
F and can be seen as the zero

set of the polynomial

P (x0, x1, x2) = x2 ∈ K[x0, x1, x2]

in P2
F . Hence it can clearly be defined over K, i.e. K is a field of definition of X.

By Proposition 1.1.12 1 and 4, we obtain that MF/K(X) = K.

2. Genus 1 case. Let X be a curve of genus 1 defined over F , where F is a perfect

field. It is known that F/F is a Galois extension if and only if F is a perfect field.

We will prove that MF/F (X) is a field of definition of X.

We know that X ∼=F Cλ, where Cλ ⊆ P2
F
is a smooth model of X defined by the

zero locus of the polynomial

Pλ(x0, x1, x2) = x2
1x2 − x0(x0 − x2)(x0 − λx2) ∈ F [x0, x1, x2],
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1.1. Fields of Moduli of projective curves

and λ ∈ F − {0, 1}. In fact, two models Cλ and Cµ are isomorphic if and only if

j(λ) = j(µ), where j is the j-invariant

j(x) = 256(1− x+ x2)3

x2(1− x)2

(for more details see [Har77, Chapter 4, Section 4]). Then we have

MF/F (X) = MF/F (Cλ) := Fix({σ ∈ Aut(F/F ) : Cλ ∼=F C
σ
λ}),

where the first equality is due to Proposition 1.1.12 3. Note that Cσ
λ = Cσ(λ), so

MF/F (X) := Fix({σ ∈ Aut(F/F ) : j(λ) = j(σ(λ)) = σ(j(λ))}),

where the last equality is valid because j(λ) could be thought as a function of λ

with coefficients in F ; so

MF/F (X) = F (j(λ)),

where F (j(λ)) is the smallest field which contains F and j(λ). For every λ ∈ F ,

by [Hid10, p. 44] we can find a smooth plane model for Cλ which is defined over

F (j(λ)), so MF/F (X) is also a field of definition of X.

During the last decades there has been a lot of work in determining conditions for

the curves of genus g ≥ 2 defined over a perfect field F to be defined over their field of

moduli relative to the Galois extension F/F , or how far is this field from being a field of

definition. Remembering that the generic curve of genus g > 2 has trivial automorphism

group (see [Gre63, Theorem 2]), by Proposition 1.1.13 and Theorem 1.1.11 we deduce

that X is always defined over its field of moduli FX . Therefore, the problem of finding

special curves which are not definable over their field of moduli reduces to study curves

with non trivial automorphisms and to check if they satisfy or not the Weil’s theorem,

but in fact this is very hard to verify in general.
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

In this thesis we will focus on complex curves X and the conditions under which

its field of moduli MC/R(X) with respect to the Galois extension C/R is not a field of

definition. We resume this concept in the next

Definition 1.1.14. A pseudoreal curve is a complex curve X such that MC/R(X) = R

but X does not have R as a field of definition.

1.2 Riemann surfaces, Klein surfaces and their au-

tomorphism groups

1.2.1 Riemann and Klein surfaces

In this section we give the definitions and some basic facts about Riemann surfaces,

Klein surfaces, and their automorphism groups. For more details see [BEGG90, Chapter

0, Chapter 1].

Definition 1.2.1. A holomorphic map f : A ⊆ C −→ C is said to be conformal if

f ′(z) 6= 0,∀z ∈ A, which is equivalent to say that f preserve oriented angles locally.

Definition 1.2.2. A complex atlas on a topological space X is a collection of pairs

{(Ui, φi)}i∈I such that {Ui}i∈I is an open covering of X and φi : Ui −→ Vi are homeo-

morphisms, where Vi are open sets of C, such that every function

φ−1
i ◦ φj : φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj)

is a conformal function.

Two complex atlases A and B are said to be equivalent if their union is still a complex

atlas. This is an equivalence relation, and every equivalence class of complex atlases is

called a complex structure on X.

Definition 1.2.3. A Riemann surface is a connected Hausdorff second countable

topological space with a complex structure.
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

Definition 1.2.4. If X and Y are Riemann surfaces with complex structures {(Ui, φi)}

and {(Vj, ϕj)} respectively, we say that a continuous map F : X −→ Y is a conformal

map if for every p ∈ X and for every Ui and Vj containing p and F (p) respectively, the

transition function

ϕj ◦ F ◦ φ−1
i : φi(F−1(Vj) ∩ Ui) −→ C

is a conformal function.

A conformal isomorphism between two Riemann surfaces X and Y is a conformal map

F : X −→ Y such that there exists a conformal map G : Y −→ X which satisfies

F ◦G = IdY and G ◦ F = IdX .

Definition 1.2.5. An conformal automorphism of a Riemann surface X is a conformal

isomorphism from X to itself. The set of all conformal automorphisms of X is a group

with respect to composition, and it will be called the conformal automorphism group of

X, denoted by Aut+(X).

We will study the conformal and anticonformal groups of automorphisms of Rie-

mann surfaces, so we need to enlarge the structure of Riemann surface to admit the

anticonformal maps.

Definition 1.2.6. Let f be an analytic function, considered as a function of real

variables f(x, y) = u(x, y) + iv(x, y). We define the complex conjugate of f as the map

f(x, y) = u(x, y)− iv(x, y).

Definition 1.2.7. A dianalytic atlas on a topological space X is a collection of pairs

{(Ui, φi)}i∈I such that {Ui}i∈I is an open covering of X and φi : Ui −→ Vi are homeo-

morphisms, where Vi are open sets of C or C+ = {z ∈ C : Im(z) ≥ 0}, such that every

function

φ−1
i ◦ φj : φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj)

is a conformal function, or the complex conjugate of a conformal function.

Two dianalytic atlases A and B are said to be equivalent if their union is still a dianalytic
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

atlas. This is an equivalence relation and every equivalence class of dianalytic atlases is

called the dianalytic structure on X.

Definition 1.2.8. A Klein surface is a connected Hausdorff second countable topological

space X with a dianalytic structure {(Ui, φi)}i∈I .

Definition 1.2.9. The boundary of a Klein surfaceX with dianalytic structure {(Ui, φi)}i∈I
is the set

∂X := {x ∈ X : x ∈ Ui, φi(x) ∈ R, φ(Ui) ⊆ C+, for some i ∈ I}

Klein surfaces are a generalization of Riemann surfaces in the following sense.

Theorem 1.2.10. [BEGG90, Proposition 1.2.2] Riemann surfaces of genus g ≥ 2 are

precisely the orientable and unbordered Klein surfaces of genus g ≥ 2.

In general, Klein surfaces admit border and could be non-orientable. Here are some

examples of Klein surfaces:

1. The Riemann sphere Ĉ with the dianalytic atlas

{(C, IdC), (C− {0} ∪ {∞}, [z 7→ 1
z
,∞ 7→ 0])

2. The closed disc D := {z ∈ C : |z| ≤ 1}. This is a Klein surface which is not a

Riemann surface, because it has a border ∂D = {z ∈ C : |z| = 1}.

3. The Mobius strip (see Figure 1.1). This is a Klein surface which is not a Riemann

surface, because it is bordered and it is non-orientable.

4. The upper half plane H = {z ∈ C : Im(z) > 0}. This is a Riemann surface, hence

a Klein surface, which will be very important in this thesis.

Definition 1.2.11. If X and Y are Klein surfaces with dianalytic structures {(Ui, φi)}

and {(Vj, ϕj)} respectively, we say that a continuous map F : X −→ Y is a Klein
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

Figure 1.1: The Mobius strip

morphism if F (∂X) ⊆ ∂Y and for every p ∈ X and for every Ui and Vj containing p

and F (p) respectively, the transition function

ϕj ◦ F ◦ φ−1
i : φi(F−1(Vj) ∩ Ui) −→ C

is a conformal function or the conjugate of a conformal function.

A conformal Klein morphism is a Klein morphism such that the transition maps are

conformal functions. An anticonformal Klein morphism is a Klein morphism such that

the transition functions are either conformal functions or the complex conjugate of a

conformal function.

A Klein isomorphism between two Klein surfaces X and Y is a Klein morphism F :

X −→ Y such that there exists a Klein morphism G : Y −→ X which satisfies

F ◦G = IdY and G ◦ F = IdX .

Definition 1.2.12. A Klein automorphism of a Klein surface X is a Klein isomorphism

from X to itself. The set of all Klein automorphisms of X will be called the full

automorphism group of X and will be denoted by Aut±(X).

The topological genus of a Klein surface can be defined in terms of the Euler

characteristic of the surface as follows.

Definition 1.2.13. The topological genus of a Klein surface X is

g(X) :=


2− χ(X)− k(X)

2 if X is orientable,

2− χ(X)− k(X) if X is not orientable,

where χ(X) is the Euler characteristic of X (see [Mas77, Chapter 8]) and k(X) is the
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

number of connected components of the boundary of X.

Remark 1.2.14. In the case of Riemann surfaces X considered as Klein surfaces, let us

note that it is possible to have Aut±(X) different from its conformal automorphism group

Aut+(X). In such case, Aut±(X) contains Aut+(X) as a subgroup of index 2, because

the composition of two anticonformal automorphisms is a conformal automorphism.

The full automorphism group Aut±(X) will contain then two cosets: the conformal

automorphisms and the anticonformal automorphisms.

Remark 1.2.15. From here onwards, for every curve X we will use the notations

Aut+(X) or Aut(X) indistinctly for its conformal automorphism group (biregular auto-

morphisms).

Theorem 1.2.16. [BEGG90, Corollary 1.3.5] If X is a Klein surface of genus g ≥ 2,

then its full automorphism group Aut±(X) is finite.

In particular, by Theorem 1.2.16 every Riemann surface X (seen as a Klein surface)

of genus g ≥ 2 will have a full automorphism group Aut±(X) of finite order, and by

Remark 1.2.14 Aut+(X) is either equal or is an index two subgroup of Aut±(X).

Theorem 1.2.17. [BEGG90, Theorem 0.1.15] The full automorphism group Aut±(H)

of the upper half plane H is isomorphic to PGL(2,R) := GL(2,R)/ ∼, where A ∼ B

if and only if there exists some real number λ 6= 0 such that A = λB, via the group

isomorphism

PGL(2,R) −→ Aut±(H) , A =

a b

c d

 7→
fA : z 7→


az + b

cz + d
if det(A) = 1

az + b

cz + d
if det(A) = −1

.

In particular, the conformal automorphism group Aut+(H) of the upper half plane

H is PSL(2,R), sending the matrix A =

a b

c d

 ∈ PSL(2,R) to the map z 7→ az + b

cz + d

(see [GGD12, Proposition 1.27]).
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

The following theorem will be very useful in the next chapter.

Theorem 1.2.18. [MV80, Theorem 1] Let F be an algebraically closed field of char-

acteristic p. If G a finite subgroup of PGL(2, F ), then G is isomorphic to one of the

following groups

Cn, Dn, A4, S4, or A5 when p = 0 or when gcd(|G|, p) = 1,

Ct
p, C

t
p o Cm, PGL(2,Fpr), or PSL(2,Fpr) when p divides |G|,

where Fpr is the field of pr elements, gcd(n, p) = 1, r > 0, t ≤ r, and m divides pt − 1.

Moreover, the signature of the quotient P1
F
/G is given in Table 1.1, where α = pr(pr − 1)

2
and β = pr + 1

2 .

Table 1.1: Finite subgroups G ≤ PGL(2, F )

Group G Signature of P1
F
/G

Cn (n, n)
Dn (2, 2, n)

A4, p 6= 2, 3 (2, 3, 3)
S4, p 6= 2, 3 (2, 3, 4)
A5, p 6= 2, 3, 5 (2, 3, 5)
A5, p = 3 (6, 5)

Ct
p (pt)

Ct
p o Cm (mpt,m)

PSL(2,Fpr), p 6= 2 (α, β)
PGL(2,Fpr) (2α, 2β)

1.2.2 NEC and Fuchsian groups

Definition 1.2.19. A NEC group is a discrete subgroup ∆ of PGL(2,R) such that H/∆

is a compact Klein surface. A Fuchsian group is a NEC group contained in PSL(2,R),
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

the group of conformal automorphisms of H. If Γ is a NEC group which is not a Fuchsian

group, it is called a proper NEC group and the index 2 subgroup Γ ∩ PSL(2,R) of Γ is

called the canonical Fuchsian subgroup of Γ.

Because of Theorem 1.2.17 we can consider the full automorphism group Aut±(H)

as a topological group and the previous definition leads to the following theorem:

Theorem 1.2.20. [BEGG90, Proposition 1.2.3] Every compact Klein surface X of

genus g ≥ 2 is Klein isomorphic to a quotient H/∆, where ∆ is a NEC group. We say

that X is uniformized by the NEC group ∆.

We can classify the elements in a NEC group depending on the fixed points they have in

H. If we take f ∈ Aut±(H) = PGL(2,R), then there is only one matrix A ∈ GL(2,R)

whose determinant is equal to 1 such that f = fA = f−A. This allows us to define

det(f) := det(A) and tr(f) := |tr(A)|.

If A = ( a bc d ) and det(f) = 1, then the fixed points z ∈ H of f satisfy

az + b

cz + d
= z,

so we have

z =
a− d±

√
(a− d)2 + 4bc
2c =

a− d±
√

(d+ a)2 − 4
2c

where the last equality comes from ad− bc = 1. The set of fixed points of f depends on

the value of the discriminant (d+ a)2 − 4 = tr(A)2 − 4 of the previous equation.

If A = ( a bc d ) and det(f) = −1, then the fixed points z ∈ H of f satisfy

az + b

cz + d
= z,

so we have az+ b = czz+ dz, which is equivalent to az+ b− dz = czz. Since czz = czz,

we must have az + b− dz = az + b− dz, which is equivalent to (a+ d)(z − z) = 0. We

say that f is:

1. hyperbolic if det(f) = 1 and tr(f) > 2.
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

2. elliptic if det(f) = 1 and tr(f) < 2.

3. a boundary element if det(f) = 1 and tr(f) = 2.

4. a glide reflection if det(f) = −1 and tr(f) 6= 0.

5. a reflection if det(f) = −1 and tr(f) = 0.

Suppose we have a NEC group ∆ such that H/∆ has genus g, the projection map

π : H −→ H/∆ has r branch points in the interior with ramification index mi ≥ 2, and

the ramification index of π in the i-th boundary component of H/∆, denoted by Ci, are

si-uples of integers

Ci := (ni1, . . . nisi),

such that nij ≥ 2. The NEC group ∆ has a presentation (∗) given by the following

generators (see [BEGG90, p. 14]).

1. Hyperbolic elements a1, b1, . . . , ag, bg if H/∆ is orientable.

2. Elliptic elements x1, . . . , xr.

3. Boundary elements e1, . . . , ek.

4. d1, d2, . . . , dg if H/∆ is not orientable.

5. Reflections c10, . . . , c1s1 , . . . , ck0, . . . , cksk .

These elements satisfy the relations

xmii = 1 ∀i ∈ {1 . . . r},

c2
ij−1 = c2

ij = (cij−1cij)nij = 1, cisi = e−1
i ci0ei, ∀i ∈ {1, . . . k}, ∀j ∈ {0, . . . si},

x1 . . . xre1 . . . ek[a1, b1] . . . [ag, bg] = 1 (if H/∆ is orientable),

x1 . . . xre1 . . . ekd
2
1 . . . d

2
g = 1 (if H/∆ is not orientable),
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

where [ai, bi] = aibia
−1
i b−1

i .

In particular, if ∆ is a NEC group without reflections, then it does not have boundary

elements and it must satisfy just the next relations

xmii = 1, ∀i ∈ {1 . . . r},

x1 . . . xr[a1, b1] . . . [ag, bg] = 1 (if H/∆ is orientable),

x1 . . . xrd
2
1 . . . d

2
g = 1 (if H/∆ is not orientable).

Keeping in mind Theorem 1.2.20, we can distinguish between two Klein surfaces in

terms of their uniformizing NEC groups as follows

Theorem 1.2.21. [BEGG90, Theorem 1.3.2 (2)] Consider two Klein surfaces X and

Y uniformized by the NEC groups ∆1 and ∆2 respectively. Then X and Y are Klein

isomorphic if and only if ∆1 and ∆2 are conjugate subgroups of PGL(2,R).

We can also study the full automorphism group of a Klein surface in terms of the

NEC group which uniformizes it.

Theorem 1.2.22. [BEGG90, Theorem 1.3.2 (3)] If X = H/∆ is a Klein surface uni-

formized by the NEC group ∆, then its full automorphism group Aut±(X) is isomorphic

to NPGL(2,R)(∆)/∆, where NPGL(2,R)(∆) is the normalizer of ∆ in PGL(2,R).

Using the same notations, every subgroup G ≤ Aut±(X) will be a subgroup of

NPGL(2,R)(∆)/∆, so G ∼= Γ/∆ for some subgroup Γ such that ∆ ≤ Γ ≤ NPGL(2,R)(∆).

Note that this Γ is also a NEC group (see [BEGG90, Remark 1.3.6]) and we have the

following corollary:

Corollary 1.2.23. If X = H/∆ is a Klein surface uniformized by the NEC group ∆,

then G ≤ Aut±(X) if and only if G ∼= Γ/∆ for some NEC group Γ which contains ∆ as

a normal subgroup.
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

For that reason, the study of groups G acting on Klein surfaces can be done through

the finite extendability of NEC groups ∆. With the previous notations, for every finite

group G acting on a Klein surface X = H/∆, we have the following diagram:

H X := H/∆

X/G ∼= H/Γ

The study of NEC groups Γ which represent the actions on X by finite groups G

can be translated to the study of the possible epimorphisms from a NEC group Γ to the

group G with ∆ as its kernel, whose canonical Fuchsian subgroup ∆+ must be torsion

free, and we get the exact sequence of groups

1→ ∆→ Γ θ−→ G→ 1,

where θ is an epimorphism that must preserve the orders of the ellipic elements, and

must send conformal (anticonformal) to conformal (anticonformal) elements.

The case of Riemann surfaces with their conformal structure is analogous, as one

can see in the following theorem:

Theorem 1.2.24. Consider two Riemann surfaces X = H/∆1 and Y = H/∆2, where

∆1,∆2 are the Fuchsian groups which uniformize them. We have:

1. X and Y are conformal isomorphic if and only if ∆1 and ∆2 are conjugate

subgroups of PSL(2,R) (see [GGD12, Proposition 2.25]).

2. The conformal automorphism group Aut+(X) of X is isomorphic to NPSL(2,R)(∆)/

∆, where NPSL(2,R)(∆) is the normalizer of ∆ in PSL(2,R) (see [GGD12, Propo-

sition 2.35])

3. G ≤ Aut+(X) if and only if G ∼= Γ/∆ for some Fuchsian group Γ which contains

∆ as a normal subgroup of finite index (see [GGD12, Corollary 2.38].
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

1.2.3 NEC and Fuchsian signatures

Because of the importance of NEC groups in studying the Klein surfaces, it is convenient

to define a new concept which encapsulates the presentation of a NEC group ∆ given

after Theorem 1.2.20.

Definition 1.2.25. Let ∆ be a NEC group with the above presentation 1.2.2 (∗). The

signature of the NEC group ∆ (also called NEC signature) is the vector given by

(g;±; [m1, . . . ,mr], {C1, . . . Ck}),

where the sign + or − depends on the quotient H/∆ being orientable or not. If r = 0,

we write [−] instead of [m1, . . . ,mr]. If k = 0, we write {−} instead of {C1, . . . , Ck}.

If some Ci is empty, we write (−) instead of Ci. If some mi appears n times, then we

write [. . . ,mn
i , . . .] instead of [. . . ,mi, . . . ,mi︸ ︷︷ ︸

n

, . . .].

Definition 1.2.26. A NEC group ∆ is called surface NEC group if it has signature

(g;±; [−]; {(−), . . . , (−)︸ ︷︷ ︸
k times

}),

with k ≥ 0. In the Fuchsian case, we call surface Fuchsian group a NEC group with

signature (g; +; [−]; {−}), and we will denote this by (g; +; [−]).

In the case of Fuchsian groups, we have no anticonformal elements and no bound-

ary components, so the signature of a Fuchsian group will always have the form

(g; +; [m1, . . . ,mr]). In this case we will denote it by (g; [m1, . . . ,mr]).

Remark 1.2.27. The surface NEC groups are precisely the NEC groups which uni-

formize Klein surfaces, and surface Fuchsian groups are the ones which uniformize

Riemann surfaces.

Remark 1.2.28. It can be proved (see [BCG10, p. 12]) that a NEC group is a surface

NEC group if and only if it has no non-trivial conformal elements of finite order.
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

Definition 1.2.29. Let us consider the following vectors

v := (g;±; [m1, . . . ,mr], {C1, . . . , Ck}),

v′ := (g; +; [m1, . . . ,mr]).

We define

µ(v) := 2π
εg − 2 + k +

r∑
i=1

(
1− 1

mi

)
+ 1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

) ,

µ(v′) = 2π
(

2g − 2 +
r∑
i=1

(
1− 1

mi

))
,

where ε = 2 if the sign of v is + and ε = 1 otherwise.

We can build NEC signatures for which there exists a NEC group with that signature,

as we see in the following theorem:

Theorem 1.2.30. [BEGG90, Theorem 0.2.8] Let us consider the vector

v := (g;±; [m1, . . . ,mr], {C1, . . . , Ck})

such that g ≥ 0,mi ≥ 2, nij ≥ 2, k ≥ 0, and si ≥ 0. The vector v is the NEC signature

of some NEC group ∆ if and only if µ(s(∆)) is positive and ε+ g ≥ 2.

In the case of an arbitrary vector v′ := (g; [m1, . . . ,mr]) such that g ≥ 0, mi ≥ 2, we

have v′ is the Fuchsian signature of some Fuchsian group ∆ if and only if µ(s(∆)) is

positive.

We have a generalization of Riemann-Hurwitz formula in the following theorem.

Theorem 1.2.31. [BEGG90, Remark 0.2.9] If ∆ ≤ Γ are NEC groups such that [Γ : ∆]

is finite, then

[Γ : ∆] = µ(s(∆))
µ(s(Γ)) ,

where µ is defined above in Definition 1.2.29.
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

We can know the signature of the canonical Fuchsian group (remember Definition

1.2.19) of a given NEC group thanks to [Sin74a, Theorem 2]. We will use a particular

case of his result, as we see in the following theorem:

Theorem 1.2.32. Let X/∆ be a Riemann surface (considered as a Klein surface) and

denote by Γ the NEC group NPGL(2,R)(∆) which corresponds to its full automorphism

group. If Γ is a proper NEC group which has no reflections, then its signature has the

form

(g;−; [m1, . . . ,mr]),

and the signature of his canonical Fuchsian subgroup Γ+ will be

(g − 1; +; [m1,m1, . . . ,mr,mr]),

where every mi appears two times.

Definition 1.2.33. Consider an epimorphism θ : ∆ −→ G from a NEC group ∆ onto a

finite group G which defines an action on a Riemann surface uniformized by Ker(θ). If

s(∆) = (g;±; [m1, . . . ,mr]), then we say that v is a generating vector for the action θ if

v = (θ(d1), . . . , θ(dg), θ(x1), . . . , θ(xr)), in − case,

v = (θ(a1), θ(b1) . . . , θ(ag), θ(bg), θ(x1), . . . , θ(xr)), in + case.

Because of Theorem 1.2.243. and Corollary 1.2.23, it is important to study the

finite extendability of Fuchsian and NEC groups. The concept of signature of such

groups is very useful, because just knowing the signature of a Fuchsian or NEC group

∆ it is possible to determine if a group G for which there exists a torsion free kernel

epimorphism θ : ∆ −→ G can be the conformal or full automorphism group of some

Riemann surface.

For this reason, we need to introduce also the following concepts.
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

Definition 1.2.34. A Fuchsian group ∆ is finitely maximal if it is not contained properly

in another Fuchsian group with finite index. Denoting by s(G) the signature of a NEC

group G, the signature (g; [m1, . . . ,mr]) of a Fuchsian group ∆ (a Fuchsian signature)

is finitely maximal if for every Fuchsian group Γ containing ∆ as a proper subgroup, we

have d(s(Γ)) 6= d(s(∆)), where d(g; [m1, . . . ,mr]) := 6g − 6 + 2r is the real dimension

of the Teichmuller space of the signature (g; [m1, . . . ,mr]) (see [Sin74b, p. 19]).

Almost all Fuchsian signatures are finitely maximal, and those which are not finitely

maximal were found by L. Greenberg and D. Singerman in the articles [Gre63] and

[Sin72]. The authors determine there the so called Singerman List (see Table 1.2),

which contains the only 19 non finitely maximal Fuchsian signatures.

As a consequence of this result, we deduce that if the signature of a Fuchsian

group Γ such that Γ/∆ ∼= G is not in the Singerman list, then G is the conformal auto-

morphism group of X, where X := H/∆′, where ∆′ is a Fuchsian group isomorphic to ∆.

In the case that some group acts on a Riemann surface with a signature that appears

in the Singerman list, there exist some theorems which allow one to determine whether

the group is the conformal automorphism group of some Riemann surface or not. Some

works in line with this are [BC99], where the authors work on cyclic groups, and the

paper [BCC03], where the authors work in the general case giving sufficient conditions

for the group to be the conformal automorphism group of some Riemann surface.

The analogous of Singerman List for NEC groups was developed and completed in

[Buj82] and [EI06]. The lists are very long, so we recomend the reader to see them

in their original two articles. We will use these lists to find NEC signatures which

correspond to full automorphism groups of pseudoreal Riemann surfaces.

The following result is very important because it will allow us to conclude that

a NEC signature is a maximal signature in terms of the maximality of its canonical
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1.2. Riemann surfaces, Klein surfaces and their automorphism groups

Table 1.2: Pairs of non-finitely maximal Fuchsian signatures

Singerman List
σ1 σ2 [σ2 : σ1]

(2; [−]) (0; [2, 2, 2, 2, 2, 2]) 2
(1; [t, t]) (0; [2, 2, 2, 2, t]) 2
(1; [t]) (0; [2, 2, 2, 2t]) 2

(0; [t, t, t, t]) t ≥ 3 (0; [2, 2, 2, t]) 4
(0; [t1, t1, t2, t2]) t1 + t2 ≥ 5 (0; [2, 2, t1, t2]) 2

(0; [t, t, t]) t ≥ 4 (0; [3, 3, t]) 3
(0; [t, t, t]) t ≥ 4 (0; [2, 3, 2t]) 6

(0; [t1, t1, t2]) t1 ≥ 3, t1 + t2 ≥ 7 (0; [2, t1, 2t2]) 2
(0; [7, 7, 7]) (0; [2, 3, 7]) 24
(0; [2, 7, 7]) (0; [2, 3, 7]) 9
(0; [3, 3, 7]) (0; [2, 3, 7]) 8
(0; [4, 8, 8]) (0; [2, 3, 8]) 12
(0; [3, 8, 8]) (0; [2, 3, 8]) 10
(0; [9, 9, 9]) (0; [2, 3, 9]) 12
(0; [4, 4, 5]) (0; [2, 4, 5]) 6

(0; [n, 4n, 4n]) n ≥ 2 (0; [2, 3, 4n]) 6
(0; [n, 2n, 2n]) n ≥ 3 (0; [2, 4, 2n]) 4
(0; [3, n, 3n]) n ≥ 3 (0; [2, 3, 3n]) 4
(0; [2, n, 2n]) n ≥ 4 (0; [2, 3, 2n]) 3

Fuchsian signature.

Theorem 1.2.35. [BCG10, Remark 1.4.7] Let s be the signature of a proper NEC group.

If the signature s+ of its canonical Fuchsian subgroup if maximal, then so is s.
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1.3. Pseudoreal Riemann surfaces

1.3 Pseudoreal Riemann surfaces

The spaceMg of conformal isomorphism classes of Riemann surfaces of genus g can

be embedded into a complex projective space PNC such thatMg ⊆ PNC becomes a quasi

projective variety defined by polynomials with rational coefficients. For that reason,

the complex conjugation in PNC induces an anticonformal involution σ∗ :Mg −→Mg,

where σ∗ takes the conformal isomorphism class of a Riemann surface to the class of its

complex conjugate.

Because of the dianalytic structure of the Klein surfaces, we can consider the set

MK
g of isomorphism classes of Riemann surfaces seen as Klein surfaces as the quotient

spaceMg/〈σ∗〉. The fixed point set Fix(σ∗) of σ∗ is the preimage of the ramification

locus of the projectionMg −→MK
g , and it consists of all Riemann surfaces of genus g

which are isomorphic to their conjugate.

A Riemann surface in this branch locus which admits an anticonformal involution is

called a real Riemann surface (see [AG69]). These surfaces have been widely studied

in the last decades (see [Nat04], [BCG10], [Sin74b]). On the other hand, the Riemann

surfaces in this branch locus which are not real Riemann surfaces are the main topic of

this thesis, and for this reason we isolate the concept in the following definition:

Definition 1.3.1. A pseudoreal Riemann surface is a Riemann surface, seen as a Klein

surface, which admits anticonformal automorphisms, but does not admit anticonformal

involutions.

Definition 1.3.2. A NEC signature (g;±; [m1, . . . ,mr]) is called an even signature if

every mi appear exactly an even number of times. Otherwise it is called odd signature.

Corollary 1.3.3. If X is a pseudoreal Riemann surface uniformized by a Fuchsian

group ∆, then s(NPGL(2,R)(∆)+) is an even signature.
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Proof. If NPGL(2,R)(∆) has a reflection, then the epimorphism

θ : NPGL(2,R)(∆) −→ NPGL(2,R)(∆)/∆ ∼= Aut±(X)

will send such reflection to an anticonformal automorphism of order 2, and this contradicts

the fact that X is pseudoreal. In that case NPGL(2,R)(∆) has neither reflections nor

boundary elements. By Theorem 1.2.32 we get the result.

Remark 1.3.4. This fact was used extensively in [BCC10] and [BC14] to classify the

full automorphism groups of pseudoreal Riemann surfaces of low genus.

We can define J : PnC −→ PnC as

J [x0 : . . . : xn] := [x0 : . . . : xn].

If we have a complex curve X ⊆ PnC, we can restrict J to X and we get the anticon-

formal map J |X : X −→ J |X(X) = X, where X is the complex conjugate of the curve

X. Considering the transition functions of an automorphism of a complex curve (see

[Mir97, Chapter I, Proposition 3.11]) it is possible to prove that f : X −→ X is an

anticonformal automorphism of X if and only if JX ◦ f : X −→ X is an isomorphism

between X and X.

If we have a Riemann surface, we can embed it in many ways in projectives spaces.

All these embeddings give isomorphic curves (in the biregular sense), so the following

definition makes sense:

Definition 1.3.5. If X is a Riemann surface, we define the field of moduli FX of X as

the field of moduli relative to the extension C/R of any complex curve Y ⊆ PnC which is

the image of an embedding of X in PnC.

Theorem 1.3.6. [Hid10, Theorem 6.3.1] A Riemann surface X has field of moduli

FX = R if and only if it has an anticonformal automorphism, and it has field of definition

R if and only if it has some anticonformal involution.
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Proof. For the first part, we note that MC/R(X) = R if and only if X ∼=C X. If X is

isomorphic to X, then there exists an isomorphism f : X −→ X, and we can consider

f ◦ J |X : X −→ X, where J |X : X −→ X is the complex conjugation. This is an

anticonformal automorphism because J |X ◦ (f ◦ J |X) is an isomorphism between X and

X. Conversely, if there exists an anticonformal automorphism of X, say f , we see that

J |X ◦ f : X −→ X is an isomorphism over C between X and X.

For the second part of the statement, if X has field of definition R, then X ∼=C X,

and we can assume without loss of generality that X = X. If we take the map

J |X : X −→ X = X, it will be an anticonformal involution of X because J ◦ J :

X −→ X is the identity isomorphism. Conversely, if X has an anticonformal involution

τ : X −→ X, then J |X ◦ τ : X −→ X is an isomorphism. If Aut(C/R) = {e, σ}, let

fe : X −→ Xe = X be the identity map IdX of X. For the complex conjugation σ,

taking fσ := J |X ◦ τ : X −→ Xσ = X, we have

fσ = (fσ)e ◦ fe, fσ = (fe)σ ◦ fσ, fe = (fe)e ◦ fe,

and we see that

(fσ)σ ◦ fσ = (J |X ◦ τ)σ ◦ (J |X ◦ τ) = ((J |X)σ ◦ τσ) ◦ (J |X ◦ τ)

= ((J |X)σ ◦ τσ ◦ J |X) ◦ τ = τ ◦ τ = τ 2 = IdX = fe,

so the associations e 7→ fe and σ 7→ fσ satisfy the Weil’s theorem. Hence X can be

defined over R.

Summing up Definition 1.3.1 and Theorem 1.3.6, we obtain the following corollary:

Corollary 1.3.7. Pseudoreal Riemann surfaces are precisely those which have field of

moduli R, but cannot be defined over R.
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Chapter 2

When X/Aut(X) has genus zero

2.1 Dèbes-Emsalem theorem

A very useful result that gives sufficient conditions for the problem of definability of a

curve over its field of moduli is [DE99, Corollary 4.3]. The authors observe that for a

curve X of genus g ≥ 2 and a Galois extension F/K such that K = MF/K(X), for every

σ ∈ Aut(F/K) there exists an isomorphism fσ : X −→ Xσ that induces an isomorphism

ϕσ : X/Aut(X) −→ Xσ/Aut(Xσ),

which makes the following diagram (∗) commute

X Xσ

X/Aut(X) Xσ/Aut(Xσ).

π

fσ

ϕσ

πσ

Composing ϕσ with the canonical isomorphism iσ : Xσ/Aut(Xσ) −→ (X/Aut(X))σ,

which maps xσAut(Xσ) to xσAut(X)σ, we get a family of isomorphisms

{iσ ◦ ϕσ =: ϕσ : X/Aut(X) −→ (X/Aut(X))σ}σ∈Aut(F/K) .
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For every σ, τ ∈ Aut(F/K) we have fστ ◦ fσ ◦ f−1
στ ∈ Aut(Xτσ). Considering the map

πστ : Xστ −→ Xστ/Aut(Xστ ) we have

πστ = πστ ◦ fστ ◦ fσ ◦ f−1
στ ⇔ πστ ◦ fστ = πστ ◦ fστ ◦ fσ

⇔ ϕστ ◦ π = (πτ ◦ fτ )σ ◦ fσ
(∗)⇔ ϕστ ◦ π = (ϕτ ◦ π)σ ◦ fσ

⇔ ϕστ ◦ π = ϕστ ◦ (πσ ◦ fσ)
(∗)⇔ ϕστ ◦ π = ϕστ ◦ (ϕσ ◦ π)

⇔ ϕστ = ϕστ ◦ ϕσ,

so the family {ϕσ : X/Aut(X) −→ (X/Aut(X))σ}σ∈Aut(F/K) satisfies the conditions of

Theorem 1.1.7, thus there exists a curve Y isomorphic to X/Aut(X) over F which is

defined over K, and an isomorphism R : X/Aut(X) −→ Y such that R = Rσ ◦ϕσ. This

curve Y is the called the canonical K-model of X/Aut(X).

In this case X/Aut(X) can be defined over its field of moduli MF/K(X). The

definability of the original curve X over its field of moduli depends on the conditions

given in the following theorem:

Theorem 2.1.1. (Dèbes-Emsalem theorem) [DE99, Corollary 4.3] Let F/K be a

Galois extension, and let X be a smooth projective curve of genus g ≥ 2 defined over F .

Suppose that the order of Aut(X) is not divisible by the characteristic of K. Moreover,

assume that MF/K(X) = K. The curve X/Aut(X) can be defined over K. Furthermore,

K will be a field of definition of X in each of the following situations:

a) the automorphism group Aut(X) of X has no center and it has group complement

(see [DF04, Definition, p. 180]) in Aut(Aut(X));

b) the canonical K-model of X/Aut(X) given by the Weil’s theorem has at least one

K-rational point outside the branch locus of R ◦ π, where π : X −→ X/Aut(X) is

the canonical projection and R is as g in Theorem 1.1.7.
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For the part a) of the above theorem, the authors base their proof on another

previous paper [DD97] which is quite technical. We provide in Theorem 3.3.8 a more

friendly proof for the case of the Galois extension C/R, which is a consequence of a

study of group extensions of degree 2.

2.2 Hyperelliptic pseudoreal curves

The most studied pseudoreal curves have been the hyperelliptic and p-gonal curves. In

fact, the first examples of pseudoreal Riemann surfaces were published in [Ear71, Theorem

2], where the author shows the existence of a genus five pseudoreal Riemann surface, in

addition to suggesting how to find pseudoreal Riemann surfaces of every genus of the

form 4k + 1, and to giving the following family of hyperelliptic pseudoreal curves X of

genus two

X : y2 = x(x2 − a2)(x2 + ta2x− a),

where a = e
2πi

3 and t ∈ R+ − {1}. Earle showed that X has an anticonformal automor-

phism (x, y) 7→
(−1
x
,
iy

x3

)
of order 4, but it has no anticonformal involution except for

t = 1.

The next examples of pseudoreal curves can be found in [Shi72, p. 77], where the

author proves that any complex algebraic curve X defined by

X : y2 = a0x
m +

m∑
r=1

(arxm+r + (−1)raσrxm−r), am = 1,

has field of moduli R, but it cannot be defined over R (here m is odd, σ is the complex

conjugation, a0 is a real number and all the ai’s and aσj ’s are complex numbers which

are algebraically independent over Q). Note that an isomorphism µ between the curves

X and Xσ is given by

µ(x, y) = (−x−1, i · x−my).
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2.2. Hyperelliptic pseudoreal curves

The conditions over the coefficients guarantee that Aut(X) contains only the identity

IdX of X and the hyperelliptic involution i. Moreover, we have Aut(C/R) = {e, σ},

where e is the identity of C and σ is the complex conjugation. To show that X cannot

be defined over R, it is sufficient to prove that no anticonformal automorphism of X

has order two.

For this, note that every isomorphism fσ : X −→ Xσ induces a conformal auto-

morphism of X given by the composition X fσ−→ Xσ µ−1
−−→ X, so µ−1 ◦ fσ ∈ {IdX , i}, i.e.

fσ ∈ {µ, µ ◦ i}. Thus the only anticonformal automorphisms of X are J ◦ µ and J ◦ µ ◦ i

(Section 1.3). But we have

(J ◦ µ)2(x, y) = (x,−y) = (J ◦ µ ◦ i)2(x, y),

so we conclude that there are not anticonformal automorphisms of order two.

The previous example given by Shimura is a family of hyperelliptic pseudoreal curves

of even genus and conformal automorphism group C2, for every even genus. The problem

of finding hyperelliptic pseudoreal curves of odd genus and conformal automorphism

group C2 was solved in [LR12, Proposition 4.14], where the authors show that this is

impossible by proving the following theorem:

Theorem 2.2.1. Assume that X is a hyperelliptic curve of odd genus defined over a

perfect field F such that Aut(X) = {IdX , i} ∼= C2, where i is the hyperelliptic involution.

Then X can be defined over its field of moduli MF/F (X).

By Dèbes-Emsalem’s theorem, in the case that X/Aut(X) has genus zero, a sufficient

condition for X to be definable over its field of moduli K is the existence of a K-rational

point on the canonical model Y of X/Aut(X). So, if we assume that X/Aut(X) has

genus 0 (as it happens in the case of hyperelliptic curves), we can study the K-rational

points of Y as points of P1
F . More precisely, we have the following theorem:

Theorem 2.2.2. [Hug05, Theorem 4.1.1] Let F be a perfect field of characteristic p 6= 2
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2.2. Hyperelliptic pseudoreal curves

and let F be its algebraic closure. Let X be a hyperelliptic curve defined over F and

let G = Aut(X)/〈i〉, where i is the hyperelliptic involution of X. If the group G is not

cyclic, or if it is cyclic of order not divisible by p, then X can be defined over MF/F (X).

WhenX is a hyperelliptic curve defined over a field F , Aut(X)/〈i〉 is a finite subgroup

of PGL(2, F ), so a priori it could be one of the following groups:

Cn, Dn, A4, A5, S4,

Ct
p, C

t
p oϕ Cm,PGL(2,Fpr),PSL(2,Fpr),

depending on whether the characteristic of F is 0 or not (see 1.2.18). B. Huggins showed

that in all previous cases, except for the cyclic case, one can find a rational point on the

canonical model of X/Aut(X), so the hyperellitpic curve X is not a pseudoreal curve,

because it can be defined over its field of moduli FX (see [Hug05, Theorem 4.1.2]).

For example, when Aut(X)/〈i〉 ∼= Dn, where Dn is the dihedral group of 2n elements

(with n > 2), Huggins proved that the function field of X/Aut(X) is F (t), where

t = x2n + 1
x2n , and that for every σ ∈ Aut(F/F ) we have σ∗(t) = ±t (see the sketch of

the proof of Theorem 1.1.7). So t = 0 is a K-rational point on the canonical model B of

X/Aut(X), because B is the fixed field of F (t) under {σ∗}σ∈Aut(F/K) (see [Hug05, p. 68]).

Theorem 2.2.2 generalizes the result given in [CQ05, Theorem 2], which says that a

genus two curve X can be defined over MF/F (X) if Aut(X)/〈i〉 is not trivial.

In [GSS05, Table 1], the authors determine the groups Aut(X)/〈i〉 for hyperelliptic

curves of genus three. By Huggins’ theorem we know that if such a curve X has

automorphism group among

C3
2 , C2 ×D8, C2 × C4, D12, U6, V8, C2 × S4,
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2.3. Non-hyperelliptic pseudoreal curves

then it cannot be the conformal automorphism group of a pseudoreal curve because the

quotient group Aut(X)/〈i〉 would be

C2 × C2, D8, C2 × C2, D6, D12, D16, S4

respectively, and none of them is cyclic. In the same Table 1 of [GSS05], one can discard

also the case Aut(X) ∼= C14, because in this case X has a model given by y2 = x7 − 1,

which is clearly defined over R (in fact, over Q).

Huggins also applied her theorem for completing the work in [BT02], and in [Hug05,

Theorem 5.0.5] she was able to classify all the pseudoreal hyperelliptic Riemann surfaces,

by showing the following theorem:

Theorem 2.2.3. [Hug05, Theorem 5.0.5] Let X be a hyperelliptic curve defined over C

such that MC/R(X) = R. Then X is not definable over R if and only if it is isomorphic

to either y2 = f(x), or y2 = g(x), where

f(x) =
r∏
i=1

(xn − ai)
(
xn + 1

ai

)
, g(x) = x

s∏
i=1

(xm − bi)
(
xm + 1

bi

)
,

with m,n, r, s non negative integers such that 2nr > 5, sm is even, if n is odd then r

is odd, and some conditions on the ai’s and bi’s that can be found in [Hug05, Page 82].

Moreover, these two curves have automorphism groups isomorphic to C2 × Cn and C2n,

respectively.

2.3 Non-hyperelliptic pseudoreal curves

In [Kon09, Theorem 1.1], A. Kontogeorgis generalized Huggins’ theorem (Theorem 2.2.2)

considering normal cyclic p-gonal curves such that X/H has genus 0 for some cyclic

group H ∼= Cp contained in Aut(X), where p is a prime number. Moreover, the author
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2.3. Non-hyperelliptic pseudoreal curves

shows an example of a cyclic p-gonal curve which is pseudoreal, explicitely

X : yp =
m∏
i=1

(xn − ai)
(
xn + 1

ai

)
,

such that Aut(X) ∼= Cp × Cn, where m is odd, ai = (i+ 1)ζ im for i = 1, . . . ,m, ζm is a

primitive m-th root of unity, p < mn and p | 2m.

Kontogeorgis’ result was generalized even further in [HQ16], where the authors

consider some particular subgroups of the automorphism group of a curve, defined as

follows.

Definition 2.3.1. A subgroup H ≤ Aut(X) is said unique up to conjugation if for

any subgroup K ≤ Aut(X) isomorphic to H such that the signatures of the covers

πH : X −→ X/H and πK : X −→ X/K are the same, then there is an element

α ∈ Aut(X) such that H = α−1Kα.

Lemma 2.3.2. [Hug05, Lemma 4.0.4] Let B be a curve of genus 0 defined over an

infinite field L, and suppose that B has an L-rational divisor D of odd degree. Then B

has infinitely many L-rational points.

With Definition 2.3.1 and Lemma 2.3.2, the most general version of Huggins and

Kontogeorgis’ theorem is the following

Theorem 2.3.3. [HQ16, Theorem 1.2] Let F be an infinite perfect field of characteristic

q 6= 2 and let F be an algebraic closure of F . Let X be a curve of genus g ≥ 2 defined

over F and let H be a subgroup of Aut(X) which is unique up to conjugation, such that

X/H has genus 0. If NAut(X)(H)/H is neither trivial, nor cyclic (if q = 0), nor cyclic

of order relatively prime to q (if q 6= 0), then X can be defined over MF/F (X).

Remark 2.3.4. The center Z(Aut(X)) of Aut(X) is not, in general, unique up to

conjugation in Aut(X). To see this, we note that

h−1Z(Aut(X))h = Z(Aut(X))
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2.3. Non-hyperelliptic pseudoreal curves

for every h ∈ Aut(X), because Z(Aut(X)) is normal in Aut(X). If Z(Aut(X)) were

unique up to conjugation in Aut(X), then every subgroup H ≤ Aut(X) isomorphic to

Z(Aut(X)) such that s(X/H) = s(X/Z(Aut(X)) should be equal to Z(Aut(X)). This

is not always true, as the following example shows. Consider a curve

X : x4 + y4 + z4 + ax2y2 + bxyz2 = 0

with ab 6= 0 as in [Bar05, Theorem 29], which has conformal automorphism group

Aut(X) = 〈f : [x : y : z] 7→ [y : x : z], g : [x : y : z] 7→ [ix : −iy : z]〉 ∼= D4.

The map g has order 4, and its square g2 : [x : y : z] 7→ [x : y : −z] generates the

center of Aut(X), which has order 2. The group 〈f〉 also has order 2, and the quotients

X/〈f〉 and X/〈g2〉 both have signature (1; [2, 2, 2, 2]), thus Z(Aut(X)) is not unique up

to conjugation in this case.

Following the ideas in the proof of Theorem 2.3.3, we proved the analogous of the

previous theorem under the same hypotheses but replacing H with Z(Aut(X)).

Theorem 2.3.5. Let F be an infinite perfect field of characteristic q 6= 2 and let F

be an algebraic closure of F . Let X be a curve of genus g ≥ 2 defined over F and let

Z(G) the center of the automorphism group G of X. Suppose X/Z(G) has genus 0, and

G/Z(G) is neither trivial, nor cyclic (if q = 0), nor cyclic of order relatively prime to q

(if q 6= 0). In that case X can be defined over MF/F (X).

Proof. We will prove the theorem for the case q = 0. The case q 6= 0 is the same as

[HQ16].

Without loss of generality we can assume F = MF/F (X) (see [DE99, Proposition 2.1]).

Let σ ∈ Aut(F/F ). Since F = MF/F (X), there exists an isomorphism fσ : X −→ Xσ

(see the first part of the proof of Theorem 1.3.6).

Claim 1. fσZ(G)f−1
σ = Z(G)σ.
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2.3. Non-hyperelliptic pseudoreal curves

For every a ∈ Z(G) and b ∈ Gσ we have

(fσaf−1
σ )b = fσa(f−1

σ bfσ︸ ︷︷ ︸
b′∈G

)f−1
σ = fσab

′f−1
σ =︸︷︷︸

a∈Z(G)

fσb
′af−1

σ = b(fσaf−1
σ ).

This says that fσaf−1
σ commutes with every element of Gσ for every a ∈ Z(G), i.e.

fσZ(G)f−1
σ ⊆ Z(Gσ), which is equal to Z(G)σ. The other inclusion is obtained analo-

gously. Q.E.D.

By Claim 1. and the fact that fσGf−1
σ = Gσ, there exist two isomorphisms gσ and hσ,

respectively, such that the following diagram commutes:

X Xσ

X/Z(G) (X/Z(G))σ

X/G (X/G)σ .

π1

fσ

gσ

πσ1

π2 πσ2

hσ

Claim 2. Without loss of generality, we can assume that the branch locus of π2 is

B = {[1 : 0], [0 : 1], [1 : 1]}.

Since X/Z(G) has genus 0, then (X/Z(G))σ, X/G and (X/G)σ also have genus 0. We

have that the covering group of π2 is Deck(π2) ∼= G/Z(G), where Deck(π2) = {f ∈

Aut(X) : π2 ◦ f = π2}. This last group is a finite group acting on the projective line,

so it must be isomorphic to either Cn, D2n, A4, A5 or S4 (see Theorem 1.2.18). By our

hypothesis, G/Z(G) is not a cyclic group, so it must be isomorphic to either D2n, A4, A5

or S4. Note that in any of these four cases π2 has a branch locus B = {b1, b2, b3} which

contains 3 elements, and since any element of PGL(2, F ) acts as a Mobius transformation

on the complex projective line, so we can assume b1 = [1 : 0], b2 = [0 : 1] and b3 = [1 : 1].

Q.E.D.
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Claim 3. There exists an isomorphism R : X/G −→ B over the canonical F -model B of

X/G such that R = Rσ ◦ hσ.

Write S := π2 ◦ π1. If there exist other isomorphisms f ′σ and h′σ such that

f ′σZ(G)f ′−1
σ = Z(G)σ and h′σ ◦ S = Sσ ◦ f ′σ, then f−1

σ ◦ f ′σ ∈ G so there exists F ∈ G

such that f ′σ = fσ ◦ F , and we have

h′σ ◦ S = Sσ ◦ f ′σ = Sσ ◦ fσ ◦ F = Sσ ◦ F ′ ◦ fσ = Sσ ◦ fσ = hσ ◦ S,

where the third equality follows from the fact that fσ ◦ F ◦ f−1
σ ∈ Gσ, so we define it as

F ′, and the fourth equality follows from the fact that Sσ = πσ2 ◦πσ1 : Xσ −→ Xσ/Gσ. So

h′σ = hσ. This means that hσ is uniquely determined by σ. Thus {hσ}σ∈Aut(F/F ) satisfies

Weil’s Theorem 1.1.7. Then there exists an isomorphism R : X/G −→ B such that B is

a curve of genus 0 defined over F and we have the following commutative diagram (∗):

X Xσ

X/G (X/G)σ

B

S

fσ

hσ

Sσ

R Rσ

that is, R = Rσ ◦ hσ. Q.E.D.

Since gσ and hσ are isomorphisms, we have hσ(B) = σ(B). Note that

σ(B) = {σ([1 : 0]), σ([0 : 1]), σ([1 : 1])} = B,

so hσ(B) = B (∗∗).

Claim 4. B has an F -rational point r outside the branch locus of R ◦ S.
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We can consider the branch divisor D = R(b1) +R(b2) +R(b3), which satisfies

Dσ = σ(R(b1)) + σ(R(b2)) + σ(R(b3)) = Rσ(σ(b1)) +Rσ(σ(b2)) +Rσ(σ(b3))

= Rσ(b1) +Rσ(b2) +Rσ(b3) (∗)= R ◦ h−1
σ (b1) +R ◦ h−1

σ (b2) +R ◦ h−1
σ (b3) (∗∗)= D,

so B has an F -rational divisor of degree 3. By Lemma 2.3.2 we see that B has infinitely

F -rational points. In particular, B must have an F -rational point r outside the branch

locus of R ◦ S. Q.E.D.

Claim 5. X can be defined over F .

By Dèbes-Emsalem theorem (Theorem 2.1.1(b)) and Claim 4. we conclude that F is a

field of definition of X.

Corollary 2.3.6. If X is a pseudoreal Riemann surface such that X/Z (Aut(X)) has

genus 0, then Aut(X) must be an Abelian group.

Proof. Since X is a pseudoreal Riemann surface, then MC/R(X) = R and X cannot

be defined over R. Having in mind the hypothesis, by Theorem 2.3.5 we deduce that

Aut(X)/Z (Aut(X)) is a cyclic group. But it is known that if a group G is such that

G/Z(G) is a cyclic group, then G must be Abelian. So Aut(X) must be Abelian.

Using the same polynomials which define her examples of pseudoreal hyperelliptic

curves, Huggins proved the existence of the first non-hyperelliptic pseudoreal curves,

which are in fact complex plane curves (see [Hug05, Section 7.1]). One of the examples

she gave among the possible pseudoreal plane curves is the curve X defined by the

homogeneous polynomial equation

X : X2nr
2 =

r∏
i=1

(Xn
0 − aiXn

1 )(Xn
0 + aciX

n
1 ),

with certain conditions on the coefficients ai and aci given in [Hug05, p. 131]. She proved
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that X has conformal automorphism group generated by

E =


ζn 0 0

0 1 0

0 0 1

 , F =


1 0 0

0 ζn 0

0 0 1

 , G =


1 0 0

0 1 0

0 0 ζ2nr

 ,

where ζi is a primitive i-th root of unity. Finally, she proved that MC/R(X) = R but X

cannot be defined over R (see [Hug05, Proposition 7.1.2]).

In [Hid09], Hidalgo found another family Cλ1,λ2 of non-hyperelliptic pseudoreal curves

in P5
C defined by

Cλ1,λ2 :=



x2
1 + x2

2 + x2
3 = 0

λ1x
2
1 + x2

2 + x2
4 = 0

λ2x
2
1 + x2

2 + x2
5 = 0

−λ2x
2
1 + x2

2 + x2
6 = 0


,

where λ1 ∈ R and λ2 ∈ C are such that λ1 < −3 + 2
√

2, Re(λ2) < 0, Im(λ2) > 0

and |λ2|2 = −λ1. Hidalgo proved that these curves are of genus 17 with conformal

automorphism group C5
2 , and they admit an anticonformal automorphism η : P5

C −→ P5
C

of order 4 defined by

η[x1 : x2 : x3 : x4 : x5 : x6] := [x2 :
√
λ1x1 : x4 :

√
λ1x3 :

√
λ2x6 : i

√
λ2x5],

but they have no anticonformal involutions. He also showed that Cλ1,λ2 is a covering of

the pseudoreal hyperelliptic curve given by Earle in [Ear71, p. 126].

2.4 Odd signature curves

Let X be a curve of genus g ≥ 2 defined over an algebraically closed field F . We can

determine if X is definable over its field of moduli MF/K(X), where F/K is a Galois

extension, by studying the ramification indices of the branch points of the projection
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map π : X −→ X/Aut(X), provided that this quotient has genus 0. In fact, we need

this last condition if we want to use Lemma 2.3.2.

Definition 2.4.1. Consider a curve X of genus g ≥ 2 and let π : X −→ X/G be the

projection map, where G ≤ Aut(X). Denoting by q1, q2, . . . , qr the branch points of π,

we define the signature of π as the vector

s(π) := (g0;m1,m2, . . . ,mr),

where g0 is the genus of the curve X/G and mi is the ramification index of the branch

point qi for i = 1, . . . , r. Moreover, if s(π) = (0;m1,m2, . . .mr) is such that every mi

appears exactly an odd number of times, then X is called an odd signature curve and

s(π) is called an odd signature.

Using Lemma 2.3.2 and the fact that the projection map π : X −→ X/Aut(X)

has finitely many branch points, we have the following theorem (a weaker version was

published in [AQ12, Theorem 0.1], before the publication of the PhD thesis of the second

author):

Theorem 2.4.2. [Qui13, Theorem 2.10] Let X be a curve of genus g ≥ 2 defined over

an algebraically closed field F , and let F/L be a Galois extension. If H ≤ Aut(X) is

unique up to conjugation and πN : X −→ X/N is an odd signature cover, where N is

the normalizer of H in Aut(X), then MF/L(X) is a field of definition for X.

Remark 2.4.3. In the proof of Theorem 2.10 of [Qui13], S. Quispe used Lemma 2.3.2

to prove his result in the case when F is infinite, while for the case of a finite field F ,

the result was proved in [Hug05, Corollary 1.6.6].

Remark 2.4.4. Theorem 2.4.2 says that if we consider a subgroup H ≤ Aut(X) of a

Riemann surface X such that s(π) is an odd signature, then X cannot be a pseudoreal

Riemann surface. Let us note here the similarity between this theorem and Corollary

1.3.3, where the conclusions are almost the same, but in the latter one we do not need

that the first entry of the signature is 0, while in the former one it is necessary.
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In a particular case, in [AQ12, Corollary 3.5] the authors prove that every non-normal

cyclic p-gonal curve defined over a zero characteristic field F can be defined over its field

of moduli FX , using the fact that the signature of every covering πX : X −→ X/Aut(X)

is an odd signature. For the convenience of the reader, we give in Table 2.1 the signatures

and the automorphism groups of all non normal p-gonal curves with p a prime number

(see [Woo07, Theorem 8.1]).

Table 2.1: Signatures and automorphism groups of non-normal p-gonal curves

p signature of πG g G

3 (0; [2, 3, 8]) 2 GL(2, 3)
3 (0; [2, 3, 12]) 3 SL(2, 3)/CD
5 (0; [2, 4, 5]) 4 S5

7 (0; [2, 3, 7]) 3 PSL(2, 7)
p ≥ 5 (0; [2, 3, 2p]) (p−1)(p−2)

2 (Cp × Cp) o S3

p ≥ 3 (0; [2, 2, 2, p]) (p− 1)2 (Cp × Cp) o V4

p ≥ 3 (0; [2, 4, 2p]) (p− 1)2 (Cp × Cp) oD4

Theorem 2.4.2 is important to us because it allows one to prove also the following

theorem:

Theorem 2.4.5. [Qui13, Proposition 2.14] Let X be a smooth curve of genus g ≥ 2

defined over a field F . If X/Aut(X) has genus 0, then X can be defined over its field of

moduli FX , or over an extension of degree 2 of FX .

Remark 2.4.6. If we discard the genus 0 condition on X/Aut(X) in the Theorem 2.4.5,

the problem is still open.
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Chapter 3

Pseudoreal Riemann surfaces and

NEC groups

3.1 Existence for any genus

As we saw in Section 2.2, in [Shi72, p. 177] the author finds pseudoreal curves for every

even genus, and in [Ear71, Theorem 2] the author finds a genus 5 pseudoreal Riemann

surface and he also suggested the existence of pseudoreal Riemann surfaces of every

genus of the form 4k + 1. The problem of proving the existence of pseudoreal Riemann

surfaces in every genus g ≥ 2 was solved in [Sin80, Theorem 1 and p. 48], where the

author proves the following result.

Theorem 3.1.1. There exist pseudoreal Riemann surfaces for every genus g ≥ 2.

Proof. Consider a NEC group ∆ with signature (1;−; [2g+1]; {−}), where g is even. If

{xi}g+1
i=1 is the set of elliptic generators and d1 is the glide reflection, which together

generate ∆, we can define an epimorphism θ : ∆ −→ C4 = 〈a : a4 = 1〉 given by

θ(xi) = a2, ∀i ∈ {1, . . . , g + 1}, θ(d1) = a.

Since θ preserves the orders of the elliptic generators, Ker(θ) is torsion free, so the
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quotient X = H/ Ker(θ) is a Riemann surface such that Aut±(X) contains the group

∆/Ker(θ) ∼= C4. Since this group has finitely maximal signature (see 1.2.34), we can

conclude by Proposition 1.2.35 that Aut±(X) ∼= C4. This Riemann surface X has genus

g and has anticonformal automorphisms, but no anticonformal involutions, because a2,

the only element of order 2 in C4, is in the conformal part Aut+(X) ∼= {1, a2} ≤ C4.

Then X is pseudoreal.

For odd g, we can do the same work beginning with the NEC signature (2;−; [2g−1]; {−}),

and considering the epimorphism θ : ∆ −→ C4 = 〈a : a4 = 1〉 given by

θ(xi) = a2, ∀i ∈ {1, . . . , g − 1}, θ(d1) = θ(d2) = a.

Remark 3.1.2. The above proof, in contrast with the first results on pseudoreal curves,

is an existence proof : no algebraic model for the pseudoreal Riemann surfaces are given.

3.2 Characterization of full groups of pseudoreal

Riemann surfaces

We know from L. Greenberg [Gre74, Theorem 4] that every finite group is the conformal

automorphism group of some Riemann surface. In the case of pseudoreal Riemann sur-

faces, in [BG10] the authors study the essential groups which act on pseudoreal Riemann

surfaces, i.e. those which contain anticonformal elements. For every action of the full

automorphism group of a Riemann surface which has anticonformal automorphisms, we

have the following non-split exact sequence of groups

1 −→ Aut+(X) −→ Aut±(X) −→ C2 −→ 0.

Lemma 3.2.1. An exact sequence of groups

1 −→ G −→ G
π−→ C2 −→ 0
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is split if and only if there exists an order 2 element in G\G.

Proof. We know that the exact sequence in the statement is a split sequence if and

only if there exists a group homomorphism f : C2 −→ G such that π ◦ f = IdC2 . If

we have an order 2 element p ∈ G\G, then we can consider the group homomorphism

f : C2 −→ G which sends 0 ∈ C2 to e ∈ G, and 1 ∈ C2 to p. Conversely, if we have the

group homomorphism f : C2 −→ G such that π ◦ f = IdC2 , then f(1) will be an element

in G such that π(f(1)) = 1, so f(1) is an order 2 element in G\G.

Lemma 3.2.2. In every non-split exact sequence

1 −→ G −→ G −→ C2 −→ 0,

the group G has even order.

Proof. By Lemma 3.2.1 we know that G\G has no involutions. Because G is an index

two subgroup of G, we have G has even order, so by Cauchy’s theorem it has an order

2 element, which must be in G. By Lagrange’s theorem we conclude that G has even

order.

Corollary 3.2.3. If X is a pseudoreal Riemann surface, then Aut+(X) has even order.

With the previous lemmas, we are prepared to prove the following theorem:

Theorem 3.2.4. [BG10, Theorem 3.3] A finite group G acts as an essential group on

a pseudoreal Riemann surface X if and only if it is a non-split extension of a group of

even order by the cyclic group of order 2. Furthermore there exists a Riemann surface

X having G as its full automorphism group.

Proof. Suppose we have a pseudoreal Riemann surface X such that G is its full auto-

morphism group and G is its conformal automorphism group. By Lemma 3.2.1 we know

that G ≤ G is a non-split extension and by Corollary 3.2.3 we know that G has even
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order.

Conversely, suppose we have an exact non-split extension

1 −→ G −→ G −→ C2 −→ 0.

By Corollary 3.2.3 we know that G has even order. We will find a pseudoreal Riemann

surface X such that Aut±(X) ∼= G. We can assume G = 〈g1, . . . , gr〉 where gi has order

mi ≥ 2 for a fixed r ≥ 3, and take d ∈ G\G. Let mr+1 be the order of d2g1 . . . gr. We

have 2 cases:

1. If mr+1 = 1, then d2g1 . . . gr = 1. We can consider a NEC group ∆ with signature

s(∆) = (1;−; [m1, . . .mr]; {−}) which is a finitely maximal NEC signature (see

[Buj82]). We have an epimorphism θ : ∆ −→ G given by θ(d1) = d, θ(xi) =

gi,∀i ∈ {1, . . . , r}. We have that θ preserves the order of the elliptic generators, so

Ker(θ) is a surface Fuchsian group which uniformizes a Riemann surface H/Ker(θ).

Because the signature s(∆) is finitely maximal, then Aut± (H/Ker(θ)) ∼= G. Since

α : G −→ C2 is non split, then G\G has no elements of order 2, so the Riemann

surface is pseudoreal.

2. If mr+1 > 1, then we can consider a NEC group ∆ with signature s(∆) =

(1;−; [m1, . . .mr,mr+1]; {−}), which is a finitely maximal NEC signature (see

[Buj82]). We have an epimorphism θ : ∆ −→ G given by θ(d1) = d, θ(xi) =

gi,∀i ∈ {1, . . . , r} and θ(xr+1) = (d2g1 . . . gr)−1. We have that θ preserves the order

of the elliptic generators, so Ker(θ) is a surface Fuchsian group which uniformizes

a Riemann surface H/Ker(θ). Because the signature s(∆) is finitely maximal,

then Aut± (H/Ker(θ)) ∼= G. Since α : G −→ C2 is non split, then G\G has no

elements of order 2, so the Riemann surface is pseudoreal.

Corollary 3.2.5. No symmetric or dihedral group can be the full automorphism group

of a pseudoreal Riemann surface.
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Proof. The only subgroup G of the symmetric group Sn such that [Sn : G] = 2 is

G = An, the alternating group, and Sn = An o C2.

For every subgroup G of the dihedral group D2n such that [D2n : G] = 2 we have that

D2n\G has involutions, because D2n has 2n+ 1 involutions.

Corollary 3.2.6. The dicyclic group Dic4n acts as a full automorphism group of some

pseudoreal Riemann surface, for every n ≥ 2.

Proof. For every n ≥ 2 we have the following exact non-split extension

1 −→ C2n −→ Dic4n −→ C2 −→ 0,

because Dic4n has only 1 involution, an, which is inside C2n.

3.3 Group extensions of degree 2

We have seen the importance of knowing the possible extensions of degree 2 of a given

group G to another group G because of the relation between the conformal automorphism

group and the full automorphism group of pseudoreal Riemann surfaces. The most

general approach is through cohomology of finite groups (see [AM04, Chapter 1]), but

we will use easier tools to deal with the problem.

We will study the extensions of a group G by the cyclic group of order 2, and this will

allow us to prove Theorem 2.1.1 (a) for the field extension C/R in an easier way.

A group G admits a degree 2 extension to a group G if there exists an exact sequence

of groups

1 −→ G −→ G −→ C2 −→ 0.

For any such extension, we can consider an element x ∈ G\G, which induces an auto-

morphism φx of G defined by conjugation by x (from now on, we will denote φp the

conjugation by the element p), because G is normal in G. We have [G : G] = 2 so

g = x2 ∈ G, the map φ2
x is the conjugation by g = x2, and g is fixed by φx.
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Any other element in G\G can be written as xh, where h ∈ G. In this case

φxh(g) = (xh)g(xh)−1 = x(hgh−1)x−1 = φx(φh(g)),

so φxh = φx ◦ φh, and we have

(xh)2 = xhxh = xhx−1x2h = φx(h)x2h = φx(h)gh.

Let P (G) be the subset of Aut(G)×G defined by

P (G) := {(φ, g) ∈ Aut(G)×G : φ2 = φg, φ(g) = g}.

We can define an equivalence relation on P (G) by

(φ, g) ∼ (φ ◦ φh, φ(h)gh), ∀h ∈ G.

We leave to the reader verifying that it is indeed an equivalence relation. Let E(G)

be the quotient set P (G)/ ∼.

Lemma 3.3.1. Given a group G, there exists a well defined function from the set of

group extensions

1 −→ G −→ G −→ C2 −→ 0,

to E(G).

Proof. For any such extension we can take an element x ∈ G\G and construct the pair

(φx, x2). To be sure that any other pair of that form will be equivalent to it, we note

that [G : G] = 2, so G = G ∪ xG (disjoint union) and any element in G\G will be of

the form xh with h ∈ G. But we have which shows us that for every h ∈ G we have

(φx, x2) ∼ (φxh, (xh)2).
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Lemma 3.3.2. Given an element (φ, g) ∈ P (G), the group G := (GoF Z)/〈(g−1, z2)〉

fits in the group extension sequence

1 −→ G −→ G −→ C2 −→ 0,

where z is any generator of (Z; +), and there exists an element x ∈ G\G such that

φ = φx and x2 = g.

Proof. Consider the homomorphism induced by

F : Z −→ Aut(G), z 7→ φ.

The subgroup 〈(g−1, z2)〉 is normal in GoF Z because

[(1, z) · (g−1, z2)] · (1, z)−1 = (F (z)(g−1), z3) · (1, z−1) = (φ(g−1), z3) · (1, z−1)

= (g−1F (z3)(1), z2) = (g−1, z2),

and

[(h, 1) · (g−1, z2)] · (h, 1)−1 = (hF (1)(g−1), z2) · (h−1, 1) = (hg−1, z2) · (h−1, 1)

= (hg−1F (z2)(h−1), z2) = (hg−1φ2(h−1), z2) = (hg−1(gh−1g−1), z2) = (g−1, z2).

Clearly G injects into G through a 7→ (a, 1), and we have that

G = {(g, 1) , g ∈ G} ∪ {(g, z) , g ∈ G},

because for (p, zm) ∈ GoF Z we have two cases

[(p, zm)] = [(p, zm) · (g, z−2)m2 ] = [(pgm2 , 1)] for even m,

[(p, zm)] = [(p, zm) · (g, z−2)m−1
2 ] = [(pgm−1

2 , z)] for odd m,
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so |G| = 2|G| and we have G/G ∼= C2. Moreover

φ(1,z)(h, 1) = [(1, z) · (h, 1)] · (1, z)−1 = (F (z)(h), z) · (1, z−1) = (φ(h), z) · (1, z−1)

= (φ(h)F (z)(1), 1) = (φ(h), 1),

and

(1, z)2 = (1, z2) = (1, z2) · (g, z−2) = (F (z2)(g), z2z−2) = (g, 1),

so we can choose x as (1, z).

Definition 3.3.3. We say that two exact sequences

1 −→ H −→ G −→ K −→ 1,

1 −→ H −→ G′ −→ K −→ 1,

are isomorphic if there exists a group isomorphism α : G −→ G′ such that the following

diagram commmutes

1 H G K 1

1 H G′ K 1.

IdH α IdK

Theorem 3.3.4. There is a bijection between the set of isomorphism classes of extensions

of G by C2, and E(G).

Proof. Given an extension

1 −→ G −→ G −→ C2 −→ 0

we can associate to it the class [(φx, x2)] by Lemma 3.3.1. If we have another extension

1 −→ G −→ G
′ −→ C2 −→ 0
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isomorphic to the previous one, there exists an isomorphisms α : G −→ G
′ which is the

identity in G. We can idenfity G with G′, so to this last extension we can associate the

same pair [(φx, x2)].

Conversely, by Lemma 3.3.2, we can associate to every pair (φ, g) ∈ P (G) an

extension of G defined by A as is the group extension G in Theorem 3.3.2. Every pair

(φ ◦ φh, φ(h)gh) equivalent to (φ, g) will give us another group

B = (GoF ′ Z)/〈((φ(h)gh)−1, y2)〉,

where Z = 〈y〉, h ∈ G and F ′ : Z −→ Aut(G) is induced by y 7→ φ◦φh. An isomorphism

α : A −→ B is induced by α(g, 1) = (g, 1), α(1, x) = (φ(h)−1, y). It is well defined

because

α(g−1, x2) = (g−1, 1)(φ(h)−1, y)(φ(h)−1, y) = (g−1, 1)(φ(h)−1F ′(y)(φ(h)−1), y2)

= (g−1, 1)(φ ◦ φh(φ(h)−1), y2) = (g−1, 1)(gh−1g−1φ(h)−1, y2) = ((φ(h)gh)−1, y2)

and clearly α|G = IdG.

Corollary 3.3.5. The extension associated to (φ, g) ∈ P (G) is split if and only if it is

equivalent to some pair (φ′, e), and it is a direct product if and only if it is equivalent to

the pair (IdG, e).

Proof. The exact sequence 1 → G → G → C2 → 0 is split if and only if G\G has an

order 2 element p, which gives us the desired pair (φp, e). If G = G×C2 one can choose

p = (e, 1), which satisfies φp = IdG.

Corollary 3.3.6. If G is a group such that Z(G) = {1} and Out(G) := Aut(G)/Inn(G)

has no involutions — where Inn(G) is the group of inner automorphisms of G —, then

any extension of G by C2 is a direct product of G and C2.

Proof. Suppose that we have a group extensionG ≤ G or order 2. By Lemma 3.3.1 we can

associate to it a pair (φ, g), such that φ2 = φg. The class [φ] of φ in Out(G) = Aut(G)/
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Inn(G) satisfies [φ]2 = [φ2] = [φg] = [1], but Out(G) has no order 2 elements, so [φ] = [1],

and then φ ∈ Inn(G). In that case (φ, g) ∼ (φ ◦φ−1, g′) = (IdG, g′) for some g′ ∈ G. But

we must have Id2
G = φg′ , so g′ = e because Z(G) = {1}. In that case (φ, g) ∼ (IdG, e),

so every extension of G by C2 will be the direct product G× C2.

Using the previous theorem we can prove the most important theorem of this section

Theorem 3.3.7. If G is a group such that Z(G) = {1} and Inn(G) has group comple-

ment in Aut(G), then any degree 2 extension of G is split, i.e. G is a semidirect product

of C2 and G.

Proof. Suppose the group complement of Inn(G) inside Aut(G) is H, that is

Aut(G) = H · Inn(G), H ∩ Inn(G) = {1}.

We will prove that with these conditions on G, every degree 2 extension of it must be a

semidirect product GoF C2 for some homomorphism F : C2 −→ Aut(G).

Thanks to the previous bijection between isomorphism classes of degree 2 extensions

of a group G and the elements of the quotient set E(G) = P (G)/ ∼, we will be able

to prove that any pair (φ, g) ∈ P (G) is equivalent to a pair (φ′, e), and to conclude by

Corollary 3.3.5 that the degree 2 extensions of G are all semidirect products.

If (φ, g) ∈ P (G), then φ2 = φg and φ(g) = g. We have Aut(G) = H · Inn(G),

so φ ∈ Aut(G) can be written as φ = ϕ ◦ φh with ϕ ∈ H and φh ∈ Inn(G), so

(φ, g) = (ϕ ◦ φh, g) ∼ (ϕ, g′) for some g′ ∈ G. We also have ϕ2 ∈ H ∩ Inn(G) = {1} so

ϕ2 = 1, but ϕ2 = φg′ so φg′ = 1, which is equivalent to g′ = e because Z(G) = {1}. In

that case (ϕ, g′) = (ϕ, e) so we get the desired equality [(φ, g)] = [(ϕ, e)].

If we translate the previous results to pseudoreal Riemann surfaces, we get the

following corollaries:

Corollary 3.3.8. Let G be the conformal automorphism group of a Riemann surface

X. Suppose that Z(G) = {1} and that Inn(G) has group complement in Aut(G). Then

X cannot be a pseudoreal Riemann surface.
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Corollary 3.3.9. If G is the conformal automorphism group of a Riemann surface X

such that Z(G) = {1} and Out(G) has no involutions, then X cannot be pseudoreal.

3.4 Automorphism groups of pseudoreal Riemann

surfaces

3.4.1 Conformal groups of Riemann surfaces

In the previous section we saw the importance of the structure of the conformal

automorphism group of a Riemann surface to see if a Riemann surface is pseudoreal.

For this reason it is of our interest to know the results about such actions and the tools

that they require.

In the literature there exist classifications of groups of automorphisms for many types

of Riemann surfaces. For example, the problem is solved in the case of hyperelliptic

surfaces in [BGG93], where the authors consider all the possible conformal actions on

them and they classified their possible complete automorphism groups. There exist also

some explicit classifications of groups (not necessarily complete automorphism groups)

in small genera, concretely the cases of genus 2, 3, 4 and 5 (see [Bar05], [Bog97], [Bro91],

[CGLR99], [Kim03], [KK90], [KK90], [MSSV02]). In these works, the authors use tools

from Fuchsian groups and their signatures, and also the representation of those groups

as subgroups of PGL(n, F ).

As the genus increases, the classification of conformal actions on Riemann surfaces

becomes intractable by hand, so it is unavoidable the use of computers to make the

classification in higher genera. In the last turn of the century T. Breuer devised an

algorithm to generate a list of all groups acting on a Riemann surface of a given genus,

and he implemented it in GAP [TGG16]. His program depends on databases of groups

of a given order which are available in GAP. He ran the codes in GAP finding actions

on Riemann surfaces of genus g ≤ 48 (see [Bre00] and [Bre11]). In 2015, J. Paulhus

used the codes of T. Breuer and wrote a program for Magma [BCP97], which gives a
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list of all the possible conformal actions on Riemann surfaces of a given genus g ≤ 20,

together with the signature of the action and generating vectors (see [Pau15]).

3.4.2 Actions with conformal and anticonformal elements

The classification of actions on Riemann surfaces which admit anticonformal elements

has taken many directions. For example, we have seen the problem of studying such

actions on particular types of Riemann surfaces (hyperelliptic, p-gonal) in Section 2.2

and Section 2.3. There is a theorem of D. Singerman which tells us about cyclic actions

on Riemann surfaces.

Theorem 3.4.1. [Sin74b, Corollary 1] Let S be a Riemann surface of genus g which

admits a conformal automorphism of order N > 2g+2. Then S admits an anticonformal

involution, so it cannot be pseudoreal.

In particular, if X is a pseudoreal Riemann surface and the conformal automorphism

group of X is isomorphic to Cn, then n ≤ 2g + 2.

In this thesis we will need some results in the following directions: the study of the

minimal genus of Riemann surfaces on which a given group can act, and the classification

of all the actions on a given genus.

In the first direction, we have the work [Gor85], where the author studies the actions

of cyclic groups with anticonformal elements through NEC groups. He computed the

minimal genus in which a cyclic group acts as the (not necessarily full) conformal and

anticonformal group of some Riemann surface, depending if the group has anticonformal

involutions (see [Gor85, Theorem 3]) or not (see [Gor85, Theorem 5]).

In [BG10] the authors define the essential actions of groups on Riemann surfaces, which

are the actions having anticonformal elements. They solved the minimal genus problem

for the cyclic full automorphism groups of pseudoreal Riemann surfaces, proving the

following theorem:
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Theorem 3.4.2. [BG10, Theorem 6.1] The minimal genus of a pseudoreal Riemann

surface, admitting a cyclic group of order 4n as an essential group of automorphisms,

equals

2n if n=1,2,4,

3n
2 + 1 if 8 | n and 3 6 | n,

2(p− 1)n
p

+ 1 otherwise,

where p is the smallest odd prime divisor of n. Furthermore, it is possible to choose a

pseudoreal Riemann surface of that genus with C4n as its full automorphism group.

In [KWT15] the authors generalize the previous theorem as we see in the following

theorem:

Theorem 3.4.3. [KWT15, Theorem 3.7] The cyclic group C4n is the full automorphism

group of a pseudoreal Riemann surface of genus g ≥ 2 if and only if there exists

a sequence of integers (γ, q, a, k) 6= (1, 1, 1,−1), (0, 0, 1,−1) and (0, 0, 2, 0) such that

γ, q ≥ 0, a, k ≥ −1, g = qn+ a(n− 1), a and k have the same parity, q and γ have the

same parity and k ≤ min(a, q − 2γ). In particular, g 6= 2n− 1, n− 1 and 2n− 2.

In the second direction, we have the classification of full groups of pseudoreal Riemann

surfaces of genus 2 ≤ g ≤ 4 contained in the papers [BCC10] and [BC14]. In the former,

the authors coin the term pseudoreal Riemann surfaces and classified all the possible

full groups of those surfaces for genus 2 and 3, and in the latter they corrected part of

their previous work, added the generating vectors for the actions, and added the case of

genus 4. We summarize their work in the next tables.

Table 3.1: Automorphism groups of pseudoreal Riemann surfaces of genus 2

Genus 2
Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector

C2 (26) C4 (1;−; [23]) (a; a2, a2, a2)
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Table 3.2: Automorphism groups of pseudoreal Riemann surfaces of genus 3

Genus 3
Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector

C2 (1; [24]) C4 (2;−; [22]) (a, a; a2, a2)
C2 × C2 (0; [26]) C4 × C2 (1;−; [23]) (a; b, b, a2)

Table 3.3: Automorphism groups of pseudoreal Riemann surfaces of genus 4

Genus 4
Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector

C2 (0; [210]) C4 (1;−; [25]) (a; a2, a2, a2, a2, a2)
C2 (2; [22]) C4 (3;−; [2]) (a, a, a; a2)
C4 (0; [24, 42]) C8 (1;−; [22, 4]) (a3; a4, a4, a2)
D5 (0; [22, 52]) F20 (1;−; [2, 5]) (b; b2a, a4)

There are other works we want to mention, as the article [BC15] where the authors

determine that the full automorphism groups for cyclic p-gonal pseudoreal surfaces of

genus g such that g > (p − 1)2 are always cyclic or semidirect products of the form

Cn oφ Cp, where p > 2 is prime.

3.4.3 Full groups with non finitely maximal NEC signatures

In [BG10, Section 4], the authors study under which conditions a finite group G with a

given non finitely maximal NEC signature can act as the full automorphism group of a

pseudoreal Riemann surface. The 3 NEC signatures they studied are

(1;−; [k, l]; {−}), (1;−; [k, k]; {−}), (2;−; [k]; {−}),

which are associated to the non finitely maximal Fuchsian even signatures

(0; [k, k, l, l]), k + l ≥ 5,
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(0; [k, k, k, k]), k ≥ 3,

(1; [k, k])

of the Singerman list (see Table 1.2 and Theorem 1.2.32). They proved one theorem for

each one of the three signatures, giving sufficient and necessary conditions for a group

G to be a full automorphism group acting with that signature. We will show just the

first one because they have very similar statements and proofs, and this theorem in

particular will be important in the next section.

Theorem 3.4.4. [BG10, Lemma 4.1] Let ∆ be a NEC group with signature

(1;−; [k, l]; {−}),

where k 6= l. There exists an epimorphism θ : ∆ −→ G onto a finite group G defining

an essential action of G on a pseudoreal Riemann surface, if and only if G is a non-split

extension of some of its subgroups H of index 2, G is generated by two elements d, x such

that x and d2x have orders k and l, respectively, d 6∈ H and the map x 7→ x−1, d 7→ d−1

does not induce an automorphism of G. Furthermore, such a group G is necessarily the

full automorphism group of a pseudoreal Riemann surface on which it acts.

We observed that they did not study the non finitely maximal NEC signature

(3;−; [−]; {−}),

and we needed it to complete the classification of possible automorphism groups for

pseudoreal Riemann surfaces, so we proved the following lemma:

Lemma 3.4.5. Let ∆ be a NEC group with signature

(3;−; [−]; {−}).

There exists an epimorphism θ : ∆ −→ G onto a finite group G defining an essential
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action of G on a pseudoreal Riemann surface, if and only if G is a non-split extension

of some of its subgroups H of index 2, G is generated by three elements d′, d′′, d′′′ such

that d′, d′′, d′′′ 6∈ H such that (d′)2(d′′)2(d′′′)2 = 1 and the map

d′ 7→ (d′)−1, d′′ 7→ (d′)2(d′′)−1(d′)−2, d′′′ 7→ (d′′′)−1

does not induce an automorphism of G. Furthermore, such a group G is necessarily the

full automorphism group of a pseudoreal Riemann surface on which it acts.

Proof. Suppose we have an epimorphism θ : ∆ −→ G onto a finite group G defining

an essential action on the pseudoreal Riemann surface X = H/Ker(θ). The group

H := θ(∆+) is an index 2 subgroup of G, because G has anticonformal elements. The

extension H ≤ G is non-split because if it were a split extension, then G\H would

contain anticonformal involutions, which cannot occur because X is pseudoreal. We have

∆ = 〈d1, d2, d3 : d2
1d

2
2d

2
3 = 1〉 where the di’s are glide reflections, so the anticonformal

elements d′ := θ(d1), d′′ := θ(d2) and d′′′ := θ(d3) cannot belong to H. To prove the

statement we need to show that the map

d′ 7→ (d′)−1, d′′ 7→ (d′)2(d′′)−1(d′)−2, d′′′ 7→ (d′′′)−1

does not induce an automorphism of G. To see this, observe that by [Buj82, p. 529-30]

there is a NEC group ∆′ with the unique signature (0; +; [2, 2, 2], {(−)}) containing ∆

as a subgroup of index 2. By [Buj82, Proposition 4.8] we know that if

∆′ = 〈x1, x2, x3, c1, e1 : x1x2x3e1 = 1, e−1
1 c1e1c1 = 1, x2

1 = x2
2 = x2

3 = 1, c2
1 = 1〉

then ∆ can be written as

∆ = 〈d1 := c1x1, d2 := x1c1x1x2, d3 := x2x1c1x1x2x3〉 ≤ ∆′.
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If we conjugate every generator of ∆ by c1 we get

c−1
1 d1c1 = d−1

1 , c−1
1 d2c1 = d2

1d
−1
2 d−2

1 , c−1
1 d3c1 = d−1

3 ,

so Ker(θ) would be a normal subgroup of ∆′ if and only if the images of d1, d2 and d3

through θ satisfy that the map

d′ 7→ (d′)−1, d′′ 7→ (d′)2(d′′)−1(d′)−2, d′′′ 7→ (d′′′)−1

induces an automorphism of ∆/Ker(θ) = G. So the assertion follows, since if Ker(θ)

is a normal subgroup of ∆′, then ∆′/Ker(θ) ∼= Aut±(X) and it will contain c1Ker(θ),

which is an anticonformal involution, contradicting the hypothesis that X is pseudoreal.

Conversely, for a NEC group ∆ with signature (3;−; [−], {−}) and a non-split

extensionH ≤ G of degree 2, we can consider the map θ(d1) = d′, θ(d2) = d′′, θ(d3) = d′′′

which induces an epimorphism θ : ∆ −→ G, defining an essential action on X := H/

Ker(θ). The group G is the full automorphism group of X, because if not, then Ker(θ)

would be a normal subgroup of a NEC group ∆′ with signature (0; +; [2, 2, 2], {(−)}),

and so by the previous part of the proof, the mapping

d′ 7→ (d′)−1, d′′ 7→ (d′)2(d′′)−1(d′)−2, d′′′ 7→ (d′′′)−1

would define an automorphism of G, contradicting our assumptions. Finally, since G is

a non-split extension of H, then G\H contains no involutions, then X is a pseudoreal

Riemann surface.

We wrote a program in Magma for each one of the 3 lemmas [BG10, Lemma 4.1,

Lemma 4.2, Lemma 4.3], and for Lemma 3.4.5 in Section 5.3.3.
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3.4. Automorphism groups of pseudoreal Riemann surfaces

3.4.4 Maximal full groups

The signature (1;−; [2, 3]) will be very important in our thesis, because it is linked with

the best upper bound of the order of full automorphism groups of pseudoreal Riemann

surfaces. The study of bounds for the order of automorphism groups or Riemann surfaces

began with A. Hurwitz, who proved that the orders of the conformal automorphism

groups of the Riemann surfaces of genus g ≥ 2 are bounded above by 84(g − 1) (see

[Hur93, p. 424]), and the bound is sharp in the sense that there are infinitely many

Riemann surfaces for which their conformal automorphism group attain that bound (see

[Mac61, Corollary in p. 96]). These groups are called the Hurwitz groups, and Hurwitz

proved that a group G will be a Hurwitz group if and only if G is a finite quotient group

of

〈a, b : a2 = b3 = (ab)7 = 1〉.

The first example of a Hurwitz group is the order 168 group PSL(2, 7), which is the

conformal automorphism group of the Klein’s quartic

{[x : y : z] ∈ P2
C : x3y + y3z + z3x = 0},

which has genus 3. In the case of pseudoreal Riemann surfaces, the Hurwitz bound

is never attained because all such surfaces have conformal automorphism groups of

signature (0; [2, 3, 7]), which is an odd signature. For pseudoreal Riemann surfaces there

is a better upper bound, as we see in the following theorem:

Theorem 3.4.6. [BCC10, Theorem 5.1] If X = H/Γ is a pseudoreal Riemann surface

of genus g with full automorphism group G, then |G| ≤ 12(g − 1). Moreover, if

|G| = 12(g − 1) and G = ∆/Γ then the signature of ∆ is (1;−; [2, 3]).

If a pseudoreal Riemann surface X has genus g and full group of order 12(g − 1),

we will say that X has maximal full group. In particular, if we have a Riemann surface

X with maximal full automorphism group Aut±(X), then Aut+(X) will be a group of

order 6(g − 1) and the signature of the Fuchsian group associated with the conformal
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3.4. Automorphism groups of pseudoreal Riemann surfaces

automorphism group will be (0; +; [2, 2, 3, 3]). Using the program BG1 in Section 5.3.3

and the data of conformal actions of J. Paulhus, we found the minimum genus for which

there exists a pseudoreal Riemann surface with maximal full group, which is g = 14, with

conformal automorphism group ID(78, 1) and full automorphism group is ID(156, 7),

which is non Abelian.

The authors of [BCC10] also prove the following theorem:

Theorem 3.4.7. [BCC10, Theorem 5.5] There exist pseudoreal Riemann surfaces with

automorphism group of maximal order, for infinitely many genera. In particular, there

are infinitely many pseudoreal Riemann surface with maximal automorphism group.

As the groups that they obtained are non Abelian, this inspired us to prove the

following result:

Theorem 3.4.8. If a pseudoreal Riemann surface X has maximal full automorphism

group, then its conformal automorphism group is not Abelian.

Proof. Let us suppose that the conformal automorphism group G is Abelian. First

observe that the Fuchsian signature associated to G is (0; [2, 2, 3, 3]) (Theorem 3.4.6

and Theorem 1.2.32). If G is a non cyclic Abelian group, then by [BCC03, Theorem

7.1] we must have that G is a quotient of C2 × Cgcd(2,3) × C3 = C6, so the order of G

must divide 6. But we know that |G| = 6(g − 1) so |G| is divisible by 6, then |G| = 6.

The only 2 groups of order 6 are C6 and S3, but none of these groups is a conformal

automorphism group of a pseudoreal Riemann surface of genus 2 (see Table 3.1).

Then if G is Abelian it must be a cyclic group of order 6(g − 1), so G ∼= C6(g−1). By

Table 3.4.2 we know that there is no conformal automorphism group of a pseudoreal

Riemann surface of order 6 in genus 2, so we can assume g > 2. However, in this case

we have the following inequality

6(g − 1) > 2g + 2,
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3.4. Automorphism groups of pseudoreal Riemann surfaces

and then any generator of G will be an element of order > 2g+2. By Theorem 3.4.1 X is

not pseudoreal, contradicting the hypothesis, thus G must be a non Abelian group.

Corollary 3.4.9. If a pseudoreal Riemann surface X admits a maximal full group, then

Aut±(X) is non Abelian.

An alternative proof of this result was given by R. Hidalgo, as we see in the following

Theorem 3.4.10. If X is a compact Riemann surface of genus g ≥ 2 admitting an

Abelian group of conformal automorphisms G so that X/G has signature (0; [2, 2, 3, 3]),

then g = 2 and X admits a group G′ of conformal automorphisms containing G as a

normal subgroup such that G′/G ∼= C2 × C2. In particular, X cannot be pseudoreal.

Proof. Assume X is a compact Riemann surface of genus g ≥ 2 admitting an Abelian

group G of conformal automorphisms so that X/G has signature (0; [2, 2, 3, 3]). Let ∆

be the Fuchsian group uniformizing X/G, so it has a presentation

∆ = 〈x1, x2, x3, x4 : x2
1 = x2

2 = x3
3 = x3

4 = x1x2x3x4 = 1〉

If ∆′ is its derived (commutator) subgroup, then ∆/∆′ ∼= C6. We know that there

is a (torsion free) normal subgroup Γ � ∆ so that X = H/Γ and ∆/Γ ∼= G. As G is

Abelian, ∆′ ≤ Γ. It follows that ∆′ is a torsion free Fuchsian group; set X ′ := H/∆′;

which is a compact Riemann surface of genus 2. As the regular cover X ′ −→ X/G has

deck group C6 and it factors through X −→ X/G, we have that there is a subgroup

N ≤ C6 (acting freely on the fixed points of X ′) so that X = X ′/N . In this way, as we

are assuming X of genus g ≥ 2, we must have N = {1}, X = X ′ and G = C6. But it

can be seen that (as ∆′ is a characteristic subgroup of ∆) that the Klein group C2 × C2

(keeping invariant the collection of four cone points of X/G) must lift to X as a group

of conformal automorphisms with G as a subgroup of index 4.

Now we apply Theorem 3.4.8 to prove that the generalized superelliptic curves, which

we will define immediately, cannot have maximal full automorphism group.
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3.4. Automorphism groups of pseudoreal Riemann surfaces

Definition 3.4.11. A curve X is said to be generalized superelliptic if there exists some

τ ∈ Z (Aut(X)) such that X/〈τ〉 has genus 0.

For those curves we have the following result.

Corollary 3.4.12. If X is a pseudoreal Riemann surface with maximal full automor-

phism group, then it cannot be a generalized superelliptic curve.

Proof. If X is a superelliptic generalized pseudoreal Riemann surface, then there exists

an element τ ∈ Z(G) such that X/〈τ〉 has genus 0. We can consider the projection map

X/〈τ〉 −→ X/Z(G), so X/Z(G) has genus 0 also. Because of Theorem 2.3.6 G is an

Abelian group, which contradicts the previous theorem. Then X is a non generalized

superelliptic Riemann surface.
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Chapter 4

Classification

4.1 Summary of known pseudoreal Riemann sur-

faces in low genus

In this section we will make a summary of all the possible conformal and full automor-

phism groups of pseudoreal Riemann surfaces of small genus, and we will show explicit

algebraic models if they exist in the literature.

1. Genus 2. For a curve X of genus 2, from [CQ05, Theorem 2] we know that if X

is defined over a field of characteristic not equal to 2, and Aut(X) 6∼= C2, then X

can be defined over its field of moduli, but when Aut(X) ∼= C2, it is possible for

the curve not to be definable over its field of moduli. In [CNP05, Theorem 5] the

authors prove that in characteristic 2, a genus 2 curve is always definable over its

field of moduli. In that case, if X is a pseudoreal Riemann surface of genus 2, then

Aut+(X) ∼= C2. The latter result was obtained in [BCC10, Theorem 4.1] via NEC

groups and epimorphisms, obtaining C4 as the only possible full automorphism

group in genus 2 (see Table 3.1).

In fact, an algebraic model for a pseudoreal curve of genus 2 is Earle’s example

X : y2 = x(x2 − a2)(x2 + ta2x− a),
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4.1. Summary of known pseudoreal Riemann surfaces in low genus

where a = e
2πi

3 and t ∈ R+−{1}. The full automorphism group of X is Aut±(X) ∼=

C4 (see [Ear71, p. 126]).

2. Genus 3. In [GSS05, Corollary 2] the authors prove that if we have a hyperelliptic

complex curve X of genus 3 such that |Aut(X)| > 2, then it can be defined over

its field of moduli. This result had a small error, because in [Hug07, Proposition

5.6] the author shows examples of hyperelliptic curves X with Aut(X) ∼= C2 × C2

with field of moduli R but which cannot be defined over R. In fact, it is true for

the hyperelliptic case of genus 3 that if |Aut(X)| > 4, then X can be defined over

its field of moduli as we saw above after 2.2.2.

For the non-hyperelliptic case, in [AQ12, Theorem 0.2] the authors prove that if

X is a smooth plane quartic such that |Aut(X)| > 4, then X can be defined over

its field of moduli, because all the other groups have odd signatures, as we see in

Table 4.1 (see [Bar05, Theorem 16] for details).

Table 4.1: Automorphism groups of smooth plane quartics

Aut(X) Signature of X/Aut(X)
PSL(2, 7) (0; [2, 3, 7])

S3 (0; [24, 3])
C2 × C2 (0; [26])
D4 (0; [25])
S4 (0; [23, 3])

(C4 × C4) o S3 (0; [2, 3, 8])
C4 ◦ (C2 × C2) (0; [23, 4])

C4 ◦ A4 (0; [2, 3, 12])
C6 (0; [2, 32, 6])
C9 (0; [3, 92])
C3 (0; [35])
C2 (1; [24])

If X is a smooth plane complex quartic such that Aut(X) ∼= C2 × C2, then X
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4.1. Summary of known pseudoreal Riemann surfaces in low genus

must be isomorphic to some curve in the 3 complex parameters family

Xa,b,c : x4 + y4 + z4 + ax2y2 + by2z2 + cz2x2 = 0,

with a, b, c ∈ C, a2 + b2 + c2 − abc 6= 4 and such that no a2, b2, c2 is 4, to get a

smooth curve (see [Bar05, Theorem 16]). In [AQ12, Corollary 4.5], the authors

prove that if this curve has R as field of moduli, it will also have R as a field of

definition. Then if a genus 3 complex curve is pseudoreal, it must have conformal

automorphism group isomorphic to either C2 or C2 × C2, and in the latter case

it will be hyperelliptic. The same result was obtained in [BC14, Proposition

3.5] (after fixing some mistake in [BCC10, Theorem 4.2]) via NEC groups and

epimorphisms, obtaining C4 and C4 × C2 as the only possible full automorphism

groups in genus 3 (see Table 3.2).

We have algebraic models of pseudoreal curves for every case: in the case of

Aut+(X) ∼= C2, we have an explicit non-hyperelliptic pseudoreal curve in [AQ12,

Proposition 4.3] given by

X : y4 + y2(x− a1z)
(
x+ 1

a1
z
)

+ (x− a2z)
(
x+ 1

a2
z
)

(x− a3z)
(
x+ 1

a3
z
)

= 0,

where a1 ∈ R, a2a3 ∈ R,in which case Aut±(X) ∼= C4. In the case Aut+(X) ∼=

C2 × C2 we have Huggins’ example in [Hug05, p. 82] given by

X : y2 = (x2 − a1)
(
x2 + 1

a1

)
(x2 − a2)

(
x2 + 1

a2

)
,

where Aut±(X) ∼= C4 × C2.

3. Genus 4. The classification of automorphism groups is done in [BC14, Theorem

4.3], where the authors find that the only possible full automorphism groups for

pseudoreal Riemann surfaces are C4, C8 and the Frobenius group F20 (see Table

3.3). The proof gives no model for pseudoreal curves with these full automorphism

groups, but only the existence of models.
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We have algebraic models of pseudoreal curves when Aut+(X) is C2 or C4. When

Aut+(X) is C2, we have Shimura’s example

y2 = x5 + (a1x
6− a1x

4) + (a2x
7 + a2x

3) + (a3x
8− a3x

2) + (a4x
9 + a4x) + (x10− 1),

which has full group C4, where the coefficients ai and aj are algebraically in-

dependent over Q. When Aut+(X) is C4, we have a hyperelliptic example in

[Hug05, p. 82] given by

y2 = x(x4 − bi)
(
x4 + 1

bi

)
,

which has full group C8.

Remark 4.1.1. There is no explicit model yet of pseudoreal Riemann surface of genus

4 with full automorphism group F20 or with conformal automorphism group C2 with

signature (2; [2, 2]).

In the following section we will extend the classification until genus 10.

4.2 Full groups for pseudoreal Riemann surfaces of

genus 5 ≤ g ≤ 10

Theorem 4.2.1. Two finite groups G and G are the conformal and full automorphism

groups of a pseudoreal Riemann surface X of genus 5 ≤ g ≤ 10 if and only if G =

Aut+(X) and G = Aut±(X) in the corresponding table by genus among Table 5.2, 5.3,

5.4, 5.5, 5.6, 5.3.4, and 5.7.

To carry out the classification, we follow the next steps.

1. We fix a genus 5 ≤ g ≤ 10. Using the programs in Section 5.1 we consider the

complete list of conformal actions Aut+(X) for Riemann surfaces X of genus g,
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which is given to us by Magma with the program of J. Paulhus (see [Pau15]).

From that list, programs in Section 5.3 select only the groups of even order and

even signature (see Theorem 3.2.2 and Theorem 1.3.3).

2. From the previous list, programs in Section 5.3.4 separate the finitely maximal

and the non finitely maximal signatures.

2.1 In the first case, the program IsPseudoreal given at the end of Section 5.3

gives us the possible full automorphism groups, conformal automorphism

groups and Fuchsian signatures for pseudoreal Riemann surfaces which have

maximal NEC signature. To do this, we input a conformal action G with

finitely maximal Fuchsian signature s, and the program considers all the

degree 2 extensions G such that G ≤ G is non-split (Theorem 3.2.4), and

it also checks all the possible generating vectors of an epimorphism θ from

a NEC group ∆ with finitely maximal NEC signature s (Theorem 1.2.35)

such that the canonical Fuchsian group ∆+ of ∆ has signature s (Theorem

1.2.32), onto the groups G. The program gives the results only when there is

at least one generating vector.

2.2 In the second case, the programs BG1, BG2, BG3 and BG4 in Section

5.3.3 give us the same information for non finitely maximal NEC groups,

based on Lemmas [BG10, Lemma 4.1, Lemma 4.2, Lemma 4.3] and Lemma

3.4.5.

4.3 Further examples

1. Genus 5. In [Ear71, Theorem 2.] the author gives an example of a pseudoreal

Riemann surface X of genus 5 with an order 4 anticonformal element called f ,

which generates Aut±(X) ∼= C4 (see Figure 4.1). There are exactly 2 possible

conformal actions of C2 on pseudoreal Riemann surfaces, having signatures (3; [−])

and (1; [28]). Since X has the conformal automorphism f 2 which has no fixed
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Figure 4.1: Earle’s picture of his genus 5 example

points, the conformal action is C2 with signature (3; [−]) (see Table 5.2).

We can consider Huggin’s example in [Hug05, p. 82] given by

y2 = (x2 − a1)
(
x2 + 1

a1

)
(x2 − a2)

(
x2 + 1

a2

)
(x2 − a3)

(
x2 + 1

a3

)
,

which is the only pseudoreal hyperelliptic curve with conformal automorphism

group C2 × C2 in this genus.

There are non-hyperelliptic examples of pseudoreal curves with conformal auto-

morphism group C2 × C2 in [ACHQ16]. For example, we can consider the curve

defined by the equations

w2
2 = 1−2reiθw1, w2

3 = w1(reiθw1−1), w2
4 = (1−w1(1+reiθ))(1−w1(reiθ−r2)),

such that θ ∈]0, π[, θ 6= π
2 , r ∈]1,+∞[ and r 6=

√
1 + cos2(θ) ± cos(θ) (see

[ACHQ16, p. 9-10] for more examples).

2. Genus 6. An example of a pseudoreal Riemann surface X such that Aut+(X) =

C2, we can consider Shimura’s example

y2 = x7 + (a1x
8 − a1x

6) + . . .+ (a6x
13 + a6x) + (x14 − 1),

which is a hyperelliptic curve, taking ai and aσj algebraically independent over Q.

An example of a pseudoreal Riemann surface X such that Aut+(X) = C4 (with
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signature (0; [26, 42])) is Huggins’ example in [Hug05, p. 82], given by

y2 = x(x2 − b1)
(
x2 + 1

b1

)
. . . (x2 − b3)

(
x2 + 1

b3

)
,

which is a pseudoreal hyperelliptic curve. An example of a pseudoreal Riemann

surface X such that Aut+(X) = C6 is Huggins’ example in [Hug05, p. 82], given

by

y2 = (x3 − b1)
(
x3 + 1

b1

)
(x3 − b2)

(
x3 + 1

b2

)
,

which is a pseudoreal hyperelliptic curve, and by [BT02, Theorem 1.2] its full

automorphism group Aut±(X) is C12.

3. Genus 7. An example of a pseudoreal Riemann surface X such that Aut+(X) =

C4 × C2 is Huggins’ example in [Hug05, p. 82] given by

y2 = (x4 − a1)
(
x4 + 1

a1

)
(x4 − a2)

(
x4 + 1

a2

)
,

which is the only pseudoreal hyperelliptic curve in this case and its full automor-

phism group is Aut±(X) = C8 × C2.

4. Genus 8. An example of a pseudoreal Riemann surface X such that Aut+(X) =

C2 is Shimura’s example

y2 = x9 + (a1x
10 − a1x

8) + . . .+ (a8x
17 + a8x) + (x18 − 1),

which is a pseudoreal hyperelliptic curve, taking ai and aσj algebraically independent

over Q. An example of a pseudoreal Riemann surface X such that Aut+(X) = C4

is Huggins’ example in [Hug05, p. 82] given by

y2 = x(x2 − b1)
(
x2 + 1

b1

)
. . . (x2 − b4)

(
x2 + 1

b4

)
,

which is a pseudoreal hyperelliptic curve. An example of a pseudoreal Riemann
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surface X such that Aut+(X) = C8 is Huggins’ example in [Hug05, p. 82], given

by

y2 = x(x4 − b1)
(
x4 + 1

b1

)
(x4 − b2)

(
x4 + 1

b2

)
,

which is a pseudoreal hyperelliptic curve.

5. Genus 9. An example of a pseudoreal Riemann surface X such that Aut+(X) =

C2 × C2 is Huggins’ example in [Hug05, p. 82] given by

y2 = (x2 − a1)
(
x2 + 1

a1

)
. . . (x2 − a5)

(
x2 + 1

a5

)
,

which is the only pseudoreal hyperelliptic case in this genus.

A non-hyperelliptic example in this genus appears in [ACHQ16], where the authors

find the curve defined by the equations

w2
2 = 1− w1(1 + reiθ), w2

3 = 1− w1(reiθ − r2),

w2
4 = 1− 2reiθw1, w2

5 = w1(reiθw1 − 1),

which has conformal automorphism group C4
2 and full automorphism group

ID(32, 22) according to Table 5.3.4 (see [ACHQ16, p. 11] for more examples).

6. Genus 10. An example of a pseudoreal Riemann surface X such that Aut+(X) =

C2 is Shimura’s example

y2 = x11 + (a1x
12 − a1x

10) + . . .+ (a10x
21 + a10x) + (x22 − 1),

which is a pseudoreal hyperelliptic curve, taking ai and aσj algebraically independent

over Q.

An example of a pseudoreal Riemann surface X such that Aut+(X) = C4 is
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Huggins’ example in [Hug05, p. 82] given by

y2 = x(x2 − a1)
(
x2 + 1

a1

)
. . . (x2 − a5)

(
x2 + 1

a5

)
,

which is a pseudoreal hyperelliptic curve.

An example of a pseudoreal Riemann surface X such that Aut+(X) = C6 is

Kontogeorgis’ example in [Kon09, Section 5] given by

y3 = (x2 − a1)
(
x2 + 1

a1

)
(x2 − a2)

(
x2 + 1

a2

)
(x2 − a3)

(
x2 + 1

a3

)
,

which is a 3-gonal pseudoreal curve, taking ai = (i+ 1)εi3, i ∈ {0, 1, 2}, where ε3

is a primitive 3rd root of unity. The conformal automorphism of X is generated

by the map f defined by

(x, y) 7→ (−x, ε3y),

and we have the anticonformal automorphism g defined by

(x, y) 7→
(
i

x
,
ε−1

3 y

x4

)
.

Since f ◦ g 6= g ◦ f , the full automorphism group of X is non Abelian, so it must

be Dic12.

Finally, for C10 we have Huggins’ example in [Hug05, p. 82] given by

y2 = x(x5 − a1)
(
x5 + 1

a1

)
(x5 − a2)

(
x5 + 1

a2

)
,

which is a pseudoreal hyperelliptic curve.

4.4 Pseudoreal plane quintics

A few months ago, E. Badr and F. Bars [BB16] classified the automorphism groups of

plane quintics defined over an algebraically closed field K of zero characteristic, giving a
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smooth plane model for every group (see Table 4.2). We used this classification, taking

K = C, together with our classification of conformal and full automorphism groups of

pseudoreal Riemann surfaces of genus 6 (see Table 5.3), to get the possible conformal

and full groups of pseudoreal plane quintics.

Table 4.2: Automorphism groups of smooth plane quintics

Group Generators Polynomial of the smooth plane model
ID(150, 5) [ε5x : y : z], [x : ε5y : z], x5 + y5 + z5

[x : z : y], [y : z : x]
ID(39, 1) [x : ε13y : ε10

13z], [y : z : x] x4y + y4z + z4x

ID(30, 1) [x : ε15y : ε11
15z], [x : z : y] x5 + y4z + z4y

C20 [x : ε4
20y : ε5

20z] x5 + y5 + xz4

C16 [x : ε16y : ε12
16z] x5 + y4z + xz4

C10 [x : ε2
10y : ε5

10z] x5 + y5 + xz4 + β2,0x
3z2

β2,0 6= 0, β2
2,0 6= 20

D5 [x : ε5y : ε2
5z], [z : y : x] x5 + y5 + z5 + β3,1x

2yz2 + β4,3xy
3z

(β3,1, β4,3) 6= (0, 0)
C8 [x : ε8y : ε4

8z] x5 + y4z + xz4 + β2,0x
3z2

β2,0 6= 0,±2
S3 [x : ε3y : ε2

3z], [x : z : y] x5 + y4z + yz4 + β2,1x
3yz+

β3,3x
2(y3 + z3) + β4,2xy

2z2 (not above)
C5 [x : y : ε5z] z5 + L5,z (not above)
C4 [x : ε4y : ε2

4z] x5 + x(z4 + αy4) + β2,0x
3z2 + β3,2x

2y2z+
+β5,2y

2z3, β5,2 6= 0 (not above)
C4 [x : y : ε4z] z4L1,z + L5,z (not above)
C3 [x : ε3y : ε2

3z] x5 + y4z + αyz4 + β2,1x
3yz+

+x2(β3,0z
3 + β3,3y

3) + β4,2xy
2z2 (not above)

C2 [x : y : ε2z] z4L1,z + z2L3,z + L5,z (not above)
Ln,z denotes a homogeneous polynomial of degree n in K[x, y]

and εn is a primitive nth rooth of unity
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Theorem 4.4.1. Two finite groups G and G are the conformal and full automorphism

groups of a pseudoreal plane quintic X if and only if G = Aut+(X) and G = Aut±(X)

in a row of Table 4.3.

Table 4.3: Possible automorphism groups for pseudoreal plane quintics

Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector
C4 (0; 46) C8 (1;−; [43]) (a; a2, a2, a2)
C2 (2; [26]) C4 (3;−; [23]) (a, a, a; a2, a2, a2)

Proof. We know that the conformal and full automorphism group of a genus 6 pseudoreal

Riemann surface, together with their signatures, must be in Table 5.3. For the remaining

groups we can use Riemann-Hurwitz formula to calculate the signature of the covering

X −→ X/Aut(X), obtaining the following cases:

1. Aut(X) = D5, with group generators [x : ε5y : ε2
5z] and [z : y : x], with a smooth

plane model

x5 + y5 + z5 + ax2yz2 + bxy3z = 0,

with (a, b) 6= (0, 0). In this case the covering X −→ X/Aut(X) has signature

(0; [26]).

2. Aut(X) = C4, with generator [x : y : ε4z], with smooth plane model

z4L1,z + L5,z = 0.

In this case the covering X −→ X/Aut(X) has signature (0; [46]).

3. Aut(X) = C2, with generator [x : y : −z], with smooth plane model

z4L1,z + z2L3,z + L5,z = 0.

In this case the covering X −→ X/Aut(X) has signature (2; [26]).

91
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We will prove that Case 1 cannot occur. Suppose we have an isomorphism f between

X : x5 + y5 + z5 + ax2yz2 + bxy3z = 0

and

X : x5 + y5 + z5 + ax2yz2 + bxy3z = 0.

Then f must have a representation as a 3× 3 matrix (see [BB16, p. 4328]) and it must

preserve the fixed points of the subgroup C5 ≤ D5. We see that the fixed points of

[x : ε5y : ε2
5z] are [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1], so the matrix representing f must be

the composition of a permutation matrix with a diagonal matrix. Since [z : y : x] and

the identity permutation [x : y : z] are the only possible permutations in X, the only

possible matrix representations for f are the following


1 0 0

0 r 0

0 0 s

 ,


0 0 1

0 r 0

s 0 0

 ,

for complex entries r, s. Since the coefficients of X remain fixed through f , the complex

numbers r and s must be of the form εm5 and εn5 , respectively. So f [x : y : z] must be

[x : εm5 y : εn5z] or [z : εm5 y : εn5x], but in both cases we have

(J ◦ f)2[x : y : z] = [x : y : z],

so the curve admits anticonformal involutions, and it cannot be pseudoreal.

92



4.5. Pseudoreal generalized superelliptic curves of low genus

4.5 Pseudoreal generalized superelliptic curves of

low genus

In [BSZ15], the authors motivate the study of generalized superelliptic curves (Definition

3.4.11), which have very nice properties: they are a natural generalization of hyperelliptic

curves, they have nice affine models, and their automorphism groups are not too hard

to compute. They propose the problem of finding the minimal field of definition of

those curves when they are considered as complex curves. In [HS16] the authors study

the definability of generalized superelliptic curves over their field of moduli, and they

give a partial classification up to genus 10. In this section we will discuss the case

of the Galois extension C/R for generalized superelliptic curves of genus 3 ≤ g ≤ 10,

because we have all the possible conformal and full automorphism groups of pseudoreal

Riemann surfaces in such genera, and in [MPRZ14] we have the classification of groups

of generalized superelliptic curves in genus 5 ≤ g ≤ 10. This is interesting because

most of the genus 4 curves which have non trivial automorphism groups are generalized

superelliptic curves (70%− 80%, see [BSZ15, Page 2]), and probably in bigger genus

they are also an important subset of the curves which have non trivial automorphism

groups.

Theorem 4.5.1. Two finite groups G and G are the conformal and full automorphism

groups of a pseudoreal generalized superelliptic curve X of genus 3 ≤ g ≤ 10 and cental

element τ (remember Definition 3.4.11) if and only if G = Aut+(X) and G = Aut±(X)

in the corresponding table by genus among Table 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14

and 5.15.

By Corollary 2.3.6, every conformal automorphism group of a pseudoreal generalized

superelliptic curve is Abelian. Since in [MPRZ14] we have all the possible automorphism

groups of generalized superelliptic curves in genus 5 ≤ g ≤ 10, from those tables we can

select genus by genus the groups which appear also in Section 4.2. When |τ | = 2, i.e.

when the generalized superelliptic curve is hyperelliptic, we know by [BT02, Theorem
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4.5. Pseudoreal generalized superelliptic curves of low genus

1.2] that its full automorphism group is Abelian, so we can discard the case in genus 6

where we have a full automorphism group C8 oφ C2. For all the hyperelliptic cases and

for the 3-gonal curve in genus 10 we have explicit examples by [Hug05] and [Kon09] (see

Section 4.3), but in the other non-hyperelliptic cases we have no certainty of the existence

of a pseudoreal generalized superelliptic curve with those automorphism groups.
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Chapter 5

Magma Programs

In this chapter we will present the implementation of all the programs that we used to

carry out the classification of full automorphism groups of pseudoreal Riemann surfaces

done in Section 4.2.

5.1 J. Paulhus’ program

Our program relies on Jennifer Pauhlus’ program GenVectMagmaToGenus20, which

is available at

http://www.math.grinnell.edu/~paulhusj/monodromy.html

and is based on the paper [Pau15]. To run our program one first needs to download the

packages genvectors.m, searchroutines.m, GenVectMagmaToGenus20 and save

all of them in the same folder. To access the data in Pauhlus’ program, for example for

genus 4, one has to write in Magma [BCP97]

load "genvectors.m";

load "searchroutines.m";

L:=ReadData("Fullg20/grpmono04", test);

where “test” is a function taking as input a permutation group, a signature (as a vector)

and a generating vector (as a vector whose entries are permutations). For example when
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5.2. Our program

using the following function, the program gives the list of all triples (G, s, v), where G

is a group of order bigger than 7 acting on a Riemann surface of genus 4 with signature

s and generating vector v.

test:=function(G,s,Lmonod)

return Order(G) gt 7;

end function;

Thus this program allows to analyse the automorphisms groups of all Riemann

surfaces up to genus 20, looking for certain properties specified by the function “test” 1

Observe that G is not necessarily the complete automorphism group of some Riemann

surface of the chosen genus (this will be one of the main issues in our program).

5.2 Our program

Given a genus 2 ≤ g ≤ 20 our program describes the automorphism group of all the

pseudoreal Riemann surfaces of genus g. More precisely it gives the full automorphism

group, the conformal automorphism group and its Fuchsian signature. For each entry of

the output there exists a pseudoreal Riemann surface of genus g with such properties.

To run the program one needs to download the file pseudoreal.m, which is available

here

https://www.dropbox.com/s/k786b7a2vrmt22i/pseudoreal.m?dl=0

and save it in the same folder as Pauhlus’ programs. The program (again in the case of

genus 4) consists of the following lines

load "genvectors.m";

load "searchroutines.m";

load "pseudoreal.m";

1The data was computed using Magma V2.19-9. In newer versions of Magma an error may be
returned for some genera (at least 5 and 9). See the warning in J. Paulhus’s web page.
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5.3. The package pseudoreal.m

L:=ReadData("Fullg20/grpmono04", testpr);

PR(L);

The output is a list whose entries are of the form 〈〈 , 〉, 〈 , 〉, [. . . ]〉, where the first

bracket contains the ID number of the full automorphism group, the second bracket

contains the ID number of the conformal automorphism group and the final sequence is

the corresponding Fuchsian signature (the first entry is the genus of the quotient by the

conformal automorphism group). In what follows we will describe each of the functions

contained in pseudoreal.m.

5.3 The package pseudoreal.m

5.3.1 Basic functions

This function embeds a given group G in a symmetric group Sn.

converttoperm:=function(G)

SL:= Subgroups(G);

T := {X‘subgroup: X in SL};

TrivCore := {H:H in T| #Core(G,H) eq 1};

mdeg := Min({Index(G,H):H in TrivCore});

Good := {H: H in TrivCore| Index(G,H) eq mdeg};

H := Rep(Good);

f,P,K := CosetAction(G,H);

return P;

end function;

This function takes a group G and returns the list of all subgroups of G.

subg:=function(G)

S:=Subgroups(G);
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5.3. The package pseudoreal.m

S1:=[S[i]‘subgroup: i in [1..#S]];

return S1;

end function;

This function takes a group G and returns the list of all its non-split group extensions

of degree 2.

nonsplitext:=function(K)

A:=SmallGroups(2*Order(K));

T:=[g: g in A| IdentifyGroup(K) in [IdentifyGroup(p): p in subg(g)]

and #[p: p in g|Order(p) eq 2] eq #[p: p in K| Order(p) eq 2]];

return T;

end function;

This function takes a signature vector v and returns True or False depending if it is

an even signature or not (including the cases without elliptic elements).

evensign:=function(v)

a:=[#[i: i in [1..#v]|v[j] eq v[i]]: j in [1..#v]];

if {IsEven(a[i]): i in [1..#v]} eq {true} or #v eq 0

then return true;

else return false;

end if;

end function;

This is the function we enter in J. Paulhus program to select only the even order

groups with even signature.

testpr:=function(G,s,Lmonod)

return evensign([s[i]: i in [2..#s]])

and IsEven(Order(G));

end function;
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5.3. The package pseudoreal.m

This function is an intermediate step for the program IsPseudoreal. It separates the

cases where we have or do not have elliptic elements in our Fuchsian signature.

gencond:=function(v,t,k,s,h)

if k gt t then return

&*[v[i]^2: i in [1..t]]*&*[v[j]: j in [t+1..k]] eq Identity(h)

and [Order(v[i]) : i in [t+1..k]] eq [s[2*i]: i in [1..(#s-1)/2]]

and {v[i] in h: i in [t+1..k]} eq {true};

else return &*[v[i]^2: i in [1..t]] eq Identity(h);

end if;

end function;

5.3.2 The function IsPseudoreal

This function takes a group G and a signature s and it returns true if G has even order,

s is even and there exists an epimorphism from a NEC group with canonical Fuchsian

signature s to a (possible full automorphism) group G, where G is a degree two non-split

extension of G. Otherwise it returns false. In case the answer is true, it returns the

full automorphism group G, the conformal automorphism group G and the Fuchsian

signature s.

IsPseudoreal:=function(G,s)

s := [s[1]] cat Sort([s[i]: i in [2..#s]]);

if {IsEven(Order(G))} eq {false} and {evensign([s[i]: i in [2..#s]])}

eq {false} then return false;

end if;

G := converttoperm(G);

Ext := nonsplitext(G);

Ext2 := [converttoperm(g): g in Ext];

L := <>;

for g in Ext2 do
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5.3. The package pseudoreal.m

H := [K: K in subg(g)| IdentifyGroup(K) eq IdentifyGroup(G)];

for h in H do

t := s[1]+1;

k := (#s-1)/2+s[1]+1;

gen := [v: v in Subsequences(Set(g),Numerator(k))|

#sub<g|[v[i]: i in [1..#v]]> eq #g

and {v[i] in h: i in [1..t]} eq {false}

and gencond(v,t,k,s,h) eq true];

if #gen gt 0

then Append(~L,<IdentifyGroup(g), IdentifyGroup(h), s>);

end if;

end for;

end for;

if #L eq 0 then return <false>;

else return <true, L>;

end if;

end function;

5.3.3 Lemmas in Baginski-Gromadzki’s paper

This section contains functions based on [BG10, Lemma 4.1, Lemma 4.2, Lemma 4.3]

and Lemma 3.4.5. The first functions are intermediate steps for the next 4 ones, and

they check if a certain map is a group isomorphism, which is a condition of the 3 lemmas

in [BG10] and Lemma 3.4.5.

auto1:=function(G,v)

S:=sub<G|v>;

f:=IsHomomorphism(S,S,[S.1^-1, S.2^-1]);

return f;

end function;
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5.3. The package pseudoreal.m

auto2:=function(G,v)

S:=sub<G|v>;

f1:=IsHomomorphism(S,S,[S.1^-1, S.2^-1]);

f2:=IsHomomorphism(S,S,[S.1^-1*S.2^-2, S.2]);

return [f1,f2];

end function;

auto3:=function(G,v)

S:=sub<G|v>;

t:=hom<S->S|[S.2^-2*S.1^-1, S.2^-1*S.1^-2]>;

f:=IsHomomorphism(S,S,[S.2^-2*S.1^-1, S.2^-1*S.1^-2]);

if f eq true and #t(S) eq #(S)

then return true;

else return false;

end if;

end function;

auto4:=function(G,v)

S:=sub<G|v>;

f:=IsHomomorphism(S,S,[S.1^-1,S.1^2*S.2^-1*S.1^-2,S.3^-1]);

return f;

end function;

The following 4 functions take a group G, a subgroup H ≤ G and some natural

numbers (except in IsFull4) and check the conditions of Baginski-Gromadzki’s Lemmas

and Lemma 3.4.5.

IsFull1:=function(G,H,k,l)

G:=converttoperm(G);

gen:=[[g,h]: g,h in G|sub<G|g,h> eq G and Order(g) eq k

and Order(h^2*g) eq l and h notin H];
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5.3. The package pseudoreal.m

if false in {auto1(G,v): v in gen}

then return true;

else return false;

end if;

end function;

IsFull2:=function(G,H,k)

G:=converttoperm(G);

gen:=[[g,h]: g,h in G|sub<G|g,h> eq G and Order(g) eq k

and Order(h^2*g) eq k and h notin H];

if [false, false] in {auto2(G,v): v in gen}

then return true;

else return false;

end if;

end function;

IsFull3:=function(G,H,k)

gen:=[[g,h]: g,h in G|sub<G|g,h> eq G and Order(g^2*h^2) eq k

and g notin H and h notin H];

if false in {auto3(G,v): v in gen}

then return true;

else return false;

end if;

end function;

IsFull4:=function(G,H)

G:=converttoperm(G);

gen:=[[a,b,c]: a,b,c in G|sub<G|a,b,c> eq G and a notin H and b notin H

and c notin H and a^2*b^2*c^2 eq Identity(G)];

if false in {auto4(G,v): v in gen}

then return true;
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5.3. The package pseudoreal.m

else return false;

end if;

end function;

These 4 functions take a group G and some natural numbers (except in BG4), and

they apply the previous 4 functions, checking all the possible non-split extensions G ≤ G

of degree two.

BG1:=function(G,k,l)

Ext := nonsplitext(G);

Ext2 := [converttoperm(g): g in Ext];

L := [];

for g in Ext2 do

H := [K: K in subg(g)| IdentifyGroup(K) eq IdentifyGroup(G)];

for h in H do

if IsFull1(g,h,k,l)

then Append(~L,IdentifyGroup(g));

end if;

end for;

end for;

return L;

end function;

BG2:=function(G,k)

Ext := nonsplitext(G);

Ext2 := [converttoperm(g): g in Ext];

L := [];

for g in Ext2 do

H := [K: K in subg(g)| IdentifyGroup(K) eq IdentifyGroup(G)];

for h in H do

if IsFull2(g,h,k)
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then Append(~L,IdentifyGroup(g));

end if;

end for;

end for;

return L;

end function;

BG3:=function(G,k)

Ext := nonsplitext(G);

Ext2 := [converttoperm(g): g in Ext];

L := [];

for g in Ext2 do

H := [K: K in subg(g)| IdentifyGroup(K) eq IdentifyGroup(G)];

for h in H do

if IsFull3(g,h,k)

then Append(~L,IdentifyGroup(g));

end if;

end for;

end for;

return L;

end function;

BG4:=function(G)

Ext := nonsplitext(G);

Ext2 := [converttoperm(g): g in Ext];

L := [];

for g in Ext2 do

H := [K: K in subg(g)| IdentifyGroup(K) eq IdentifyGroup(G)];

for h in H do

if IsFull4(g,h)
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then Append(~L,IdentifyGroup(g));

end if;

end for;

end for;

return L;

end function;

5.3.4 The function PR

Finally we analyse the function PR step by step. The function takes as an input a list L

(which will be the output of Pauhlus’ program) and gives as an output the final result

of our program, i.e. the list of all the triples describing the automorphism group of the

pseudoreal Riemann surfaces of a given genus.

These sentences transform the list L in a list which contains just the pairs of groups

and signatures given in L defined previously.

gps:=[L[i][1]: i in [1..#L]];

sign:=[L[i][2]: i in [1..#L]];

gpsn:=[[IdentifyGroup(gps[i])[j]: j in [1,2]]: i in [1..#gps]];

list:={[gpsn[i],sign[i]]: i in [1..#L]};

ll:=SetToSequence(list);

These sentences separate the maximal and non-maximal Fuchsian signatures.

X1:=[i: i in [1..#ll]| #(ll[i][2]) eq 5 and ll[i][2][1] eq 0

and &+[ll[i][2][k]: k in [2,4]] ge 5 and ll[i][2][2] ne ll[i][2][4]];

X2:=[i: i in [1..#ll]| #(ll[i][2]) eq 5 and ll[i][2][1] eq 0

and &+[ll[i][2][k]: k in [2,4]] ge 5 and ll[i][2][2] eq ll[i][2][4]];

X3:=[i: i in [1..#ll]| #(ll[i][2]) eq 3 and ll[i][2][1] eq 1

and ll[i][2][2] eq ll[i][2][3]];

Y:=[i: i in [1..#ll]| #(ll[i][2]) eq 1 and ll[i][2][1] eq 2];
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Z:=[i: i in [1..#ll]| i notin X1 and i notin X2 and i notin X3

and i notin Y];

The following programs check the conditions for non maximal signatures given in

the three lemmas of [BG10] and Lemma 3.4.5. The last program uses the function

IsPseudoreal for maximal signatures.

Pr1:=[];

for i in X1 do

k:=ll[i][2][2];

l:=ll[i][2][4];

G:=SmallGroup(ll[i][1][1],ll[i][1][2]);

F:=BG1(G,k,l);

for f in F do

Append(~Pr1,<f,IdentifyGroup(G),[0,k,k,l,l]>);

end for;

end for;

Pr2:=[];

for i in X2 do

k:=ll[i][2][2];

G:=SmallGroup(ll[i][1][1],ll[i][1][2]);

F:=BG2(G,k);

for f in F do

Append(~Pr2,<f,IdentifyGroup(G),[0,k,k,k,k]>);

end for;

end for;

Pr3:=[];

for i in X3 do

k:=ll[i][2][2];
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G:=SmallGroup(ll[i][1][1],ll[i][1][2]);

F:=BG3(G,k);

for f in F do

Append(~Pr3,<f,IdentifyGroup(G),[1,k,k]>);

end for;

end for;

Pr4:=[];

for i in Y do

G:=SmallGroup(ll[i][1][1],ll[i][1][2]);

F:=BG4(G);

for f in F do

Append(~Pr4,<f,IdentifyGroup(G),[2]>);

end for;

end for;

Prmax:=[];

for i in Z do

q:= IsPseudoreal(SmallGroup(ll[i][1][1],ll[i][1][2]),ll[i][2]);

if q[1] eq true

then for j in [1..(#q[2])] do

Append(~Prmax, q[2][j]);

end for;

end if;

end for;

These last sentences give us a list of 3-uples, whose first entry is a full automorphism

group for a pseudoreal Riemann surface in that genus, the second entry is the corre-

sponding conformal automorphism group, and the third entry is the Fuchsian signature

of the conformal action. The list is exhaustive.
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PrCasi1:= Pr1 cat Pr2 cat Pr3 cat Pr4 cat Prmax;

Pr:={a: a in PrCasi1};

return Pr;
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Appendix A: List of groups

We present the groups used in this thesis and their ID number when pertinent, which is

a pair of numbers whose first entry is the order of the group, and the second entry is

the position the group has in the Magma database.

Table 5.1: Groups used in this thesis

Group Order Presentation/Name ID number
Cn n 〈a : an = 1〉 −
Dn 2n 〈r, s : rn = s2 = 1, srs−1 = r−1〉 −
Sn n! Permutations group of n symbols −

Cm × Cn mn 〈a, b : am = bn = 1, ab = ba〉 −
F20 20 〈a, b : a5 = b4 = 1, bab−1 = a2〉 ID(20, 3)
Q8 8 〈i, j, k : i2 = j2 = k2 = ijk = −1〉 ID(8, 4)
QD8 16 〈a, x : a8 = x2 = 1, xax−1 = a3〉 ID(16, 8)
Dic4n 4n 〈a, x : a2n = 1, x2 = an, x−1ax = a−1〉 −

Ci × Cj × Ck ijk 〈a, b, c : ai = bj = ck = 1, ab = ba, bc = cb, ac = ca〉 −
C8 oφ C2 16 〈a, x : a8 = x2 = 1, xax−1 = a5〉 ID(16, 6)

U6 24 〈x, y : x2, y6, xyxy4〉 ID(24, 5)
V8 32 〈x, y : x4, y4, (xy)2, (x−1y)2〉 ID(32, 9)
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Table 5.2: Automorphism groups of pseudoreal Riemann surfaces of genus 5

Genus 5
Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector

C2 (3; [−]) C4 (4;−; [−]) (a, a, a, a; [−])
C2 (1; [28]) C4 (2;−; [24]) (a, a; a2, a2, a2, a2)
C4 (1; [24]) C8 (2;−; [22]) (a, a3; a4, a4)
C4 (1; [24]) Q8 (2;−; [22]) (j, k;−1,−1)
C4 (0; [22, 44]) Q8 (1;−; [2, 42]) (j;−1, i,−i)

C2 × C2 (0; [28]) C4 × C2 (1;−; [24]) (a; b, b, b, a2b)
C2 × C2 (1; [24]) C4 × C2 (2;−; [22]) (a, a; b, b)
C6 (1; [32]) C12 (2;−; [3]) (a, a; a8)
D4 (0; [26]) QD8 (1;−; [23]) (xa; a4, a4, a4)

C2 × C2 × C2 (0; [26]) C4 × C2 × C2 (1;−; [23]) (a; b, c, a2bc)
− C4 × C2 oφ C2 (1;−; [23]) (a; b, c, a2bc)



Table 5.3: Automorphism groups of pseudoreal Riemann surfaces of genus 6

Genus 6
Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector

C2 (0; [214]) C4 (1;−; [27]) (a; a2, a2, a2, a2, a2, a2, a2)
C2 (2; [26]) C4 (3;−; [23]) (a, a, a; a2, a2, a2)
C4 (0; [26, 42]) C8 (1;−; [23, 4]) (a; a4, a4, a4, a2)
C4 (0; [46]) C8 (1;−; [43]) (a; a2, a2, a2)
C6 (0; [24, 62]) C12 (1;−; [22, 6]) (a; a6, a6, a10)
C6 (0; [22, 34]) C12 (1;−; [2, 32]) (a5; a6, a4, a4)

− Dic12 (1;−; [2, 32]) (x; a3, a2, a4)
D5 (0; [26]) F20 (1;−; [23]) (b; ab2, ab2, b2)

Table 5.4: Automorphism groups of pseudoreal Riemann surfaces of genus 7

Genus 7
Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector

C2 (1; [212]) C4 (2;−; [26]) (a, a; a2, a2, a2, a2, a2, a2)
C2 (3; [24]) C4 (4;−; [22]) (a, a, a, a; a2, a2)
C4 (0; [24, 44]) Q8 (1;−; [22, 42]) (j;−1,−1, i, i)
C4 (1; [26]) C8 (2;−; [23]) (a, a; a4, a4, a4)
C4 (1; [44]) C8 (2;−; [42]) (a, a; a2, a2)

− Q8 (2;−; [42]) (j, j; i,−i)
C4 (2; [22]) Q8 (3;−; [2]) (j, j, j;−1)

C2 × C2 (0; [210]) C4 × C2 (1;−; [25]) (a; b, b, a2, a2, a2)
C2 × C2 (1; [26]) C4 × C2 (2;−; [23]) (a, a; a2, a2b, b)
C2 × C2 (2; [22]) C4 × C2 (3;−; [2]) (a, a, ab; a2)
C6 (1; [24]) C12 (2;−; [22]) (a3, a3; a6, a6)

(1; [24]) Dic12 (2;−; [22]) (ax, x; a3, a3)
C4 × C2 (0; [24, 42]) C8 × C2 (1;−; [22, 4]) (a; b, b, a6)

− C8 oφ C2 (1;−; [22, 4]) (ax; a4x, a4x, a2)
D4 (0; [24, 42]) QD8 (1;−; [22, 4]) (a;x, x, a6)
D6 (0; [26]) C3 × S3 (1;−; [23]) −
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Table 5.5: Automorphism groups of pseudoreal Riemann surfaces of genus 8

Genus 8
Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector

C2 (0; [218]) C4 (1;−; [29]) (a; a2, a2, a2, a2, a2, a2, a2, a2, a2)
C2 (2; [210]) C4 (3;−; [25]) (a, a, a; a2, a2, a2, a2, a2)
C2 (4; [22]) C4 (5;−; [2]) (a, a, a, a, a; a2)
C4 (0; [28, 42]) C8 (1;−; [24, 4]) (a3; a4, a4, a4, a4, a2)
C4 (0; [22, 46]) C8 (1;−; [2, 43]) (a3; a4, a2, a2, a2)
C4 (2; [42]) C8 (3;−; [4]) (a, a, a; a2)
C6 (0; [34, 62]) C12 (1;−; [32, 6]) (a; a4, a4, a2)

− Dic12 (1;−; [32, 6]) (x; a2, a2, a5)
C6 (0; [26, 32]) C12 (1;−; [23, 3]) (a; a6, a6, a6, a4)
C6 (0; [22, 64]) C12 (1;−; [2, 62]) (a; a6, a2, a2)

− Dic12 (1;−; [2, 62]) (x; a3, a, a5)
C8 (0; [24, 82]) C16 (1;−; [22, 8]) (a; a8, a8, a14)

112



Table 5.6: Automorphism groups of pseudoreal Riemann surfaces of genus 9

Genus 9
Aut+(X) Fuchsian signature Aut±(X) NEC signature

C2 (1; [216]) C4 (2;−; [28])
C2 (3; [28]) C4 (4;−; [24])
C2 (5; [−]) C4 (6;−; [−])
C4 (0; [48]) Q8 (1;−; [44])
C4 (0; [26, 44]) Q8 (1;−; [23, 42])
C4 (1; [28]) C8 (2;−; [24])

− Q8 (2;−; [24])
C4 (1; [22, 44]) C8 (2;−; [2, 42])

− Q8 (2;−; [2, 42])
C4 (3; [−]) C8 (4;−; [−])

− Q8 (4;−; [−])
C2 × C2 (0; [212]) C4 × C2 (1;−; [26])
C2 × C2 (1; [28]) C4 × C2 (2;−; [24])
C2 × C2 (2; [24]) C4 × C2 (3;−; [22])
C2 × C2 (3; [−]) C4 × C2 (4;−; [−])
C6 (1; [22, 62]) C12 (1;−; [26])
C6 (1; [34]) Dic12 (2;−; [32])

− C12 (2;−; [32])
D4 (0; [28]) QD8 (1;−; [24])
C3

2 (0; [28]) ID(16, 3) (1;−; [24])
− C4 × C2

2 (1;−; [24])
C4 × C2 (0; [22, 44]) C4 × C4 (1;−; [2, 42])

− ID(16, 4) (1;−; [2, 42])
− C2 ×Q8 (1;−; [2, 42])

Q8 (0; [22, 44]) Q16 (1;−; [2, 42])
C8 (1; [24]) C16 (2;−; [22])

− Q16 (2;−; [22])
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Genus 9 (continuation)
Aut+(X) Fuchsian signature Aut±(X) NEC signature
C4 × C2 (1; [24]) C4 × C4 (2;−; [22])

− ID(16, 4) (2;−; [22])
− C8 × C2 (2;−; [22])
− ID(16, 6) (2;−; [22])
− C2 ×Q8 (2;−; [22])

D4 (1; [24]) QD8 (2;−; [22])
C3

2 (1; [24]) ID(16, 3) (2;−; [22])
− C4 × C2

2 (2;−; [22])
C4 × C2 (2; [−]) ID(16, 6) (3;−; [−])
D4 (2; [−]) QD8 (3;−; [−])
D5 (1; [52]) F20 (2;−; [5])
C10 (1; [52]) C20 (2;−; [5])
D6 (0; [24, 32]) C4 × S3 (2;−; [22, 3])

C6 × C2 (0; [24, 32]) C12 × C2 (2;−; [22, 3])
C12 (1; [32]) C24 (2;−; [3])

− C3 ×Q8 (2;−; [3])
C6 × C2 (1; [32]) C12 × C2 (2;−; [3])
D8 (0; [26]) ID(32, 19) (1;−; [23])

C2 ×D4 (0; [26]) ID(32, 6) (1;−; [23])
− ID(32, 7) (1;−; [23])
− ID(32, 9) (1;−; [23])
− C2 ×QD8 (1;−; [23])

ID(16, 13) (0; [26]) ID(32, 11) (1;−; [23])
− ID(32, 38) (1;−; [23])

C4
2 (0; [26]) ID(32, 22) (1;−; [23])

ID(16, 6) (1; [22]) ID(32, 15) (2;−; [2])
D10 (0; [22, 102]) ID(40, 12) (1;−; [2, 10])

114



Table 5.7: Automorphism groups of pseudoreal Riemann surfaces of genus 10

Genus 10
Aut+(X) Fuchsian signature Aut±(X) NEC signature

C2 (0; [222]) C4 (1;−; [211])
C2 (2; [214]) C4 (3;−; [27])
C2 (4; [26]) C4 (5;−; [23])
C4 (0; [210, 42]) C8 (1;−; [25, 4])
C4 (0; [24, 46]) C8 (1;−; [22, 43])
C4 (2; [22, 42]) C8 (3;−; [2, 4])
C6 (0; [24, 32, 62]) Dic12 (1;−; [22, 3, 6])

− C12 (1;−; [22, 3, 6])
C6 (0; [22, 36]) Dic12 (1;−; [2, 33])

− C12 (1;−; [2, 33])
C6 (0; [66]) Dic12 (1;−; [63])

− C12 (1;−; [63])
C6 (2; [22]) Dic12 (3;−; [2])

− C12 (3;−; [2])
C8 (0; [22, 42, 82]) C16 (1;−; [2, 4, 8])
C10 (0; [24, 102]) C20 (1;−; [22, 10])

ID(18, 4) (0; [26]) ID(36, 9) (1;−; [23])
ID(36, 9) (0; [22, 42]) ID(72, 39) (1;−; [2, 4])
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Appendix C: Pseudoreal generalized

superelliptic curves

Table 5.8: Pseudoreal generalized superelliptic curves of genus 3

Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector |τ |
C2 × C2 (0; [26]) C4 × C2 (1;−; [23]) (a; b, b, a2) 2

Table 5.9: Pseudoreal generalized superelliptic curves of genus 4

Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector |τ |
C2 (0; [210]) C4 (1;−; [25]) (a; a2, a2, a2, a2, a2) 2
C4 (0; [24, 42]) C8 (1;−; [22, 4]) (a3; a4, a4, a2) 2

Table 5.10: Pseudoreal generalized superelliptic curves of genus 5

Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector |τ |
C2 × C2 (0; [28]) C4 × C2 (1;−; [24]) (a; b, b, b, a2b) 2
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Table 5.11: Possible pseudoreal generalized superelliptic curves of genus 6

Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector |τ |
C2 (214) C4 (1;−; [27]) (a; a2, a2, a2, a2, a2, a2, a2) 2
C4 (46) C8 (1;−; [43]) (a; a2, a2, a2) 4
C4 (26, 42) C8 (1;−; [23, 4]) (a; a4, a4, a4, a2) 2
C6 (24, 62) C12 (1;−; [22, 6]) (a; a6, a6, a10) 2

Table 5.12: Pseudoreal generalized superelliptic curves of genus 7

Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector |τ |
C4 × C2 (24, 42) C8 × C2 (1;−; [22, 4]) (a; b, b, a6) 2

Table 5.13: Pseudoreal generalized superelliptic curves of genus 8

Aut+(X) Fuchsian signature Aut±(X) NEC signature Generating Vector |τ |
C2 (218) C4 (1;−; [29]) (a; a2, ..(10).., a2) 2
C4 (28, 42) C8 (1;−; [24, 4]) (a3; a4, a4, a4, a4, a2) 2
C8 (24, 82) C16 (1;−; [22, 8]) (a; a8, a8, a14) 2

Table 5.14: Possible pseudoreal generalized superelliptic curves of genus 9

Aut+(X) Fuchsian signature Aut±(X) NEC signature |τ |
C4 (48) Q8 (1;−; [44]) 4

C2 × C2 (212) C8 (1;−; [26]) 2
C4 × C2 (22, 44) C4 × C4 (1;−; [22, 8]) 4

− ID(16, 4) (1;−; [22, 8]) 4
− C2 ×Q8 (1;−; [22, 8]) 4
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Table 5.15: Possible pseudoreal generalized superelliptic curves of genus 10

Aut+(X) Fuchsian signature Aut±(X) NEC signature |τ |
C2 (222) C4 (1;−; [211]) 2
C4 (210, 42) C8 (1;−; [25]) 2
C6 (22, 36) Dic12 (1;−; [2, 33]) 3

− C12 (1;−; [2, 33]) 3
C6 (66) Dic12 (1;−; [63]) 6

− C12 (1;−; [63]) 6
C10 (24, 102) C20 (1;−; [22, 10]) 2
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