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Introduction.

In this thesis, we will work around the eigenvalue problem −∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω

where ∆p is the p- Laplacian operator, with 1 < p < ∞, which is a generalization of

the Laplacian operator (p = 2) and it is defined for a function u in the Sobolev space

W 1,p
0 (Ω) as

∆pu = div(|∇u|p−2∇u).

More specifically, we will study thoroughly the first eigenvalue λ1(Ω) of p- Laplacian

with Dirichlet condition, which is defined as the minimum of Rayleigh quotient for

nonzero functions belonging to W 1,p
0 (Ω). i.e.,

λ1(Ω) = min
ϕ∈W 1,p

0 (Ω),φ 6=0

∫
Ω
|∇ϕ|p∫

Ω
|ϕ|p

.

We note that , λ1 depends on the domain Ω. We will show the principal properties of

λ1(Ω) and of its eigenfunctions, and later obtain results on the problem of minimization

of λ1(Ω) in certain classes of domains with the same volume or perimeter, similar to a

classical problem.

In the first chapter, which corresponds to the preliminaries, we will introduce some

basic notions and definitions. We introduce the notion of a distribution, which allows

us to define the concept of weak derivative of a function defined in a domain Ω, among

other notions. Moreover, in the first chapter we will define the Sobolev space W 1,p(Ω),

which is the set of all functions which belong to Lp(Ω), such that all its weak derivatives
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INTRODUCTION.

of first order also belong to Lp(Ω). Our aim in this chapter is to recall the definition and

to study certain properties of the space W 1,p
0 (Ω), which is the domain of the operator

p- Laplacian. We also recall some useful notions and results from measure theory and

recall the notion of Hausdorff convergence of sets.

In the second chapter, we will describe the principal tools which will allow us to

solve the problem of minimization of λ1 in certain classes of domains. We will introduce

the Schwarz symmetrization and the Steiner symmetrization, and discuss their main

properties.

In the third chapter, we will describe the principal properties of λ1(Ω), which we will

use for solving the minimization problems previously mentioned. We will see that λ1(Ω)

is a simple eigenvalue, with eigenfunctions which are either strictly positive or strictly

negative on Ω and these belong to C1(Ω). Also we will see that λ1(Ω) is invariant by

translation and it varies only by a constant if we apply a homothety to the domain Ω,

among other properties. Further, we will show that λ1(Ω) as a function of the domain

is continuous with respect to the topology induced by the Hausdorff distance in certain

class of domains. Another important tool is the differentiability of λ1 with respect to

domain variations, which will allow us in the last chapter to develop an alternative

proof of an analogue of the Faber- Krahn inequality for the p- Laplacian, which says

that the domain that minimizes λ1(Ω) among domains of the same volume with C2

boundary is a sphere.

Finally, in the fourth and last chapter we prove the Faber-Krahn inequality for the

p- Laplacian and discuss two proofs of the uniqueness of the ball as a minimizer, one

being classical and another being an alternative proof. We will see that the classical

proof uses Schwarz symmetrization and that the alternative proof uses the fact that if

Ω is a minimal domain for λ1 as a function of the domain, among domains with the

same area, then the eigenfunction corresponding to λ1(Ω) has the property that its

normal derivative is constant on ∂Ω. We will show that the only domain that satisfies

this condition is a sphere. As a corollary, we will prove an analogous result for domains
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INTRODUCTION.

with a given surface area. Moreover, we will study the minimization of λ1(Ω) among

triangular and quadrilateral planar domains , obtaining some generalizations of known

results for the Dirichlet Laplacian. Here, the continuity of λ1 as a function of the

domain and the Steiner symmetrization acquire a relevant role.

Francisco Toledo OÃśate, December 2012.
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Chapter 1

Preliminaries

In this chapter, we will fix some notations, will give some basic definitions and will

recall some theorems which shall be employed later on. The treatment of this chapter

is based principally on Kesavan [18].

1.1 Distributions

Definition 1.1.1. Let ϕ a real valued continuous function defined on an open set Ω of

Rn. The support of ϕ, written as supp(ϕ), is defined as:

{x ∈ Ω : ϕ(x) 6= 0} (1.1.1)

with the closure considered in Rn.

If this closed set is compact as well, then ϕ is said to be of compact support. The set

of all infinitely differentiable (i.e. C∞) functions defined on Rn with compact support

is a vector space which will henceforth denoted by D(Rn) or, simply, D. This vector

space is said the space of test functions. If Ω is any open set in Rn, we can still talk

of the space of C∞ functions with compact support, the support being contained in

Ω. This space will be denoted by D(Ω). We can consider a topology in D(Ω) which
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1.1. Distributions

will make it a topological vector space (See Appendix 2 in [18]). However, we will just

define convergent sequences in D(Ω).

Definition 1.1.2. A sequence of functions {ϕm}∞m=1 in D(Ω) is said to converge to

0 if there exists a fixed compact set K ⊂ Ω such that supp(ϕm) ⊂ K for all m, ϕm and

all its derivatives converge uniformly to zero on K.

Definition 1.1.3. A linear functional T : D(Ω)→ R, is said to be a distribution on

Ω if whenever ϕm → 0 in D(Ω), we have T (ϕm)→ 0.

The space of distributions, which is the dual of the space of test functions, is denoted

by D′(Ω).

Example 1.1.4. A function f : Ω → R is said to be locally integrable if for every

compact set K ⊂ Ω, ∫
K

| f | < +∞.

For instance, a continuous function in Ω is locally integrable. Given a locally integrable

function f in Ω, Tf : D(Ω)→ R defined by

Tf (ϕ) =

∫
Ω

fϕ. (1.1.2)

is a distribution. This follows from the estimate

|Tf (ϕ)| ≤
(∫

K

|f |
)
‖ϕ‖∞

where K is a compact subset of Ω such that supp(ϕ) ⊂ K.

Given a distribution T , we say "T is a function" to mean that there exists a locally

integrable function f such that T = Tf . We denote the distribution Tf by f . It is

important to say that there exists distributions which cannot be generated by a locally

integrable function, for instance, the Dirac distribution (see [18], pag.7).

Now we introduce the concept of differentiation of distributions.
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1.2. Sobolev Spaces

Definition 1.1.5. Let T ∈ D′(Ω). The ith partial derivative of T is a distribution
∂T

∂xi
defined by

∂T

∂xi
(ϕ) = −T

(
∂ϕ

∂xi

)
∀ϕ ∈ D(Ω).

Definition 1.1.6. If f, g are locally integrable functions and

∂Tf
∂xi

(ϕ) = Tg(ϕ) ∀ϕ ∈ D(Ω)

then we will say that g is the ith weak (or distributional) partial derivative of f .

We note
∂Tf
∂xi

by
∂f

∂xi
.

Remark 1.1.7. If Ω ⊂ Rn and f belongs to C1(Ω), then the ith weak partial derivative

of f coincides with the classical ith partial derivative of f .

1.2 Sobolev Spaces

Let Ω be an open set in Rn.

Definition 1.2.1. Let 1 ≤ p <∞. The Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) =

{
u ∈ Lp(Ω) :

∂u

∂xi
∈ Lp(Ω) for all i = 1, 2, . . . , n

}
.

In other words, W 1,p(Ω) is the collection of all functions in Lp(Ω) such that all its

weak partial derivatives of the first order are also in Lp(Ω). W 1,p(Ω) is a normed vector

space provided with the norm:

‖u‖1,p,Ω = ‖u‖p + ‖∇u‖p (1.2.1)

Remark 1.2.2. It will also be convenient to use the semi− norm

|u|1,p,Ω = ‖∇u‖p. (1.2.2)
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1.2. Sobolev Spaces

We note that the map

u ∈ W 1,p(Ω)→
(
u,

∂u

∂x1

, . . .
∂u

∂xn

)
∈ (Lp(Ω))n+1 (1.2.3)

is an isometry of W 1,p(Ω) into (Lp(Ω))n+1, if we provide the latter space with the norm

‖f‖ = ‖f0‖p + ‖(f1, f2, . . . , fn)‖p

for f = (fi)
n
i=0 ∈ (Lp(Ω))n+1. This is a useful fact to remember and will be used in the

proof of the following result.

Theorem 1.2.3. For every 1 ≤ p <∞, the space W 1,p(Ω) is a separable Banach space.

If 1 < p <∞ , it also is a reflexive space.

Proof: We first show that W 1,p(Ω) is a Banach space. Let um be a Cauchy sequence in

W 1,p(Ω). It follows from the definition of the norm that {um} and {∂um∂xi }, 1 ≤ i ≤ n, are

Cauchy sequences in Lp(Ω). As Lp(Ω) is Banach, then um → u and ∂um
∂xi
→ vi, 1 ≤ i ≤ n,

with u and vi in Lp(Ω). The completeness of the W 1,p(Ω) will be proved if we show

that ∂u
∂xi

= vi in the sense of distributions.

Let ϕ ∈ D(Ω). We need to show that∫
Ω

u
∂ϕ

∂xi
= −

∫
Ω

viϕ

because this implies that

(
∂Tu
∂xi

)
(ϕ) = −Tu

(
∂ϕ

∂xi

)
= −

∫
Ω

u
∂ϕ

∂xi
=

∫
Ω

viϕ = Tvi(ϕ).

Now, since um ∈ W 1,p(Ω), by the definition of weak derivative we know that

∫
Ω

um
∂ϕ

∂xi
= −

∫
Ω

∂um
∂xi

ϕ.

Further, since ϕ ∈ D(Ω), we have that ϕ and ∂ϕ
∂xi

are in Lq(Ω) for all i and for all q,

in particular, the conjugate exponent q = p/(p− 1). Thus,∫
Ω

∣∣∣∣(um − u)
∂ϕ

∂xi

∣∣∣∣ ≤ ‖um − u‖p∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
q

→ 0,
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1.2. Sobolev Spaces

∫
Ω

∣∣∣∣(∂um∂xi
− vi

)
ϕ

∣∣∣∣ ≤ ∥∥∥∥∂um∂xi
− vi

∥∥∥∥
p

‖ϕ‖q → 0.

This implies that ∫
Ω

u
∂ϕ

∂xi
= −

∫
Ω

viϕ.

We note that (Lp(Ω))n+1 is reflexive for 1 < p < ∞ and separable for 1 ≤ p < ∞ (it

is a cartesian product of reflexive and separable spaces respectively). Since W 1,p(Ω)

is complete, its image under the isometry (1.2.3) is a closed subspace of (Lp(Ω))n+1.

Therefore, W 1,p(Ω) inherits the corresponding properties of (Lp(Ω))n+1.

We introduce an important subspace ofW 1,p(Ω). If 1 ≤ p <∞, we know that D(Ω)

is dense in Lp(Ω). Also, D(Ω) ⊂ W 1,p(Ω), for 1 ≤ p ≤ ∞. Thus we have the next

definition.

Definition 1.2.4. If 1 ≤ p <∞, we define W 1,p
0 (Ω) as the closure of D(Ω) in W 1,p(Ω).

The following theorem will allow us to conclude that if u ∈ W 1,p
0 (Ω), then

|u| ∈ W 1,p
0 (Ω).

Theorem 1.2.5. (Stampacchia) Let G be a Lipschitz continuous function of R into

itself such that G(0) = 0. Then if Ω is bounded, 1 < p <∞ and u ∈ W 1,p
0 (Ω) we have

G ◦ u ∈ W 1,p
0 (Ω).

Proof: See page 60 [18].

Theorem 1.2.6. (Poincare’s inequality) Let Ω be a bounded open set in Rn. Then

there exists a postive constant C = C(Ω, p) such that

|u|0,p,Ω ≤ C|u|1,p,Ω for every u ∈ W 1,p
0 (Ω) (1.2.4)

In particular, the seminorm defined in (1.2.2) is a norm on W 1,p
0 (Ω), which is

equivalent to the norm ‖ · ‖1,p,Ω on W 1,p
0 (Ω).
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1.2. Sobolev Spaces

Proof: Let Ω = (−a, a)n, a > 0. Let u ∈ D(Ω). Then

u(x) =

∫ xn

−a

∂u

∂xn
(x′, t) dt, x = (x′, xn), since u(x′,−a) = 0.

By Holder’s inequality,

|u(x)| ≤
(∫ xn

−a

∣∣∣∣ ∂u∂xn (x′, t)

∣∣∣∣p dt) 1
p

|xn + a|
1
q ,

whenever p, q are conjugate exponent. Hence,

|u(x)|p ≤ |xn + a|
p
q

∫ xn

−a

∣∣∣∣ ∂u∂xn (x′, t)

∣∣∣∣p dt.
Integrating over x′ and since xn ≤ a,∫

|u(x′, xn)|p dx′ ≤ (2a)
p
q

∫
Ω

∣∣∣∣ ∂u∂xn
∣∣∣∣p,

next integrating over xn,∫
Ω

|u(x)|p dx ≤ (2a)
p
q

+1

∫
Ω

∣∣∣∣ ∂u∂xn
∣∣∣∣p ≤ (2a)

p
q

+1

∫
Ω

|∇u(x)|p dx.

Thus

|u|0,p,Ω ≤ C|u|1,p,Ω

with C = (2a)
p
q

+1. This proves (1.2.4) for u ∈ D(Ω). But as D(Ω) is dense in W 1,p
0 (Ω)

and both sides of inequality (1.2.4) are continuous in u for the topology in W 1,p
0 (Ω)),

the inequality follows for all u ∈ W 1,p
0 (Ω). If Ω is not a "box" let Ω̂ box of the form

(−a, a)n such that Ω ⊂ Ω̂, and extend u ∈ W 1,p
0 (Ω) by zero to get û ∈ W 1,p

0 (Ω̂). Finally

apply (1.2.4) which is available for Ω̂.

The following two theorems will be used in the future, but we omit their proofs.

Theorem 1.2.7. Let 1 ≤ p < ∞ and u ∈ W 1,p(Ω) ∩ C(Ω). If u = 0 on ∂Ω, then

u ∈ W 1,p
0 (Ω).

Proof: See page 61 [18].
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1.2. Sobolev Spaces

Theorem 1.2.8. (Rellich- Kondrasov) Let Ω ⊂ Rn be a bounded domain of C1

boundary. Then the following inclusions are compact.

1. if p < n, W 1,p
0 (Ω)→ Lq(Ω), 1 ≤ q < np

n−p

2. if p = n, W 1,n
0 (Ω)→ Lq(Ω), 1 ≤ q <∞

3. if p > n, W 1,p
0 (Ω)→ C(Ω).

Proof: See page 84 [18].

Definition 1.2.9. Let 1 < p < ∞, Ω ⊂ Rn be a bounded domain and f ∈ W−1,q(Ω)

where p, q are conjugate exponents. We say that a function u ∈ W 1,p(Ω) is a weak

solution of the problem

−div(|∇u|p−2∇u) = f in Ω, (1.2.5)

if ∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 =

∫
Ω

fϕ ∀ϕ ∈ W 1,p
0 (Ω). (1.2.6)
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1.3. Hausdorff distance

1.3 Hausdorff distance

We define a distance between certain kinds of sets in Rn.

Definition 1.3.1. Let X, Y be two non-empty compacts sets in Rn. We set

∀z ∈ Rn, d(z,X) := min
x∈X
|x− z|,

ρ(X, Y ) := max
x∈X

d(x, Y ).

Then the Hausdorff distance dH(X, Y ) between X and Y is defined as

dH(X, Y ) := max(ρ(X, Y ), ρ(Y,X)).

Figure 1.1: The Hausdorff distance between two compacts set X, Y is

max(ρ(X, Y ), ρ(Y,X)).

For open subsets of a compact set D, we define the Hausdorff distance through their

complement in D, which are compacts sets.

Definition 1.3.2. Let X, Y be two open subsets of a compact D. Then the Hausdorff

distance dH(X, Y ) between X and Y is defined by

dH(X, Y ) = dH(D \X,D \ Y ).

15



1.4. Measure Theory

Figure 1.2: The Hausdorff distance between two open sets X, Y which are contained in

a ball fixed D.

Roughly speaking, the Hausdorff distance between two open subsets of a compact

set, is the distance between their boundaries. An useful property of the Hausdorff

distance is the following:

Theorem 1.3.3. Let D be a fixed compact set in Rn and (Ωn)∞n=1 be a sequence of open

subsets of D. Then, there exists an open set Ω ⊂ B and a subsequence (Ωnk) which

converges for the Hausdorff distance to Ω.

Proof: See [7] and [15].

1.4 Measure Theory

In this section we describe some measure theoretic results which will be used through

out this work.

Given a Lebesgue measurable set E ⊂ Rn, denote its n- dimensional Lebesgue

measure by |E|.
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1.4. Measure Theory

Let Ω ⊂ Rn be a bounded measurable set. Let u : Ω→ R be a bounded measurable

function. For t ∈ R, the level set {u > t} or Ωt is defined as

{u > t} = {x ∈ Ω : u(x) > t}. (1.4.1)

The sets {u < t}, {u ≥ t}, {u = t} are defined analogously.

Definition 1.4.1. Let u : Ω→ R be a bounded measurable function and let t ∈ R. The

distribution function of u is given by

µu(t) = |{u > t}|.

Remark 1.4.2. 1. The function µu is nonincreasing. In fact, whenever t1 ≥ t2,

if x ∈ {u > t1}, then u(x) > t1 ≥ t2, thus x ∈ {u > t2}. Therefore

{u > t1} ⊂ {u > t2}. It follows that

µu(t1) = |{u > t1}| ≤ |{u > t2}| = µu(t2).

2. Let t < inf u. Since u ≥ inf u, we have {u > t} = Ω, thus µu(t) = |Ω|.

3. Let t ≥ supu. In this case {u > t} = ∅, thus µu(t) = 0. Hence, the range of µu

is contained in the interval [0, |Ω|].

4. The distribution function µu is right- continuous in R. In fact, if t ∈ R, then

0 ≤ µu(t)− µu(t+ h) = |{u > t}| − |{u > t+ h}| = |{t < u ≤ t+ h}|.

We observe that ({t < u ≤ t+ h})h>0 decreases as h→ 0+, and⋂
h>0

{t < u ≤ t+ h} = ∅, thus

lim
h→0+

(µu(t)− µu(t+ h)) = lim
h→0+

|{t < u ≤ t+ h}| = 0.

Therefore µu is right-continuous in t.

17



1.4. Measure Theory

5. In general, the distribution function µu is not left- continuous. Indeed

lim
h→0+

(µu(t− h)− µu(t)) = |{u = t}|

and so µu is left-continuous at t if and only if |{u = t}| = 0.

Theorem 1.4.3. Let u be a measurable non-negative function defined in Ω which

vanishes on ∂Ω. Let F : R+ → R be a non-negative increasing differentiable function

such that F (0) = 0. We have that∫
Ω

F (u(x)) dx =

∫ ∞
0

f(s)|{u ≥ s}| ds. (1.4.2)

where f is such that f = F ′ in R+.

Proof: We have∫
Ω

F (u(x)) dx =

∫
Ω

(∫ u(x)

0

f(s) ds

)
dx

=

∫ ∞
0

f(s)

(∫
{u≥s}

dx

)
ds by Fubini’s theorem

=

∫ ∞
0

f(s)|{u ≥ s}| ds.

Consider Ω ⊂ Rn an open set and let E ⊂ Ω be a measurable set. Denote by PΩ(E)

the area of the boundary surface of E contained in Ω.

Theorem 1.4.4. (Fleming Rischell) Let Ω ⊂ Rn be an open set and let u ∈ W 1,1(Ω).

Then ∫
Ω

|∇u|dx =

∫ +∞

−∞
PΩ({u > t})dt.

Proof: See Kesavan [17].

More generally, we have
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1.5. Other results

Theorem 1.4.5. Let u be a function in W 1,p(Rn) and g : Rn → R a non-negative Borel

function. Then

∫
Rn
g(x)|∇u(x)| dx =

∫ +∞

−∞

(∫
{u=s}

g(x) dσ

)
ds. (1.4.3)

Proof: See [5].

Definition 1.4.6. Let A ⊂ Rn be measurable. The Lebesgue density of A in x ∈ Rn

is defined as

D(A, x) = lim
r→0

|A ∩B(x, r)|
|B(x, r)|

.

where B(x, r) denotes the closed ball of radius r centered in x.

We remark if x ∈ Int(A) then D(A, x) = 1, and if x ∈ Int(Ac) then D(A, x) = 0.

Consider E ⊂ Rn measurable. The measure theoretic boundary of E is given by

∂∗E = {x : 0 < D(E, x) < 1}.

Thus, we say that E has finite perimeter if Hn−1(∂∗E) <∞, where Hn−1 is the n− 1

dimensional Hausdorff measure .

1.5 Other results

The next proposition is a topological result.

Proposition 1.5.1. Let A,B be nonempty open sets in Rn, such that B is connected.

We have

A ⊂ B, ∂A ⊂ ∂B ⇒ A = B.

Proof: As A is an open set in Rn and A = A ∩B, we get that A is an open set for the

relative topology on B.
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1.5. Other results

Let ∂BA the boundary of A with respect to the relative topology in B. We first

prove that ∂BA ⊂ ∂A ∩B. Let x ∈ ∂BA. Then, x ∈ B. Let V any open neighborhood

of x. Then VB = V ∩B is a neighborhood of x in B and since x ∈ ∂BA, have

VB ∩ A 6= ∅ and VB ∩ Ac 6= ∅.

Therefore,

V ∩ A 6= ∅ and V ∩ Ac 6= ∅.

This shows that x ∈ ∂A and x ∈ B, and thus ∂BA ⊂ ∂A ∩B.

Now we show that ∂A ∩ B ⊂ ∂BA. Let x ∈ ∂A ∩ B and VB = V ∩ B be a

neighborhood of x ∈ B where V is an open set in Rn. Note that as V,B are open sets,

V ∩B is also open in Rn. Since, x ∈ ∂A ∩B, we have

VB ∩ A 6= ∅ ∧ VB ∩ Ac 6= ∅.

Thus x ∈ ∂BA. We deduce that

∂BA = ∂A ∩B. (1.5.1)

Now note that as B is an open set in Rn, B ∩ ∂B = ∅ and as by hypothesis ∂A ⊂ ∂B,

we have ∂A ∩ B = ∅. By (1.5.1), ∂BA = ∅. Thus, if AB is the closure of A relative to

B, then

A
B

= A ∪ ∂BA = A.

In this way, A is relatively closed in B. But, we saw that A is relatively open in B, and

as B is connected, we conclude that A = B or A = ∅. Therefore A = B.

Proposition 1.5.2. Let ω1, ω2 ∈ Rn. If p > 1, then

|ω2|p ≥ |ω1|p + p|ω1|p−2ω1 · (ω2 − ω1). (1.5.2)

with equality if and only if ω1 = ω2. This is just the strict convexity of the function

ω → |ω|p.
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1.5. Other results

Proposition 1.5.3. Let A : Rn → Rn be given by

A(x) = |x|p−2x.

Then the matrix A =

(
∂Ai
∂xj

(x)

)n
i,j=1

satsifies the inequality

〈Aξ, ξ〉 ≥ min{1, p− 1}|x|p−2|ξ|2.

Proof: See Chorwadwala et. al. [9].
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Chapter 2

Tools

2.1 Schwarz symmetrization

This section is based on Kawohl [16] and Kesavan [18]. We define the Schwarz

symmetrization of a domain Ω and of a non-negative measurable function u defined

in Ω.

Definition 2.1.1. Let Ω ⊂ Rn be a measurable non-empty set. The Schwarz

symmetrization of Ω denoted by Ω∗ is defined as the open ball centered at the

origin and having the same Lebesgue measure as Ω. If Ω = ∅, define its Schwarz

symmetrization as Ω∗ = ∅.

The following proposition is obvious from the definition of Schwarz symmetrization

of a domain.

Proposition 2.1.2. Let A,B ⊂ Rn be a measurable non-empty sets. If A ⊂ B, then

A∗ ⊂ B∗.

Now we define the Schwarz symmetrization of certain kinds of functions.

Definition 2.1.3. Let Ω ⊂ Rn be a measurable nonempty set and let u : Ω → R be

a non-negative bounded measurable function, which vanishes on ∂Ω. The Schwarz
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2.1. Schwarz symmetrization

symmetrization of u denoted by u∗ is the function defined in Ω∗ as

u∗(x) = sup{c : x ∈ Ω∗c}.

where Ωc is the level set of u defined in (1.4.1).

Remark 2.1.4. Let x ∈ Ω∗. Observe that u∗(x) is well defined for the following reasons:

1. As u ≥ 0, for any c ≤ 0 we have Ω∗c = Ω∗. It follows that {c : x ∈ Ω∗c} 6= ∅.

2. For any c ≥ supu we have Ωc = ∅. Thus, Ω∗c = ∅ and {c : x ∈ Ω∗c} is upper

bounded by supu .

Therefore, u∗ is well defined and

0 ≤ u∗ ≤ supu. (2.1.1)

Proposition 2.1.5.

sup
Ω∗

u∗ = sup
Ω
u (2.1.2)

Proof: By (2.1.1)

u∗(x) ≤ sup
Ω
u.

Further, u∗(0) = sup
Ω
u, since 0 ∈ Ω∗c , for all c < sup

Ω
u. Therefore (2.1.2) holds.

Proposition 2.1.6. The function u∗ is radially symmetric and non-increasing with

respect to the radius.

Proof: Let x, y ∈ Ω∗. Suppose |x| = |y|. If x ∈ Ω∗c for some c, |y| = |x| < Rc where Rc

is the radius of Ω∗c . So, y ∈ Ω∗c and viceversa. So {c : x ∈ Ω∗c} = {c : y ∈ Ω∗c} and it

follows that u∗(x) = u∗(y), showing that u∗ is radially symmetric.

If |y| ≤ |x|, in a similar way to the first case we have {c : x ∈ Ω∗c} ⊂ {c : y ∈ Ω∗c},

and this implies that u∗(x) ≤ u∗(y), showing that u∗ is radially nonincreasing.
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2.1. Schwarz symmetrization

Note that since u∗ is radially symmetric, the level sets {u∗ > c} are balls.

Proposition 2.1.7. Let c ∈ R. Then

{u∗(x) ≥ c} =
⋂
b<c

Ω∗b . (2.1.3)

.

Proof: (⇒)

Let x ∈ {u∗(x) ≥ c}. Let b be fixed such that b < c. We deduce that u∗(x) > b and

so, there exists b < s for which x ∈ {u ≥ s}∗ ⊂ {u ≥ b}∗. As b < c is arbitrary, then

x ∈
⋂
b<c

Ω∗b . (⇐)

Let x ∈
⋂
b<c

Ω∗b . We get {b : b < c} ⊂ {s : x ∈ Ω∗s}. Thus

c = sup{b : b < c} ≤ sup{s : x ∈ Ω∗s} = u∗(x).

proving that x ∈ {u∗(x) ≥ c}.

Proposition 2.1.8. Let c ∈ R. Given a non-negative measurable function u on Ω, we

have

|{u∗ ≥ c}| = |{u ≥ c}|. (2.1.4)

That is, the level sets of u∗ and u are equimeasurable.

Proof: We consider 3 cases for fixed c:

1. c ≤ 0.

Since u ≥ 0, so u∗ ≥ 0. Then

{u ≥ c} = Ω and {u∗ ≥ c} = Ω∗. (2.1.5)

Therefore

|{u∗ ≥ c}| = |Ω∗| = |Ω| = |{u ≥ c}|

.
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2.1. Schwarz symmetrization

2. c > supu

In this case

{u ≥ c} = ∅, (2.1.6)

and by (2.1.1), u∗(x) ≤ sup
Ω
u < c , which implies that

{u∗ ≥ c} = ∅. (2.1.7)

Thus,

|{u ≥ c}| = 0 = |{u∗ ≥ c}|.

3. 0 < c ≤ supu

We first note that

{u ≥ c} =
∞⋂
n=1

{
u ≥ c− 1

n

}
, (2.1.8)

and the sequences
{
u ≥ c− 1

n

}∞
n=1

and
{
u ≥ c− 1

n

}∗∞
n=1

are decreasing. Thus, by

(2.1.3),

|{u∗ ≥ c}| =

∣∣∣∣∣
∞⋂
n=1

{
u ≥ c− 1

n

}∗∣∣∣∣∣
= lim

n→∞

∣∣∣∣{u ≥ c− 1

n

}∗∣∣∣∣
= lim

n→∞

∣∣∣∣{u ≥ c− 1

n

}∣∣∣∣
= |{u ≥ c}| .

Remark 2.1.9. We note that as

{u > s} =
∞⋃
n=1

{
u ≥ s+

1

n

}
and

{u∗ > s} =
∞⋃
n=1

{
u∗ ≥ s+

1

n

}
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2.1. Schwarz symmetrization

then by Proposition 2.1.8,

|{u > s}| = lim
n→∞

∣∣∣∣{u ≥ s+
1

n

}∣∣∣∣ = lim
n→∞

∣∣∣∣{u∗ ≥ s+
1

n

}∣∣∣∣ = |{u∗ > s}|.

Finally, we may also conclude that

|{u = s}| = |{u∗ = s}|.

From Proposition 2.1.8, the next proposition is deduced.

Proposition 2.1.10. Let u be a measurable bounded non-negative function defined in

Ω which vanishes on ∂Ω. Let F : R+ → R be a non-negative Borel function such that

F (0) = 0. We have then

∫
Ω

F (u(x)) dx =

∫
Ω∗
F (u∗(x)) dx. (2.1.9)

Proof: We give the proof when F is differentiable. Let f : R+ → R such that f ′ = F

in R+. By Theorem (1.4.3) and since u, u∗ are equimeasurable we obtain∫
Ω

F (u(x)) dx =

∫ ∞
0

f(s)|{u ≥ s}| ds =

∫ ∞
0

f(s)|{u∗ ≥ s}| ds =

∫
Ω∗
F (u∗(x)) dx.

For the general case, see [17].

Proposition 2.1.11. Let F : R+
0 → R+

0 be a convex lower semicontinuous function with

F (0) = 0. Let u, v be measurable bounded non-negative functions defined in a bounded

domain Ω which vanishes in ∂Ω. Let u∗, v∗ be their respective Schwarz symmetrizations.

Then, ∫
Ω∗
F (|u∗ − v∗|) ≤

∫
Ω

F (|u− v|)

Proof: See Chiti [8].

The proofs of the following two theorems are as in Kesavan [?].
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2.1. Schwarz symmetrization

Theorem 2.1.12. Let Ω ⊂ Rn be a measurable open set and let u ∈ D(Ω). If u ≥ 0,

then for 1 ≤ p <∞, we have∫
Ω

|∇u|pdx =

∫ M

0

(∫
{u=t}

|∇u|p−1 dσ

)
dt (2.1.10)

where M = max
x∈Ω

u(x). Also, if u∗ : Ω∗ → R is the Schwarz symmetrization, then

∫
Ω∗
|∇u∗|pdx =

∫ M

0

(∫
{u∗=t}

|∇u∗|p−1 dσ

)
dt (2.1.11)

Proof: Step 1. Since u is smooth, by Sard’s theorem, for almost every t in the range of

u, we have |∇u| 6= 0 on {u = t}. Thus, {u = t} will be an (n− 1)- dimensional surface

and, further {u = t} = ∂{u > t} and |{u∗ = t}| = |{u = t}| = 0.

Step 2. Let 2 ≤ p <∞. We define

f = −div
(
|∇u|p−2∇u

)
.

Then, for all v ∈ W 1,p
0 (Ω), we have∫

Ω

|∇u|p−2〈∇u,∇v〉 dx =

∫
Ω

fv dx. (2.1.12)

Let t > 0. Set v = (u− t)+ ∈ W 1,p
0 (Ω). We observe that v 6= 0 in {u > t} and that on

this set v = u− t. Using v as test function in (2.1.12), we obtain∫
{u>t}

|∇u|p dx =

∫
{u>t}

f(u− t) dx. (2.1.13)

Thus, differentiating with respect to t and using Lemma 2.2.1 in [17], we get

d

dt

(∫
{u>t}

|∇u|p dx
)

= −
∫
{u>t}

f dx. (2.1.14)
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2.1. Schwarz symmetrization

By (2.1.14) ∫
Ω

|∇u|p dx =

∫
{M≥u>0}

|∇u|p dx+

∫
{u=0}

|∇u|p dx

=

∫
{M≥u>0}

|∇u|p dx

= −
(∫
{u>M}

|∇u|p dx−
∫
{u>0}

|∇u|p dx
)

= −
∫ M

0

d

dt

(∫
{u>t}

|∇u|p dx
)
dt

=

∫ M

0

(∫
{u>t}

f dx

)
dt.

(2.1.15)

Let t be such that ∇u 6= 0 on {u = t}. We note that on {u = t}

∇u =
∂u

∂n
n+∇{u=t}u,

where ∇{u=t}u is the tangential gradient. Since u is constant on {u = t}, we have

∇{u=t}u = 0. Thus

∇u =
∂u

∂n
n.

on {u = t}.

As u > t inside of {u > t} and u = t on ∂{u > t}, the normal derivative
∂u

∂n
≤ 0 in

this set. Thus, on {u = t},

|∇u| = −∂u
∂n

= −〈∇u, n〉. (2.1.16)

By this, the definition of f , and integration by parts we get∫
{u>t}

f dx = −
∫
{u=t}

|∇u|p−2〈∇u, n〉 dσ =

∫
{u=t}

|∇u|p−1 dσ. (2.1.17)

Plugging this in (2.1.15), we get (2.1.10) for 2 ≤ p <∞.

Step 3. Let 1 ≤ p < 2. We wish to imitate the previous method of proof but |∇u|p−2

becomes infinite if the gradient vanishes. So we use an approximation technique. Let

ε > 0. Define

fε = −div

((
|∇u|2 + ε

) p−2
2 ∇u

)
.
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2.1. Schwarz symmetrization

Thus, for all v ∈ W 1,p
0 (Ω), we have∫

Ω

(
|∇u|2 + ε

) p−2
2 〈∇u,∇v〉 dx =

∫
Ω

fεv dx. (2.1.18)

Choosing v = (u− t)+ for t > 0 as in Step 2 we obtain∫
Ω

(
|∇u|2 + ε

) p−2
2 |∇u|2 dx =

∫ M

0

(∫
{u=t}

(
|∇u|2 + ε

) p−2
2 |∇u| dσ

)
dt. (2.1.19)

Since 1 ≤ p < 2, (
|∇u|2

|∇u|2 + ε

) 2−p
2

< 1,

thus (
|∇u|2 + ε

) p−2
2 |∇u|2 =

(
|∇u|2

|∇u|2 + ε

) 2−p
2

|∇u|p ≤ |∇u|p, (2.1.20)

By this, we can apply the dominated convergence theorem on the left-hand side of

(2.1.19), obtaining

lim
ε→0

∫
Ω

(
|∇u|2 + ε

) p−2
2 |∇u|2 dx =

∫
Ω

|∇u|p. (2.1.21)

Similarly, we have (
|∇u|2 + ε

) p−2
2 |∇u| ≤ |∇u|p−1,

which is integrable on the set {u = t} for almost every t. Now, by the dominated

convergence theorem

lim
ε→0

∫
{u=t}

(
|∇u|2 + ε

) p−2
2 |∇u| dσ =

∫
{u=t}

|∇u|p−1 dσ.

Moreover, ∫
{u=t}

(
|∇u|2 + ε

) p−2
2 |∇u| dσ ≤

∫
{u=t}

|∇u|p−1 dσ

and ∫ M

0

(∫
{u=t}

|∇u|p−1 dσ

)
dt <∞

since u ∈ D(Ω). Thus, applying the dominated convergence theorem on the right-hand

side of (2.1.19), we have

lim
ε→0

∫ M

0

(∫
{u=t}

(
|∇u|2 + ε

) p−2
2 |∇u| dσ

)
dt = lim

ε→0

∫ M

0

(∫
{u=t}

|∇u|p−1 dσ

)
dt.

(2.1.22)
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2.1. Schwarz symmetrization

Therefore letting tends ε→ 0 in (2.1.19), from (2.1.21) and (2.1.22), we obtain (2.1.10)

for 1 ≤ p < 2.

Step 4. Let R be the radius of Ω∗. We write u∗(x) = u∗(|x|) and in this way, we can

consider u∗ as a function of a single variable r. Since it is a nonincreasing function, u∗

is differentiable almost everywhere in [0, R]. Using polar coordinates, we obtain∫
Ω∗
|∇u∗|p =

∫ R

0

|u∗′(r)|pnωnrn−1 dr

=

∫ R

0

|u∗′(r)|p−1
nωnr

n−1(−u∗′(r)) dr

=

∫ M

0

|∇u∗|{u∗=t}|
p−1|{u∗ = t}|n−1 dt

=

∫ M

0

(∫
{u∗=t}

|∇u∗|p−1 dσ

)
dt.

using the change of variables t = u∗(r), and observing that |{u∗ = t}|n−1 = nωn(r(t))n−1

and the gradient of u∗ is constant on each of the sets {u∗ = t}.

Theorem 2.1.13. Let u ∈ D(Ω) be such that u ≥ 0. Let µu be the distribution function

of u. We have that

−µ′u(t) =

∫
{u=t}

dσ

|∇u|
=

∫
{u∗=t}

dσ

|∇u∗|
(2.1.23)

for almost every t in the range of u.

Proof: Step 1: Since u is smooth, by Sard’s theorem, for almost every t in the range of

u, we have |∇u| 6= 0 on {u = t}. Thus, {u = t} will be an (n− 1)- dimensional surface

and, further {u = t} = ∂{u > t} and |{u∗ = t}| = |{u = t}| = 0.

Step 2. Let ε > 0. Define

fε = −div

(
∇u

|∇u|2 + ε

)
.

Let t such that ∇u 6= 0 on {u = t} as Step 1. As ∂{u > t} = {u = t}, we have

(u− t)+ = 0 in ∂{u > t}. Thus, multiplying f by (u− t)+ and applying integration by

parts, we get ∫
{u>t}

∇u
|∇u|2 + ε

dx =

∫
{u>t}

fε(u− t) dx.
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2.1. Schwarz symmetrization

Differentiating with respect to t and using Lemma 2.2.1 in [17], we obtain that

− d

dt

∫
{u>t}

|∇u|2

|∇u|2 + ε
dx =

∫
{u>t}

fε dx.

Step 3. Consider a t with same characteristics as in Step 2, i.e., |∇u| 6= 0 on the set

{u = t}. For sufficiently small h > 0, the same holds for the set {t − h ≤ u ≤ t + h}.

Thus∫
{t−h<u≤t}

|∇u|2

|∇u|2 + ε
dx =

∫ t

t−h

(
− d

dt

∫
{u>τ}

|∇u|2

|∇u|2 + ε
dx

)
dτ =

∫ t

t−h

(∫
{u>τ}

fε dx

)
dτ.

(2.1.24)

In a similar way as was proved in the aseveration (2.1.17) in the Theorem 2.1.12, we

obtain ∫
{u>τ}

fε dx =

∫
{u=τ}

|∇u|
|∇u|2 + ε

dσ.

By this and by (2.1.24),∫
{t−h<u≤t}

|∇u|2

|∇u|2 + ε
dx =

∫ t

t−h

(∫
{u>τ}

fε dx

)
dτ =

∫ t

t−h

(∫
{u=τ}

|∇u|
|∇u|2 + ε

dσ

)
dτ.

(2.1.25)

Applying the dominated convergence theorem as ε tends to zero, it follows that

µu(t− h)− µu(t) =

∫ t

t−h

(∫
{u=τ}

dσ

|∇u|

)
dτ. (2.1.26)

Analogously we can get

µu(t)− µu(t+ h) =

∫ t+h

t

(∫
{u=τ}

dσ

|∇u|

)
dτ. (2.1.27)

Finally, dividing by h and taking the limit as h→ 0 in (2.1.26) and (2.1.27), we obtain

the first relation in (2.1.23).

Step 4. Let r(t) be the radius of the ball {u∗ > t}. Since µu(t) and (r(t)) are

nonincreasing functions, they are differentiable for almost every t. Moreover, as u, u∗

are equimeasurables functions µu(t) = ωn(r(t))n and so,

µ′u(t) = nωn(r(t))n−1r′(t). (2.1.28)
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2.1. Schwarz symmetrization

By abuse of notation, we can write u∗(x) = u∗(|x|), thus we can say that u∗(r(t)) = t

for almost every t. Applying implicit differentiation we obtain

r′(t) =
1

u∗′(r(t))
.

Replacing this in (2.1.28) and considering the fact that |{u∗ = t}|n−1 = nωn(r(t))n−1

we have

µ′u(t) = |{u∗ = t}|n−1

1

u∗′(r(t))
. (2.1.29)

Since u∗ is decreasing and radially symmetric, we have u∗′(r(t)) = −|∇u∗|{u∗=t}|. So,

µ′u(t) = −
|{u∗ = t}|n−1

|∇u∗|{u∗=t}|
=

∫
{u∗=t}

dσ

|∇u∗|
.

obtaining the second part of (2.1.23).

Now we can prove one of the most important properties of Schwarz symmetrization.

Theorem 2.1.14. (PÃşlya - SzegÃű) Let 1 ≤ p <∞. Let Ω ⊂ Rn be a bounded domain

and let u ∈ W 1,p
0 (Ω) such that u ≥ 0. Then∫

Ω∗
|∇u∗|pdx ≤

∫
Ω

|∇u|pdx. (2.1.30)

In particular, u∗ ∈ W 1,p
0 (Ω∗).

Proof: 1. The case p = 1.

Since u ≥ 0 in Ω and u = 0 on ∂Ω, we have PΩ({u > t}) = PRn({u > t}) for

t > 0. Moreover, since {u > t} and {u∗ > t} have the same measure, by the

classical isoperimetric inequality, we have

PRn({u > t}) ≥ PRn({u∗ > t}).

Thus by Theorem 1.4.4 and by the fact u∗ ∈ W 1,1(Ω)(see ([17])), it follows that∫
Ω

|∇u|dx =

∫ +∞

0

PRn({u > t})dt ≥
∫ +∞

0

PRn({u∗ > t})dt =

∫
Ω∗
|∇u∗|dx.
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2.1. Schwarz symmetrization

2. The case 1 < p <∞

Let u ∈ D(Ω) such that u ≥ 0. Let M = max
x∈Ω

u(x). Following Theorem (2.1.12),

it is enough to prove that∫
{u∗=t}

|∇u∗|p−1 dσ ≤
∫
{u=t}

|∇u|p−1 dσ. (2.1.31)

Now we show (2.1.31). Since u is smooth, we can assume by the Sard’s theorem

that |∇u| does not vanish in {u = t} for almost every t ∈ (0,M). Define a

measure v on {u = t} as dv = dσ
|∇u| . By Jensen’s inequality, we get

∫
{u=t}

|∇u|p−1 dσ =

∫
{u=t}

|∇u|p−1 dv

≥

(∫
{u=t} |∇u| dv

)p
(∫
{u=t} dv

)p−1

=

(∫
{u=t} dσ

)p
(∫
{u=t} dv

)p−1

=
(|u = t|)pn−1(∫
{u=t} dv

)p−1

(2.1.32)

Moreover, by the classical isoperimetric inequality,

|{u = t}|n−1 ≥ |{u
∗ = t}|n−1 (2.1.33)

where |{u = t}|n−1 and |{u∗ = t}|n−1 are the n−1 dimensional Hausdorff measures

on {u = t} and {u∗ = t}, respectively. As u∗ is radially symmetric, we have ∇u∗

is constant in {u∗ = t}. Combining this with (2.1.32),(2.1.33) and Theorem 2.1.13

33



2.1. Schwarz symmetrization

we obtain ∫
{u=t}

|∇u|p−1 dσ ≥
(|u∗ = t|)pn−1

(−µ′(t))p−1

≥
(|u∗ = t|)pn−1(∫
{u∗=t}

dσ
|∇u∗|

)p−1

= |{u∗ = t}|n−1|∇u
∗
|{u∗=t}|

p−1

=

∫
{u∗=t}

|∇u∗|p−1 dσ.

Therefore we have proved (2.1.30) for u ∈ D(Ω).

Now let u ∈ W 1,p
0 (Ω) be such that u ≥ 0. By the definition of W 1,p

0 (Ω), there

exists un ∈ D(Ω), un ≥ 0 and un → u in W 1,p
0 (Ω). We have∫

Ω∗
|∇u∗n|

pdx ≤
∫

Ω

|∇un|pdx. (2.1.34)

The sequence {u∗n} is bounded in W 1,p
0 (Ω∗) and we can assume that is weakly

convergent to a function v in W 1,p(Ω∗) and hence, by Rellich theorem, u∗n → v in

Lp(Ω∗). On the other hand, since un → u in Lp(Ω), applying Proposition 2.1.11

with F (s) = sp, we have u∗n → u∗ in Lp(Ω∗). Therefore u∗ = v. We pass to

the limit in (??), using the lower semicontinuity of the W 1,p
0 norm for the weak

convergence of u∗n to u and the fact that un converges strongly to u in W 1,p
0 (Ω),

to get∫
Ω∗
|∇u∗|pdx ≤ lim inf

∫
Ω∗
|∇u∗n|

pdx ≤ lim inf

∫
Ω

|∇un|pdx =

∫
Ω

|∇u|pdx.

Now we shall examine under what conditions the equality holds in the Polya Szego

inequality, i.e. , what conditions must satisfy a domain Ω and a function u defined in

Ω, such that the equality holds in (2.1.30).

Consider 1 ≤ p < ∞ and let A : [0,∞) → [0,∞) be a function belonging to

C2([0,∞)) such that A
1
p is convex and A(0) = 0. Let u : Rn → R be a measurable
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2.2. Steiner symmetrization

bounded non-negative function with compact support. Assume that ∇u in the weak

sense is a measurable function with

∫
Rn
A(|∇u|) <∞. (2.1.35)

Denote M = supu = supu∗ and C∗ = {x ∈ Ω∗ : ∇u∗(x) = 0} . Now, we enunciate the

following theorem of general character.

Theorem 2.1.15. If u satisfies (2.1.35), then ∇u∗ is a measurable function and∫
Rn
A(|∇u∗|) ≤

∫
Rn
A(|∇u|). (2.1.36)

Moreover, if 1 < p <∞, |C∗∩u∗−1(0,M)| = 0, A is strictly increasing, and the equality

holds in (2.1.36), then there exists a translate of u∗ which is equal almost everywhere

to u.

Proof: See Brothers and Ziemer [5].

We may take A(ξ) = |ξ|p, which is strictly convex, strictly increasing and such that

A(0) = 0. Thus, we obtain the following corollary.

Corollary 2.1.16. Let 1 < p < ∞. Let Ω be a bounded domain in Rn . Let u be a

bounded non negative function in W 1,p
0 (Ω). If |C∗ ∩ u∗−1(0,M)| = 0 and∫

Ω∗
|∇u∗|pdx =

∫
Ω

|∇u|pdx. (2.1.37)

Then there exists a translate of u∗ which is equal almost everywhere to u.

By the above corollary we also have that Ω is a ball congruent to Ω∗.

2.2 Steiner symmetrization

This section is based on Kawohl [16].

35



2.2. Steiner symmetrization

Definition 2.2.1. Let n ≥ 2 and let Ω ⊂ Rn be a measurable non-empty set. Denote

by Ω′ the orthogonal projection of Ω in Rn−1,i.e.:

Ω′ := {x′ ∈ Rn−1 : ∃y such that (x′, y) ∈ Ω},

and for x′ ∈ Rn−1, denote by Ω(x′) the intersection of Ω with {x′} × R:

Ω(x′) := {y ∈ R : (x′, y) ∈ Ω}.

Define the Steiner symmetrization Ωs of Ω with respect to hyperplane y = 0 as the

set

Ωs =
⋃
x′∈Ω′

Ωs(x′)

where

Ωs(x′) =

{
(x′, y) ∈ Rn : |y| < 1

2
|Ω(x′)|

}
.

If Ω = ∅, define its Steiner symmetrization by Ωs = ∅.

Figure 2.1: On the left hand, a domain Ω; on the right hand, its Steiner symmetrization

Ωs with respect the hyperplane y = 0

In simple words, Ωs is obtained from Ω by putting the midpoint of each segment

Ω(x′) at (x′, 0). Clearly, Ωs is symmetric with respect to the hyperplane y = 0.

Proposition 2.2.2. Let A,B ⊂ Rn be a measurable non-empty sets. If A ⊂ B then

As ⊂ Bs.
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2.2. Steiner symmetrization

Proof: Let (x′, y) ∈ Rn with x′ ∈ Rn−1. If A ⊂ B then A(x′) ⊂ B(x′), and so

|A(x′)| ≤ |B(x′)|. Thus

(x′, y) ∈ As ⇒ |y| < 1

2
|A(x′)| ≤ 1

2
|B(x′)| ⇒ (x′, y) ∈ Bs.

Proposition 2.2.3. The Steiner symmetrization leaves the volume unchanged, i.e. if

Ω is a domain and Ωs is its Steiner symmetrization, then

|Ω| = |Ωs|

Proof: Let Ω′ be the orthogonal projection of Ω onto the hyperplane of symmetrization

y = 0. We note

|Ω| =
∫

Ω′
|Ω(x′)| dx′

and

|Ωs| =
∫

Ω′
|Ωs(x′)| dx′.

As by definition of Ωs(x′), |Ω(x′)| = |Ωs(x′)| for all x′ ∈ Ω′, we therefore have

|Ω| = |Ωs|.

Proposition 2.2.4. The Steiner symmetrization does not increase the perimeter P (.),

i.e., if Ω is a domain and Ωs is its Steiner symmetrization, then

P (Ω) ≥ P (Ωs).

Proof: For simplicity we prove this result for Ω ∈ R2 being analogous in other

dimensions. Consider a given region Ω. We choose the x − axis as the hyperplane

of symmetrization. Let Ω′ the orthogonal projection of Ω onto x − axis. As Ω is a

bounded domain , we can assume that Ω′ is divided in a finite number I1, . . . , Il of
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2.2. Steiner symmetrization

intervals such that for every x ∈ Ii with 1 ≤ i ≤ l, the straight line through (x, 0)

which is parallel to the y-axis intersects ∂Ω in the points (x, y1), (x, y2), · · · , (x, y2mi)

where y1 > y2 > · · · > y2mi , with mi ≥ 1. The perimeter of Ω is expressed as

P (Ω) =
l∑

i=1

∫
Ii

2mi∑
v=1

√
1 +

(
∂yv
∂x

)2

dx. (2.2.1)

By definition, for every x ∈ Ii with 1 ≤ i ≤ l, we have that the intersection of Ωs with

the straight line through (x, 0) which is parallel to the y-axis corresponds a line-segment

bisected by the x− axis, with endpoints (x, ysi ) and (x,−ysi ), respectively, where

ysi =
y1 − y2 + y3 − y4 + · · ·+ y2mi−1 − y2mi

2
. (2.2.2)

The boundary of Ωs is bisected by the x−axis and its length P (Ωs) can be expressed

as

P (Ωs) = 2
l∑

i=1

∫
Ii

√
1 +

(
∂ysi
∂x

)2

dx

=
l∑

i=1

2

∫
Ii

√√√√1 +
1

4

(
2mi∑
v=1

(−1)v−1∂yv
∂x

)2

dx

=
l∑

i=1

∫
Ii

√√√√4 +

(
2mi∑
v=1

(−1)v−1∂yv
∂x

)2

dx.

For every 1 ≤ i ≤ l, consider the vectors

uv =

(
1, (−1)v−1∂yv

∂x

)
,

for v = 1, 2, · · · , 2mi. The vector
2mi∑
v=1

uv has as first component 2mi ≥ 2.

So, we have √√√√4 +

(
2mi∑
v=1

(−1)v−1∂yv
∂x

)2

≤

∥∥∥∥∥
2mi∑
v=1

uv

∥∥∥∥∥
≤

2mi∑
v=1

‖uv‖

=

2mi∑
v=1

√
1 +

(
∂yv
∂x

)2

.
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Therefore, integrating on every Ii and adding we have

P (Ω) =
l∑

i=1

∫
Ii

2mi∑
v=1

√
1 +

(
∂yv
∂x

)2

dx ≥
l∑

i=1

∫
Ii

√√√√4 +

(
2mi∑
v=1

(−1)v−1∂yv
∂x

)2

dx = P (Ωs).

Definition 2.2.5. Let Ω ⊂ Rn be a measurable set and let u : Ω → R be a

bounded measurable non-negative function, which vanishes on ∂Ω. The Steiner

symmetrization of u denoted by us is a function defined on Ωs as

us(x) = sup{c : x ∈ Ωs
c}.

Remark 2.2.6. We observe that us is well defined. The proof of this is the same as in

Remark 2.1.4. Also, us ≥ 0 and sup
Ωs

us = sup
Ω
u, the latter is proved in the same way as

in Proposition 2.1.5.

Proposition 2.2.7. The function us is symmetric with respect to the hyperplane y = 0,

i.e. for all (x′, y), (x′, y) ∈ Rn,

us(x′, y) = us(x′,−y).

Proof: Let (x′, y), (x′,−y) belong to Ωs. As |y| = |− y|, and since Ωs
c is symmetric with

respect to y = 0 for every c ∈ R, we have (x′, y) ∈ Ωs
c if and only if (x′,−y) ∈ Ωs

c. It

follows from the definition of us that us(x′, y) = us(x′,−y).

The next proposition asserts that u and us are equimeasurable functions. Its proof is

identical to Proposition 2.1.8 for Schwarz symmetrization , i.e. based on the Proposition

(2.1.7). We omit their proofs.

Proposition 2.2.8. Let c ∈ R. Given a non-negative measurable function on Ω, we

have

|{us ≥ c}| = |{u ≥ c}|.
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2.2. Steiner symmetrization

Remark 2.2.9. Like in Schwarz symmetrization we have |{u > c}| = |{us > c}|

and |{u = c}| = |{us = c}|.

The following result is a consequence of the above proposition and its proof is similar

to that of Proposition 2.1.10.

Theorem 2.2.10. Let u : Ω→ R be a bounded measurable non-negative function which

vanishes on ∂Ω and us its Steiner symmetrization. Let F : R+ → R a measurable

function, such that F ≥ 0 and F (0) = 0. Then∫
Ω

F (u(x)) dx =

∫
Ωs
F (us(x)) dx.

Proposition 2.2.11. Let F : R+
0 → R+

0 be a convex lower semicontinuous function,

with F (0) = 0. Let u, v be bounded measurable non-negative functions defined

in a bounded domain Ω, which vanishes on ∂Ω, and us, vs their respective Steiner

symmetrizations. Then ∫
Ωs
F (|us − vs|) ≤

∫
Ω

F (|u− v|)

Proof: See Chiti [8].

Definition 2.2.12. Consider

u : Ω→ R

(x′, y) 7→ u(x′, y)

We call that the function u is nice if:

1. Ω = Ω̂× (−ω, ω), where Ω̂ ⊂ Rn−1 is a bounded domain.

2. u belongs to C(Ω).
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2.2. Steiner symmetrization

3. u is piecewise linear in the sense of affine.

4.
∂u

∂y
6= 0 a.e. in Ω.

An important property of the Steiner symmetrization is the PÃşlya - SzegÃű

inequality, which as we also saw is valid for Schwarz symmetrization. This property is a

corollary of the next theorem. We can suppose, without loss of generality, that Ω = Ωs

for a domain Ω.

Theorem 2.2.13. Let Ω = Ω′ × (−ω, ω), where Ω′ ⊂ Rn−1 is a bounded domain. Let

u : Ω→ R a non-negative, nice and Lipschitz function in Ω such that u = 0 on ∂Ω. Let

F : Ω′ × R→ R be and Xk : Ω′ → R with k = 1, · · ·n be non-negative and continuous,

and let G : R+
0 → R be a nondecreasing and convex function.

1. Then ∫
Ω

F (x′, u) G

{n−1∑
k=1

Xk(x
′)

∣∣∣∣ ∂u∂xk
∣∣∣∣2 +Xn(x′)

∣∣∣∣∂u∂y
∣∣∣∣2
} 1

2

 dx′ dy

≥
∫

Ωs
F (x′, us) G

{n−1∑
k=1

Xk(x
′)

∣∣∣∣∂us∂xk

∣∣∣∣2 +Xn(x′)

∣∣∣∣∂us∂y

∣∣∣∣2
} 1

2

 dx′ dy. (2.2.3)

2. Moreover if F and Xk with k = 1, · · · , n are positive, and G is increasing and

strictly convex, then the equality holds in (2.2.3) if and only if u = us.

Proof: It is enough to show that for every x′ ∈ Ω′ the following inequality holds∫ ω

−ω
Il dy ≥

∫ ω

−ω
Ir dy. (2.2.4)

where Il and Ir are the integrands in the left and right hand sides of (2.2.3). Since

u is nice in Ω, we can remove a closed set Γ of n − 1 dimensional Lebesgue measure

zero, such that for every x′ ∈ Ω′ \ Γ, the function u(x′, y) is differentiable at all except
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2.2. Steiner symmetrization

finitely many y ∈ (−w,w). Suppose that there exists M such exceptional points and

let a1 ≤ a2 ≤ . . . ≤ aM be the values assumed by u in these M points.

Define

D0 = {y ∈ Ω(x′) | a0 = 0 < u(x′, y) < a1},

Di = {y ∈ Ω(x′) | ai < u(x′, y) < ai+1} i = 1, . . . ,M − 1

and

Ds
0 = {y ∈ Ω(x′) | a0 = 0 < us(x′, y) < a1}.

Then

Ds
i = {y ∈ Ω(x′) | ai < us(x′, y) < ai+1} i = 1, . . . ,M − 1.

Fix i and decompose Di into a finite number of intervals {γi,j}, where

j = 1, . . . , N(i, x′), such that:

1. In each one of the γi,j, u is differentiable with respect to all variables and

∂u

∂y
(x′, y) 6= 0. (2.2.5)

2. N(i, x′) must be even, since u = 0 on ∂Ω

As u(x′, ·) is either strictly increasing or decreasing in each γi,j, we have for every

λ ∈ (ai, ai+1) there exists a unique value of yj(λ, x′) in γi,j, such that u(x′, yj) = λ.

On the other hand, as us(x′, ·) is strictly decreasing for y ∈ [0, ω], there exists a

unique non-negative value ys(x′, λ) in Ds
i , such that u(x′, ys) = λ. Assume that the

intervals {γi,j} are ordered by their distance from −ω. Thus, as u(x,′−ω) = 0 and

u ≥ 0 is nice, we have u is increasing in γi,1, then decreasing γi,2 and so on. In this way

sign
∂u

∂y
(x′, yj) = (−1)j+1sign

∂u

∂y
(x′, y1) in γi,j (2.2.6)

Further

ys(x′, λ) =
1

2

N∑
j=1

(−1)jyj(x
′, λ). (2.2.7)
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2.2. Steiner symmetrization

On the other hand, we note that the function yj(x
′, λ) is the inverse function of

u(x′, ·) on γi,j, thus yj(x′, λ) is differentiable and

∂u

∂y
=

(
∂yj
∂λ

)−1

. (2.2.8)

Differentiating the relation u(x′, yj(λ, x
′)) = λ with respect to xk with

k = 1, . . . , n− 1, we get by (2.2.8),

∂u

∂xk
= − ∂yj

∂xk

(
∂yj
∂λ

)−1

in γi,j. Analogously for us and ys we have that,

∂us

∂y
=

(
∂ys

∂λ

)−1

and
∂us

∂xk
= −∂y

s

∂xk

(
∂ys

∂λ

)−1

para k = 1, . . . , n− 1,

in Ds
i ∩ {(x′, y)|y ≥ 0}. Moreover, (2.2.6),(2.2.7) and (2.2.8) imply the relations∣∣∣∣∂ys∂λ

∣∣∣∣ =
1

2

N∑
j=1

∣∣∣∣∂yj∂λ

∣∣∣∣ and
∣∣∣∣∂ys∂xk

∣∣∣∣ =
1

2

∣∣∣∣∣
N∑
j=1

(−1)j
∂yj
∂xk

∣∣∣∣∣ . (2.2.9)

Now we can rewrite the arguments of G in Il and Ir, as follows:
n−1∑
k=1

Xk(x
′)

∣∣∣∣ ∂u∂xk
∣∣∣∣2 +Xn(x′)

∣∣∣∣∂u∂y
∣∣∣∣2 =

∣∣∣∣∂yj∂λ

∣∣∣∣−2
{
n−1∑
k=1

Xk(x
′)

∣∣∣∣ ∂yj∂xk

∣∣∣∣2 +Xn(x′)

}
(2.2.10)

on γi,j, and

n−1∑
k=1

Xk(x
′)

∣∣∣∣∂us∂xk

∣∣∣∣2 +Xn(x′)

∣∣∣∣∂us∂y

∣∣∣∣2 =

∣∣∣∣∂ys∂λ

∣∣∣∣−2
{
n−1∑
k=1

Xk(x
′)

∣∣∣∣∂ys∂xk

∣∣∣∣2 +Xn(x′)

}
(2.2.11)

on Ds
i . In order to prove (2.2.4), it is sufficient to show

N∑
j=1

∫
γi,j

F (x′, u) G

{n−1∑
k=1

Xk(x
′)

∣∣∣∣ ∂u∂xk
∣∣∣∣2 +Xn(x′)

∣∣∣∣∂u∂y
∣∣∣∣2
} 1

2

 dy

≥ 2

∫
Dsi∩{(x′,y)|y≥0}

F (x′, us) G

{n−1∑
k=1

Xk(x
′)

∣∣∣∣∂us∂xk

∣∣∣∣2 +Xn(x′)

∣∣∣∣∂us∂y

∣∣∣∣2
} 1

2

 dy. (2.2.12)
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for i = 0, . . . ,M − 1. If we make the change of variables y 7→ u(x′, yj) in γi, j and

ys 7→ us(x′, ys) in Ds
i ∩ {(x′, y)|y ≥ 0}, we obtain using (2.2.9), (2.2.10) and (2.2.11).

∫ ai+1

ai

F (x′, λ)
N∑
j=1


∣∣∣∣∂yj∂λ

∣∣∣∣ G
∣∣∣∣∂yj∂λ

∣∣∣∣−1
{
n−1∑
k=1

Xk(x
′)

∣∣∣∣ ∂yj∂xk

∣∣∣∣2 +Xn(x′)

} 1
2

 dλ

≥
∫ ai+1

ai

F (x′, λ)

(
N∑
j=1

∣∣∣∣∂yj∂λ

∣∣∣∣
)

G

2

(
N∑
j=1

∣∣∣∣∂yj∂λ

∣∣∣∣
)−1

1

4

n−1∑
k=1

Xk(x
′)

∣∣∣∣∣
N∑
j=1

(−1)j
∂yj
∂xk

∣∣∣∣∣
2

+Xn(x′)


1
2

 dλ.

(2.2.13)

Then (2.2.12) can be obtained by showing

N∑
j=1


∣∣∣∣∂yj∂λ

∣∣∣∣ G
∣∣∣∣∂yj∂λ

∣∣∣∣−1
{
n−1∑
k=1

Xk(x
′)

∣∣∣∣ ∂yj∂xk

∣∣∣∣2 +Xn(x′)

} 1
2



≥

(
N∑
j=1

∣∣∣∣∂yj∂λ

∣∣∣∣
)

G

( N∑
j=1

∣∣∣∣∂yj∂λ

∣∣∣∣
)−1


n−1∑
k=1

Xk(x
′)

∣∣∣∣∣
N∑
j=1

(−1)j
∂yj
∂xk

∣∣∣∣∣
2

+ 4Xn(x′)


1
2

 .

(2.2.14)

Consider αj =

∣∣∣∣∂yj∂λ

∣∣∣∣
(

N∑
j=1

∣∣∣∣∂yj∂λ

∣∣∣∣
)−1

, and

zj =

∣∣∣∣∂yj∂λ

∣∣∣∣−1
{∑n−1

k=1 Xk(x
′)

∣∣∣∣ ∂yj∂xk

∣∣∣∣2 +Xn(x′)

} 1
2

. Note that 0 ≤ αj ≤ 1 and
N∑
j=1

αj = 1.

So, by convexity of G,
N∑
j=1

αjG(zj) ≥ G

(
N∑
j=1

αjzj

)
. (2.2.15)

Since G is nondecreasing, (2.2.14) can be obtained by showing

N∑
j=1

{
n−1∑
k=1

Xk(x
′)

∣∣∣∣ ∂yj∂xk

∣∣∣∣2 +Xn(x′)

} 1
2

≥


n−1∑
k=1

Xk(x
′)

∣∣∣∣∣
N∑
j=1

(−1)j
∂yj
∂xk

∣∣∣∣∣
2

+ 4Xn(x′)


1
2

.

(2.2.16)
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If we introduce the notation aj0 :=
√
Xn(x′) and ajk :=

√
Xk(x′) ·

∣∣∣∣ ∂yj∂xk

∣∣∣∣ for
k = 1, . . . , n − 1 y j = 1, . . . , N , then the left member of (2.2.16) represents the sum

over j of the length of the N vectors aj = (aj0, . . . , a
j
n−1). Applying the Minkowski’s

inequality we get:

N∑
j=1

{
n−1∑
k=1

Xk(x
′)

∣∣∣∣ ∂yj∂xk

∣∣∣∣2 +Xn(x′)

} 1
2

=
N∑
j=1

(
n−1∑
k=0

(ajk)
2

) 1
2

≥

n−1∑
k=0

(
N∑
j=1

ajk

)2
 1

2

=

n2Xn(x′) +
n−1∑
k=1

(√
Xk(x′)

N∑
j=1

∣∣∣∣ ∂yj∂xk

∣∣∣∣
)2


1
2

≥

4Xn(x′) +
n−1∑
k=1

Xk(x
′)

∣∣∣∣∣
N∑
j=1

(−1)j
∂yj
∂xk

∣∣∣∣∣
2


1
2

(2.2.17)

Since n ≥ 2. This proves (2.2.16).

Assuming the hypotesis in (b), the equality holds only under the following conditions:

N(i, x′) = 2 for i = 0, . . . ,M − 1 and and almost every x′ ∈ Ω′, ∂y1

∂xk
= − ∂y2

∂xk
and

∂y1

∂λ
= −∂y2

∂λ
for almost every x′ ∈ Ω′ and λ, and k = 1, . . . , n, where the last equality is

obtained of (2.2.15), using the strictly convexity of G. These conditions imply that for

almost every x′ ∈ Ω′ and λ, ∇(y1 + y2) = 0, so that y1 + y2 is constant, and assuming

that y1(x′, 0) = −ω and y2(x′, 0) = ω for x′ ∈ Ω′ , we have y1 = −y2. In this way,

for such x′, λ, and as y2 > 0 in (2.2.7), get ys(x′, λ) = y2(x′, λ). Thus, by definition of

ys and yj, obtain u(x′, y2) = us(x′, y2) and u(x′, y1) = us(x′, y1) a.e. in Ω. Moreover,

since u is Lipschitz continuous, so us (see [16]). Therefore, u(x′, y) = us(x′, y) for all

(x′, y) ∈ Ω. We conclude that u = us if and only if the equality holds in (2.2.3).

We have the following corollary.

Corollary 2.2.14. Let 1 < p < ∞. Let Ω ⊂ Rn be a bounded domain with Ωs its
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2.2. Steiner symmetrization

Steiner symmetrization with respect to a hyperplane. Let u ∈ W 1,p
0 (Ω) be a non-negative

function and let us be its Steiner symmetrization. Then∫
Ωs
|∇us|pdx ≤

∫
Ω

|∇u|pdx. (2.2.18)

In particular, us ∈ W 1,p
0 (Ωs).

Proof: We assume, without loss of geenerality that the hyperplane of symmetry is

y = 0. Let Ω′ be the projection of Ω on y = 0. We assume that Ω ⊂ Ω̂ × (−w,w).

In order to prove (2.2.18), one extends by zero the function u so that this is defined in

Ω̂ = Ω′ × (−w,w), where Ω′ ⊂ Rn−1 is a bounded domain. Then we can approximate

u by a sequence (un) of nice functions such that un = 0 en ∂Ω, for any n, i.e., each un

belongs to W 1,p
0 (Ω) by (1.2.7). Thus, by Theorem 2.2.13, each un is such that∫

Ω̂s
|∇usn|

pdx ≤
∫

Ω̂

|∇un|pdx. (2.2.19)

The sequence {usn} is bounded inW 1,p
0 (Ωs) and we can assume that is weakly convergent

to a function v in W 1,p(Ωs) and hence, by Rellich theorem, usn → v in Lp(Ωs). On the

other hand, since un → u in Lp(Ω), applying Proposition 2.1.11 with F (s) = sp, we have

usn → us in Lp(Ωs). Therefore us = v. Since, usn converges weakly to us in W 1,p
0 (ΩS)

and un converges strongly to u in W 1,p
0 (Ω), using the lower semi-continuity of the W 1,p

norm for the weak convergence, we get∫
Ωs
|∇us|pdx ≤ lim inf

∫
Ωs
|∇usn|

pdx ≤ lim inf

∫
Ω

|∇un|pdx =

∫
Ω

|∇u|pdx.

Now we enunciate the theorem which allow us to establish the conditions that a

domain Ω and a function u defined in Ω must satisfy for the equality to hold in (2.2.18).

Let f : Rn → [0,+∞) be a strictly convex function such that f(0) = 0 and

f(ξ1, . . . , ξn−1, ξn) = f(ξ1, . . . , ξn−1,−ξn), for every (ξ1, . . . , ξn) ∈ Rn. (2.2.20)

Also consider Ω ⊂ Rn an open set satisfying:
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2.2. Steiner symmetrization

1.

Ω′ is connected (2.2.21)

where Ω′ denote the orthogonal projection of Ω on Rn−1.

2.

Ω is bounded in the direction y. (2.2.22)

3.

Ω has a locally finite perimeter in Ω′ × R (2.2.23)

and

4.

Hn−1 ({(x′, y) ∈ ∂∗Ω : ny(x
′, y) = 0} ∩ (Ω′ × R)) = 0, (2.2.24)

where ny is the component along the y -axis of inner normal vector n to Ω and

Hk is the Hausdorff k- dimensional measure. In simple words, it must be satisfied

that the measure theoretic boundary ∂∗Ω is not parallel to y- axis a.e. inside the

open cylinder Ω′ × R.

Let u be a function belonging to

W 1,1
0,y (Ω) = {u : Ω→ R : u0 ∈ W 1,1(ω × R) for every open set ω ⊂⊂ Ω′}

where u0 is the extension of u to Rn, which vanishes outside of Ω. Such a function u

must satisfy

|({(x′, y) ∈ Ω : ∇yu(x′, y) = 0} ∩ {(x′, y) ∈ Ω : M(x′) = 0 ∨ u(x′, y) < M(x′)})|n = 0.

(2.2.25)

where M(x′) = inf{t > 0 : µu(x
′, t) = 0} and µu(x′, t) = L1 ({y ∈ R : u0(x′, y) > t}).

Theorem 2.2.15. Let f : Rn → [0,+∞) be a strictly convex function such that

f(0) = 0 and satisfies (2.2.20). Let Ω be an open subset of RN satisfying (2.2.21)-

(2.2.24). Let u be a non-negative function in W 1,1
0,y (Ω) which satisfies (2.2.25). If∫

Ωs
f(∇us)dx =

∫
Ω

f(∇u)dx <∞, (2.2.26)
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2.3. Derivative of a variational problem

Then u is equivalent to us modulo translation.

Evidently, if f(ξ) = |ξ|p, with ξ = (ξ1, . . . , ξN) ∈ Rn, the conditions of Theorem

2.2.15 hold. Thus, we obtain the following corollary.

Theorem 2.2.16. Let Ω be a open bounded subset of Rn satisfying (2.2.21)-(2.2.24).

Let u a non-negative function in W 1,p
0 (Ω) satisfying (2.2.25). If∫

Ωs
|∇us|pdx =

∫
Ω

|∇u|pdx <∞, (2.2.27)

then u is equivalent to us modulo translation.

In simple words, the above corollary says that if the equality holds in (2.2.27) and

the condition (2.2.25) is satisfied, then Ω is symmetric with respect to hyperplane y = 0.

2.3 Derivative of a variational problem

This section is based on Garcia et. al [11]. The following theorem proposes an

abstract result about differentiability of variational problems, which allows us to find the

derivative of λ1 with respect to variations of a given domain Ω with C2,α boundary, i.e.

an expression which allows us to establish the variation of λ1 for "small" perturbations

of boundary ∂Ω.

Theorem 2.3.1. Let Ω ⊂ Rn be a bounded domain with C2,α boundary . Let

A = A(x, δ, ξ) ∈ C1(Ω× R× Rn), B = B(x, δ, ξ) ∈ C1(Ω× R× Rn). Assume that the

variational problem

λ(δ) = inf
u∈W 1,p

0 (Ω)
Jδ(u), (2.3.1)

where

Jδ(u) =

∫
Ω
A(x, δ,∇u) dx∫

Ω
B(x, δ, u) dx

,

admits, for |δ| < ε, a unique solution u = uδ satisfying∫
Ω

B(x, δ, uδ) dx = 1.
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2.3. Derivative of a variational problem

We assume that uδ → u0 in C1(Ω) as δ → 0+, where u0 is a solution of the problem for

δ = 0. Then the function δ → λ(δ) is differentiable in δ = 0 , and moreover

λ′(0) =

∫
Ω

(A1(x, 0,∇u0)− λ0B1(x, 0, u0)) dx (2.3.2)

where A1 = ∂δA and B1 = ∂δB.

Proof: In virtue of the characterization (2.3.1), we have

Jδ(uδ)− J0(uδ) ≤ λ(δ)− λ(0) ≤ Jδ(u0)− J0(u0). (2.3.3)

As A,B are differentiable at δ = 0, for small δ, we have

A(x, δ, ξ) = A(x, 0, ξ) + δA1(x, 0, ξ) + A2(x, δ, ξ) (2.3.4)

and

B(x, δ, z) = B(x, 0, z) + δB1(x, 0, z) +B2(x, δ, z) (2.3.5)

where A2, B2 are o(δ) when δ → 0+, and∣∣∣∣A2(x, δ, ξ)

δ

∣∣∣∣ ≤ C1,

∣∣∣∣A2(x, δ, ξ)

δ

∣∣∣∣ ≤ C2, for |ξ| ≤M, δ < ε, x ∈ Ω.

As

Jδ(u0)− J0(u0) =

∫
Ω
A(x, δ,∇u0) dx∫

Ω
B(x, δ, u0) dx

− λ0, (2.3.6)

replacing (2.3.4) and (2.3.5) in the right member of (2.3.6), we have in virtue of (2.3.3),

that

λ(δ)− λ(0)

δ
≤ 1

δ

(∫
Ω
A(x, δ,∇u0) dx∫

Ω
B(x, δ, u0) dx

− λ0

)
≤ 1

δ

(∫
Ω

(A(x, 0,∇u0) + δA1(x, 0,∇u0) + A2(x, δ,∇u0)) dx∫
Ω

(B(x, 0, u0) + δB1(x, 0, u0) +B2(x, δ, u0)) dx
− λ0

)
≤

∫
Ω

(A1(x, 0,∇u0)− λ0B1(x, 0, u0)) dx∫
Ω
B(x, δ, u0) dx

+
1∫

Ω
B(x, δ, u0) dx

∫
Ω

(A2(x, δ,∇u0)− λ0B2(x, δ, u0)) dx

δ

+

∫
Ω

(A(x, δ,∇u0)− λ0B(x, δ, u0)) dx

δ
∫

Ω
B(x, δ, u0) dx
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2.3. Derivative of a variational problem

Thus, by the dominated convergence theorem,

lim sup
δ→0+

λ(δ)− λ0

δ
≤
∫

Ω

(A1(x, 0,∇u0)− λ0B1(x, 0, u0)) dx. (2.3.7)

Moreover

λ(δ)− λ(0)

δ
≥ Jδ(uδ)− J0(uδ)

δ

=
1

δ

(∫
Ω

A(x, δ,∇uδ) dx−
∫

Ω
A(x, 0,∇uδ) dx∫

Ω
B(x, 0, uδ) dx

)
=

∫
Ω
A(x, δ,∇uδ) dx

∫
Ω
B(x, 0, uδ) dx−

∫
Ω
A(x, 0,∇uδ) dx

∫
Ω
B(x, δ, uδ) dx

δ
∫

Ω
B(x, 0, uδ) dx

=

∫
Ω

(A(x, δ,∇uδ)− A(x, 0,∇uδ)) dx

δ

−
∫

Ω
(B(x, δ, uδ)−B(x, 0, uδ)) dx

δ
·
∫

Ω
A(x, 0,∇uδ) dx∫

Ω
B(x, 0, uδ) dx

. (2.3.8)

Using the mean value theorem,∫
Ω

(A(x, δ,∇uδ) − A(x, 0,∇uδ))
δ

dx =

∫
Ω

∫ 1

0

∂

∂s
A(x, sδ,∇uδ) ds. (2.3.9)

Thus, taking lower limit when δ tends to 0+ in (2.3.9) we get

lim inf
δ→0+

∫
Ω

(A(x, δ,∇uδ)− A(x, 0, uδ))

δ
= lim inf

δ→0+

∫
Ω

∫ 1

0

∂

∂s
A(x, 0,∇u0) ds

=

∫
Ω

A1(x, 0,∇u0) dx.

(2.3.10)

In a similar way we obtain that

lim inf
δ→0+

∫
Ω

(
B(x, δ, uδ)−

∫
Ω
B(x, 0, uδ)

)
δ

dx =

∫
Ω

B1(x, 0, u0) dx. (2.3.11)

Taking lower limit when δ tends to 0+ in (2.3.8), using (2.3.10),(2.3.11) and the fact

that by hipotesis uδ → u0 in C1(Ω), we have

lim inf
δ→0+

λ(δ)− λ0

δ
≥
∫

Ω

(A1(x, 0,∇u0)− λ0B1(x, 0, u0)) dx (2.3.12)

By (2.3.7) and (2.3.12) we obtain the desired conclusion.
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2.4. Derivative of the volume

2.4 Derivative of the volume

Let Ω be a domain in Rn. Consider a family of diffeomorphisms T = Tδ(x) ∈ C1(Ω,Rn),

with small δ > 0, such that

Tδ(x) = x+ δR(x) + S(x, δ), (2.4.1)

where R, S(·, δ) ∈ C1(Ω,Rn), S(x, δ) = o(δ) when δ → 0 in C1(Ω,Rn).

Let V (·) be the volume functional that maps every domain to its volume. In this case

denote Tδ(Ω) = Ωδ and V (Ωδ) = V (δ). We shall show that function δ 7→ V (δ) is

differentiable in δ = 0. Observe that

V (δ) =

∫
Ωδ

dy. (2.4.2)

If we consider x = T−1
δ (y) in Ω, then y ≈ x + δR(x) where x = (x1, . . . , xn) and

y = (y1, . . . , yn), then

V (δ) =

∫
Ω

C(x, δ) dx. (2.4.3)

with C(x, δ) = |det(DTδ(x))|. Thus, we introduce the next theorem, which gives us an

expression for the derivative of the volume functional for small perturbations of a fixed

domain whose boundary is C2,α.

Theorem 2.4.1. Let Ω ⊂ Rn be a bounded domain with C2,α boundary, Ωδ = Tδ(Ω)

the perturbation of Ω asociated to a family Tδ(x) = x + δR(x) + S(x, δ) . Then the

volume V (δ) = V (Ωδ) is differentiable with respect to δ at δ = 0. Moreover

V ′(0) =

∫
∂Ω

〈R, n〉 dσ, (2.4.4)

where n is the outward unit normal vector field on ∂Ω.

Proof: We note that

V (δ)− V (0)

δ
=

∫
Ω

C(x, δ) dx− V (0)

δ
. (2.4.5)
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2.4. Derivative of the volume

Further

C(x, δ) = 1 + δdivR(x) + C2(x, δ) (2.4.6)

where C2 is o(δ) when δ → 0+, and∣∣∣∣C2(x, δ)

δ

∣∣∣∣ ≤ C, for δ < ε, x ∈ Ω.

Thus, replacing (2.4.6) in (2.4.5) we have

V (δ)− V (0)

δ
=

∫
Ω

(1 + δdivR(x) + C2(x, δ)) dx−
∫

Ω

dx

δ

=

∫
Ω

divR(x) dx+

∫
Ω

C2(x, δ)

δ
dx.

Taking limit as δ → 0+ it gives

V ′(0) = lim
δ→0+

V (δ)− V (0)

δ
=

∫
Ω

divR(x) dx,

and by divergence theorem

V ′(0) =

∫
∂Ω

〈R, n〉 dσ.

.
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Chapter 3

Properties related to eigenvalues of

the Dirichlet p - Laplacian

We assume throughout this chapter that Ω is a bounded domain in Rn. Given

1 < p <∞, the p-Laplacian operator, which is denoted by ∆p, is defined as

∆p : W 1,p
0 (Ω) −→ W−1,q(Ω)

u 7→ ∆pu = div(|∇u|p−2∇u)
(3.0.1)

where W−1,q(Ω) is the dual space of W 1,p
0 (Ω) with p, q conjugate exponent.

3.1 On the Dirichlet p-Laplacian eigenvalue problem

The treatment of this section is based mostly on Lindqvist [19].

Definition 3.1.1. We say λ ∈ R is an eigenvalue for the Dirichlet p- Laplacian

if there exists nonzero u ∈ W 1,p
0 (Ω) with −∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω
(3.1.1)

in the weak sense.
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

We have that if (u, λ) is a solution to problem (3.1.1), then for all α ∈ R, (αu, λ) is

also a solution. Thus, one can find an eigenfunction with ‖u‖p = 1.

If u is an eigenfunction of λ, using u as a test function in (3.1.1), we obtain

λ =

∫
Ω
|∇ϕ|p∫

Ω
|ϕ|p

. (3.1.2)

The expression
∫
Ω |∇ϕ|

p∫
Ω |ϕ|

p is calledRayleigh’s quotient at ϕ ∈ W 1,p
0 (Ω). It is deduced

that any eigenvalue of this problem is non-negative.

Proposition 3.1.2. Every eigenfunction corresponding to an arbitrary eigenvalue λ

belongs to C1,α
loc (Ω) for some α > 0.

Proof: This may be deduced from the regularity theory for quasilinear elliptic equations.

See [12],[13] and [25].

Let R be the functional defined by nonzero functions in W 1,p
0 (Ω) by its Rayleigh’s

quotient, i.e.

R(u) =

∫
Ω
|∇u|p∫

Ω
|u|p

. (3.1.3)

We make the following important observation.

Proposition 3.1.3. There exists an equivalence between the eigenvalue problem (3.1.1)

and the Euler Lagrange equation at critical points of the functional R, defined in (3.1.3),

on W 1,p
0 (Ω) \ {0} in the following sense. Every eigenvalue is a critical value of the

functional R and u is an eigenfunction if and only if u is a critical point of the functional

R.

Proof: It follows from Lemma 3.4 (i) in [2] that R has a Gateaux derivative on

W 1,p
0 (Ω) \ {0}. It can be seen that

∇GR(u) = 0⇔
∫

Ω

|∇u|p−2〈∇u,∇ϕ〉 = R(u)

∫
Ω

|u|p−2uϕ, for all ϕ ∈ W 1,p
0 (Ω). (3.1.4)

Thus, clearly if u is a critical point of R, then R(u) is an eigenvalue and u an

eigenfunction. Reciprocally, if u an eigenfunction associated to eigenvalue λ, then by
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

(3.1.2), R(u) = λ. It follows from the weak formulation of (3.1.1) and (3.1.4) that u is

a critical point of R.

Let

λ1(Ω) = inf
ϕ∈W 1,p

0 (Ω),ϕ6=0

∫
Ω
|∇ϕ|p∫

Ω
|ϕ|p

. (3.1.5)

By the above proposition, if this infimum is attained, then it is an eigenvalue of the

problem (??), since this would be a critical value of R. Moreover, λ1(Ω) would be the

least eigenvalue, since λ1(Ω) would be the minimal critical value and every eigenvalue

is a critical point of R. Indeed, this fact is proved in the following proposition.

Proposition 3.1.4. The infimum of the Rayleigh’s quotient in (3.1.5) is attained.

Proof: Let (un)∞n=1 be a minimizing sequence for the functional R. We can assume that∫
Ω

|un|p = 1 for all n. So (un)∞n=1 is bounded in W 1,p
0 (Ω) and without loss of generality,

we can assume that this sequence converges weakly to u ∈ W 1,p
0 (Ω). Further, by the

Rellich Kondrasov Theorem (1.2.8), (un) converges strongly to u in Lp(Ω). This gives,∫
Ω

|u|p = lim
n→∞

∫
Ω

|un|p = 1.

By the lower semicontinuity of the W 1,p
0 norm, we have

λ1(Ω) = lim
n→∞

∫
Ω

|∇un|p ≥
∫

Ω

|∇u|p ≥ λ1(Ω).

This shows that λ1(Ω) is attained.

By the above proposition, the first eigenvalue is characterized as

λ1(Ω) = min
ϕ∈W 1,p

0 (Ω),ϕ6=0

∫
Ω
|∇ϕ|p∫

Ω
|ϕ|p

. (3.1.6)

This proposition also shows that there exists an eigenfunction corresponding to λ1 . We

will say "first eigenfunction" for an eigenfunction associated to λ1.

Proposition 3.1.5. Let C0 be the least positive constant such that∫
Ω

|ϕ|p ≤ C

∫
Ω

|∇ϕ|p, for every ϕ ∈ W 1,p
0 (Ω), (3.1.7)

then 1
C0

= λ1.
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Proof: We note that the such constant C0 exists by Poincare’s inequality. So,

1

C0

≤
∫

Ω
|∇ϕ|p∫

Ω
|ϕ|p

,

for every nonzero function ϕ ∈ W 1,p
0 (Ω). Thus, by definition of λ1, we get 1

C0
≤ λ1.

Anew by definition of λ1 we observe that∫
Ω

|ϕ|p ≤ 1

λ1

∫
Ω

|∇ϕ|p, for every ϕ ∈ W 1,p
0 (Ω),

i.e. 1
λ1

satisfy (3.1.7). Therefore C0 ≤
1

λ1

, which together with the previous observation

gives 1
C0

= λ1.

Let us look at the effect of a translation to Ω on an arbitrary eigenvalue λ. Let us

denote by τx0 the translation by x0, i.e. if x ∈ Ω, then τx0(x) = x+x0. If u is a function

defined in Ω, we define the function τx0u in τx0(Ω) by the formula τx0u(x) = u(x− x0).

We have the following proposition.

Proposition 3.1.6. Let Ω be an arbitrary domain and x0 ∈ Rn. The value λ is an

eigenvalue of Ω if and only if λ is an eigenvalue of τx0(Ω).

Proof: It is sufficient to show that if λ is an eigenvalue of Ω, then it is an eigenvalue

of τx0(Ω). Let u be an eigenfunction of λ on Ω. Let v = τx0u and we consider

ϕ̂(x) = τx0ϕ(x), with ϕ ∈ W 1,p
0 (Ω). We note that ∇v(x) = ∇u(x − x0) and
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

∇ϕ̂(x) = ∇ϕ(x− x0). Then

∫
τx0 (Ω)

|∇v(x)|p−2〈∇v(x),∇ϕ̂(x)〉 dx

=

∫
τx0 (Ω)

|∇u (x− x0) |p−2〈∇u (x− x0) ,∇ϕ (x− x0)〉 dx

=

∫
Ω

|∇u (y) |p−2〈∇u (y) ,∇ϕ (y)〉 dy

= λ

∫
Ω

|u (y)|p−2u (y)ϕ (y) dy

= λ

∫
τx0 (Ω)

|u (x− x0)|p−2u (x− x0)ϕ (x− x0) dx

= λ

∫
τx0 (Ω)

|v(x)|p−2v(x)ϕ̂(x)dx.

(3.1.8)

Thus, by definition of an eigenvalue on (τx0(Ω)) we get the desired conclusion.

Corollary 3.1.7. Let Ω be an arbitrary domain. We have

λ1(τx0(Ω)) = λ1(Ω). (3.1.9)

for any x0 ∈ Rn.

Proof: Let u be an eigenfunction for λ1(Ω). By Proposition 3.1.13 which is proved

further down, we may assume that u > 0. We know by the previous proposition that

λ1(Ω) is also an eigenvalue of τx0(Ω). But, indeed from the proof we have v = τx0u is

an eigenfunction of λ1(Ω) as eigenvalue on τx0(Ω). Since u > 0 in Ω, it follows by the

definition of v that v > 0 in τx0(Ω). By this and by Proposition 3.1.17, proved further

down, we obtain (3.1.9).

Let us also look at the effect of homothety . Let O ∈ Ω, k > 0 and Hk be homothety

of Ω about the origin O by the factor k, i.e. if x ∈ Ω, then Hk(x) = kx. If u is a function

defined in Ω, we define the function Hku in Hk(Ω) by the formula Hku(x) = u(x
k
).

Proposition 3.1.8. Let Ω be an arbitrary domain. If λ is an eigenvalue of Ω, then
λ

kp

is an eigenvalue of Hk(Ω).
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Proof: Let u be an eigenfunction of λ. Let v = Hku and we consider ϕ̂(x) = Hkϕ(x),

with ϕ ∈ W 1,p
0 (Ω). We note that ∇v(x) = 1

k
∇u(x

k
) and ∇ϕ̂(x) = 1

k
∇ϕ(x

k
). Then

∫
Hk(Ω)

|∇v(x)|p−2〈∇v(x),∇ϕ̂(x)〉 dx =
1

kp

∫
Hk(Ω)

∣∣∣∇u(x
k

)∣∣∣p−2 〈
∇u
(x
k

)
,∇ϕ

(x
k

)〉
dx

=
1

kp

∫
Ω

|∇u (y) |p−2〈∇u (y) ,∇ϕ (y)〉 kn dy

=
λ

kp

∫
Ω

|u (y)|p−2u (y)ϕ (y) kn dy

=
λ

kp

∫
Hk(Ω)

∣∣∣u(x
k

)∣∣∣p−2

u
(x
k

)
ϕ
(x
k

)
dx

=
λ

kp

∫
Hk(Ω)

|v(x)|p−2v(x)ϕ̂(x) dx.

This shows that
λ

kp
is an eigenvalue for Hk(Ω).

Corollary 3.1.9. Let Ω be an arbitrary domain. We have

λ1(Hk(Ω)) =
λ1(Ω)

kp
. (3.1.10)

Proof: Let u be an eigenfunction for λ1(Ω). By Proposition 3.1.13 proved below, we may

assume that u > 0. We know by the previous proposition that
λ1(Ω)

kp
is an eigenvalue

of Hk(Ω). But, indeed from the proof if u is an eigenfunction for λ1(Ω), then v = Hku

is an eigenfunction of
λ1(Ω)

kp
on τx0(Ω). Since u > 0 in Ω, it follows by the definition of

v that v > 0 in Hk(Ω). By this and Proposition 3.1.17 we conclude (3.1.10).

Remark 3.1.10. An important consequence corresponding to the above results is that

if we have two domains Ω,Ω′ such that |Ω| > |Ω′| and λ1(Ω) > λ1(Ω′), then we can get

a domain Ω′′ such that |Ω| = |Ω′′| and λ1(Ω) > λ1(Ω′′).

We now state a boundary regularity result for first eigenfunctions.

Proposition 3.1.11. Every first eigenfunction belongs to C1(Ω).
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Proof: See Barles [3].

The next theorem will be used in the proof of the following property of the first

eigenfunction.

Theorem 3.1.12. (Harnack’s inequality) Let Br and B2r be concentric balls such that

B2r ⊂ Ω. If u is a non-negative eigenfunction then

sup
Br

u ≤ C inf
Br
u.

Proof: See Lindqvist [20].

Proposition 3.1.13. . There exists a non-negative eigenfunction corresponding to the

first eigenvalue. Moreover, any first eigenfunction λ1(Ω) is either strictly positive or

strictly negative in the domain Ω.

Proof: Let u be an eigenfunction of λ1. Then, observe that

|∇|u|| =
∣∣∣∣ u|u|∇u

∣∣∣∣ = |∇u|,

Thus, if u minimizes the Rayleigh quotient, then so does |u|, so that |u| is also an

eigenfunction of λ1. Let x0 ∈ Ω and r > 0 such that B(x0, r) ⊂ Ω. We suppose that

|u(x0)| = 0. By Harnack’s inequality, |u| vanishes in B(x0,
r
2
), and so, the set {|u| = 0}

is open in Rn. On the other hand, since |u| is continuous in Ω, the set {|u| = 0} is

closed in Rn. Since Ω is connected this implies {|u| = 0} is equal to ∅ or Ω. However, as

u is an eigenfunction and so, u 6= 0. Therefore {|u| = 0} = ∅. So, |u| > 0 in Ω. It now

follows that u > 0 or −u > 0 in Ω, since u is continuous on Ω and Ω is connected.

By the above theorem, given a first eigenfunction u either u > 0 or u < 0 in Ω. Thus,

without loss of generality, in all that follows we will consider every first eigenfunction

as positive in Ω. The next proposition uses the above result in its proof.

Proposition 3.1.14. Let Ω be a bounded domain with C2 boundary in Rn. Let u be

an eigenfunction of λ1(Ω). We have

∂u1

∂n
< 0 on ∂Ω
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Proof: We note that as Ω has C2 boundary, we have that for every x0 ∈ ∂Ω, there

exists an open ball B = BR(z0) ⊂ Ω such that ∂B∩∂Ω = {x0} and the outward normal

vector to Ω and B coincide in x0. For K,α > 0, we define a function b : B → R as

b(x) = K(e−α|x−z0|
2−e−αR2

). We note that b > 0 in BR(z0), b(x0) = 0 and
∂b

∂η
(x0) < 0.

Moreover, it can be shown that

−∆pb(x) = −2Ke−α|x−z0|
2

|∇b|p−2(2α2|x− z0|2 − nα).

Thus, we can choose α large enough and independent of K such that

−∆pb ≤ 0 in BR(z0) \BR
2
(z0),

since |x− z0| is bounded below by R
2
in BR(z0) \BR

2
(z0).

Further, as u > 0 are continuous in Ω and ∂BR
2
(z0) is compact in Rn, we obtain

that u is bounded below by a positive constant on ∂BR
2
(z0). Moreover, since the factor

e−α|x−z0|
2−e−αR2 in b is a positive constant on ∂BR

2
(z0), we can choose K small enough

such that b ≤ u in ∂BR
2
(z0). Also, b(x) = 0 for all x ∈ ∂BR(z0), while u ≥ 0 in ∂BR

2
(z0).

Therefore, we have

b ≤ u in ∂(BR(z0) \BR
2
(z0)), −∆pb ≤ 0 and −∆pu ≤ 0 en BR(z0) \BR

2
(z0).

Thus, by the weak comparison principle of Tolksdorff [25], b ≤ u in BR(z0)\BR
2
(z0).

Moreover, as b(x0) = u(x0) = 0, this implies that ∂b
∂n

(x0) ≥ ∂u
∂n

(x0). Since ∂b
∂n

(x0) < 0,

we obtain that ∂u
∂n

(x0) < 0. Therefore, as x0 ∈ ∂Ω is arbitrary, we have proved that
∂u
∂n
< 0 on ∂Ω.

Now we prove the property which says that the first eigenvalue is simple, that is,

any two first eigenfunctions are multiples of each other.

Theorem 3.1.15. The first eigenvalue is simple.
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Proof: Suppose that u > 0 and v > 0 in Ω are eigenfunctions both corresponding to

λ1. Set

uε = u+ ε, vε = v + ε,

being ε > 0 a positive parameter. We use the test- functions

η1 =
uε

p − vεp

uεp−1
and η2 =

vε
p − uεp

vεp−1
.

From the C1(Ω) regularity of u and v (Proposition 3.1.11), both η1 and η2 belong to

W 1,p
0 (Ω).

Then,

∇η1 =

{
1 + (p− 1)

(
vε
uε

)p}
∇u− p

(
vε
uε

)p−1

∇v,

and, by symmetry, the gradient of ∇η2 has an analogous expression with u and v

interchanged.

As u is an eigenfunction corresponding to λ1,∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 dx = λ1

∫
Ω

up−1ϕ dx, (3.1.11)

and analogously for v. Inserting the function η1 in (3.1.11), the function η2 in the

respective expression for v and adding these expressions, we obtain the expression

λ1

∫
Ω

[(
u

uε

)p−1

−
(
v

vε

)p−1
]

(upε − vpε) dx

=

∫
Ω

[{
1 + (p− 1)

(
vε
uε

)p}
|∇uε|p +

{
1 + (p− 1)

(
uε
vε

)p}
|∇vε|p

]
dx

−
∫

Ω

[
p

(
vε
uε

)p−1

|∇uε|p−2〈∇uε,∇vε〉 − p
(
uε
vε

)p−1

|∇vε|p−2〈∇vε,∇uε〉

]
dx

=

∫
Ω

[{uεp + (p− 1)vε
p} |∇ lnuε|p + {vεp + (p− 1)uε

p} |∇ ln vε|p] dx

−
∫

Ω

[
pvε

p|∇ lnuε|p−2〈∇ lnuε,∇ ln vε〉+ puε
p|∇ ln vε|p−2〈∇ ln vε,∇ lnuε〉

]
dx

=

∫
Ω

[
upε (|∇ lnuε|p − |∇ ln vε|p)− pupε|∇ ln vε|p−2〈∇ ln vε, (∇ lnuε −∇ ln vε)〉

]
+
[
vpε (|∇ lnuε|p − |∇ ln vε|p)− pvpε |∇ lnuε|p−2〈∇ lnuε, (∇ ln vε −∇ lnuε)〉

]
dx

(3.1.12)
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Moreover, by Lebesgue dominated convergence theorem

lim
ε→0+

∫
Ω

[(
u

uε

)p−1

−
(
v

vε

)p−1
]

(upε − vpε) = 0. (3.1.13)

Letting ε tend toward zero in (3.1.12) we obtain

0 =

∫
Ω

[
up (|∇ lnu|p − |∇ ln v|p)− pup|∇ ln v|p−2〈∇ ln v, (∇ lnu−∇ ln v)〉

]
+
[
vp (|∇ lnu|p − |∇ ln v|p)− pvp|∇ lnu|p−2〈∇ lnu, (∇ ln v −∇ lnu)〉

]
dx,

(3.1.14)

By Proposition 1.5.2 the integrand in (3.1.14) is non-negative and since u, v are C1 in

Ω, we get[
up (|∇ lnu|p − |∇ ln v|p)− pup|∇ ln v|p−2〈∇ ln v, (∇ lnu−∇ ln v)〉

]
+
[
vp (|∇ lnu|p − |∇ ln v|p)− pvp|∇ lnu|p−2〈∇ lnu, (∇ ln v −∇ lnu)〉

]
= 0

in Ω. Thus, since the equality holds in (1.5.2) if and only if ω1 = ω2, we have that

∇ lnu = ∇ ln v. It follows that ∇
(
ln(u

v
)
)

= 0, and that u
v
must be constant in Ω, i.e.

there exists k ∈ R such that u = kv.

As a consequence of the above theorem we have the next proposition.

Proposition 3.1.16. Let Ω, Ω̂ be bounded domains in Rn such that Ω ⊂ Ω̂. Then,

λ1(Ω) ≥ λ1(Ω̂).

Moreover if Ω ⊂ Ω̂ in a strict way, then

λ1(Ω) > λ1(Ω̂).

Proof: If Ω ⊂ Ω̂, evidently W 1,p
0 (Ω) ⊂ W 1,p

0 (Ω̂). Thus

λ1(Ω) = min
ϕ∈W 1,p

0 (Ω),ϕ 6=0

∫
Ω
|∇ϕ|p∫

Ω
|ϕ|p

≥ min
ϕ̂∈W 1,p

0 (Ω̂),ϕ̂6=0

∫
Ω̂
|∇ϕ̂|p∫

Ω̂
|ϕ̂|p

= λ1(Ω̂).

We suppose that Ω ⊂ Ω̂ in strict way. Let u, û be the normalized first eigenfunctions

in Ω, Ω̂ respectively. Suppose that λ1(Ω) = λ1(Ω̂). Let u0 be the extension by zero of

u to Ω̂. As the Rayleigh’s quotient of u in Ω is equal to λ1(Ω), then∫
Ω̂

|∇u0|p =

∫
Ω

|∇u|p = λ1(Ω) = λ1(Ω̂)
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Thus, u0 is an eigenfunction corresponding to λ1(Ω̂). Hence, by the above theorem,

there exists k 6= 0 such that u0 = kû in Ω̂. As u0 = 0 on ∂Ω, and û > 0 in Ω̂ and

∂Ω is contained in Ω̂, it follows that ∂Ω ⊂ ∂Ω̂. By Proposition 1.5.1 it follows that

Ω = Ω̂

The following theorem says that only λ1 has positive eigenfunctions.

Theorem 3.1.17. If v > 0 is an eigenfunction corresponding to the eigenvalue λ, then

λ = λ1.

Proof: By definition λ1 ≤ λ. Let u > 0 be a first eigenfunction. Setting

uε = u+ ε, vε = v + ε.

We obtain in a similar way as in the above theorem that∫
Ω

[
λ1

(
u

uε

)p−1

− λ
(
v

vε

)p−1
]

(upε − vpε) dx ≥ 0. (3.1.15)

Letting ε tend toward zero in (3.1.15), we arrive to

(λ1 − λ)

∫
Ω

(up − vp) ≥ 0.

Considering that v can be replaced by kv for any k,

(λ1 − λ)

∫
Ω

(up − kpvp) ≥ 0.

If λ1 < λ, then ∫
Ω

up ≤
∫

Ω

kpvp.

Letting k tend to zero, then
∫

Ω

up ≤ 0, and we obtain that u = 0 on Ω, a contradiction

to the fact u > 0 in Ω.

Next we will dedicate our efforts to prove a result which says that if u is an

eigenfunction corresponding to an arbitrary eigenvalue, then the Lebesgue measure

of the set of critical points of u, {x ∈ Ω : ∇u(x) = 0}, is zero. We have the following

theorem.
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Theorem 3.1.18. Suppose that u ∈ W 1,p(Ω) is a weak solution of (1.2.5), with

f ∈ Lγ(Ω), where

γ >
n

p
, γ ≥ 2.

Then

f(x) = 0 for almost every x in {∇u = 0}.

Proof: By Lemma 2.1 in [21], |∇u|p−1 ∈ W 1,2
loc (Ω). Thus, for ε > 0,

|∇u|p−1

ε+ |∇u|p−1 ∈ W
1,2
loc (Ω).

Therefore, for every ϕ ∈ D(Ω), using |∇u|p−1

ε+|∇u|p−1ϕ as a test function in (1.2.6), we

have∫
Ω\{∇u=0}

|∇u|p−1

ε+ |∇u|p−1ϕ f =

∫
Ω

|∇u|p−1

ε+ |∇u|p−1ϕ f

=

∫
Ω

|∇u|p−2

〈
∇u,∇

(
|∇u|p−1

ε+ |∇u|p−1ϕ

)〉

=

∫
Ω\{∇u=0}

|∇u|p−2 |∇u|p−1

ε+ |∇u|p−1 〈∇u,∇ϕ〉

+

∫
Ω\{∇u=0}

|∇u|p−2ϕ
ε

(ε+ |∇u|p−1)
2

〈
∇
(
|∇u|p−1) ∇u〉 .

(3.1.16)

As ϕ ∈ D(Ω), there exists M > 0 such that |∇ϕ| ≤M . Moreover,

|∇u|p−1

ε+ |∇u|p−1 ≤ 1,

by this and Holder’s inequality we get∣∣∣∣∣|∇u|p−2 |∇u|p−1

ε+ |∇u|p−1 〈∇u,∇ϕ〉

∣∣∣∣∣ ≤M |∇u|p−1 (3.1.17)

with M |∇u|p−1 independent of ε belongs to L1(Ω).
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3.1. On the Dirichlet p-Laplacian eigenvalue problem

Further, since |∇u|p−1

ε+|∇u|p−1 ,
ε

ε+|∇u|p−1 ≤ 1, using Cauchy Schwarz inequality in Rn we

obtain ∣∣∣∣∣|∇u|p−2ϕ
ε

(ε+ |∇u|p−1)
2

〈
∇
(
|∇u|p−1) ,∇u〉∣∣∣∣∣

≤ |∇u|p−1

ε+ |∇u|p−1

ε

ε+ |∇u|p−1

∣∣ϕ∇ (|∇u|p−1)∣∣ ≤ |ϕ∇ (|∇u|p−1) |, (3.1.18)

with |ϕ∇
(
|∇u|p−1) | independent of ε and belongs to L1(Ω).

Thus, on the basis of (3.1.17) and (3.1.18), we can use Lebesgue dominated

convergence theorem, letting ε tends to 0+ in (3.1.16) and we get∫
Ω\{∇u=0}

ϕ f =

∫
Ω\{∇u=0}

|∇u|p−2〈∇u,∇ϕ〉

=

∫
Ω

|∇u|p−2〈∇u,∇ϕ〉

=

∫
Ω

ϕ f, ∀ϕ ∈ D(Ω).

Therefore ∫
{∇u=0}

ϕ f = 0, ∀ϕ ∈ D(Ω).

This implies that

f(x) = 0 a.e. in {∇u = 0}.

As a corollary of Theorem 3.1.18 we have the next result.

Corollary 3.1.19. Under the assumptions of Theorem 3.1.18, if f(x) 6= 0 almost

everywhere in Ω, then the Lebesgue measure of {∇u = 0} is zero. Thus, the Lebesgue

measure of the level set {u = c} is zero.

Proof: Clearly

{∇u = 0} = {∇u = 0 ∧ f = 0} ∪ {∇u = 0 ∧ f 6= 0},
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3.2. Properties of geometric variations

being this a disjoint union. Moreover, by Theorem 3.1.18,

|{∇u = 0 ∧ f 6= 0}| = 0. Hence

|{∇u = 0}| = |{∇u = 0 ∧ f = 0}| ≤ {|f = 0}| = 0

obtaining the desired result.

Corollary 3.1.20. If u is an eigenfunction corresponding to an arbitrary eigenvalue λ

of Dirichlet p- Laplacian, 1 < p <∞, then the Lebesgue measure of {x ∈ Ω : ∇u(x) =

0} is zero.

Proof: We note that since u is a continuous function in Ω and u = 0 on ∂Ω, we have

that u and so up−1 is upper bounded in Ω. Moreover, as Ω is bounded domain, we have

λup−1 belongs to Lγ(Ω) for any γ >
n

p
, γ ≥ 2.. Therefore, we can apply the Corollary

3.1.19 to eigenfunctions of an arbitrary eigenvalue λ, with f = λup−1 which is positive

in Ω.

3.2 Properties of geometric variations

This section is based on [22]. Now we are interested in the continuity of the function

Ω 7→ λ1(Ω)

whose domain is the class C of the open subsets of a fixed closed ballD. We consider

the topology induced by the Hausdorff distance in C .

Let us define different kinds of convergence which will be useful. Let (Ωn) be a

sequence of open subsets of D. Let Ω ⊂ D an open set.

Definition 3.2.1. We say that the sequence of the spaces W 1,p
0 (Ωn) converges in the

sense of Mosco to the space W 1,p
0 (Ω) if the following conditions hold:

1. For all ϕ ∈ W 1,p
0 (Ω), there exists a sequence ϕn ∈ W 1,p

0 (Ωn) such that ϕn converges

strongly in W 1,p
0 (D) to ϕ.
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3.2. Properties of geometric variations

2. For every sequence ϕn ∈ W 1,p
0 (Ωn) weakly convergent in W 1,p

0 (D) to a function ϕ,

we have ϕ ∈ W 1,p
0 (Ω).

Definition 3.2.2. We say a sequence (Ωn) γp - converges to Ω if for every

f ∈ W−1,q(Ω), the solutions of the Dirichlet problem

−∆pun = f in Ωn, un ∈ W 1,p
0 (Ωn)

converge in W 1,p
0 (D) to the solution of

−∆pu = f in Ωn u ∈ W 1,p
0 (Ω).

Let us denote by

ϑl(D) = {Ω ⊂ D : Ω is open and ]Ωc ≤ l}

where ] is the number of connected components. We have the following theorem.

Theorem 3.2.3. (Bucur- Trebeschi). Let n ≥ p > n − 1. Consider a sequence

(Ωn) ⊂ ϑl(D) and assume that Ωn converges with respect to the Hausdorff distance

to Ω. Then Ω ⊂ ϑl(D) and (Ωn) γp- converges to Ω.

Proof: See [6].

Remark 3.2.4. If p > n, a sequence of open sets which converges with respect to

Hausdorff distance to an open set, also γp converges to such set. This follows directly

from the embebbeding of W 1,p
0 (D) ⊂ W ε,∞(D) and the characterization of W 1,p

0 (Ω) (see

[6]). Thus, the previous theorem is non trivial just for n− 1 < p ≤ n.

Proposition 3.2.5. Let 1 < p < ∞. Let Ωn ⊂ ϑl(D) be an open set. If (Ωn) γp-

converges to Ω, then W 1,p
0 (Ωn) converges in the sense of Mosco to the space W 1,p

0 (Ω).

Proof: For proving the first condition we choose u ∈ W 1,p
0 (Ω) and consider un ∈

W 1,p
0 (Ωn) such that

−∆pun = −∆pu in Ωn.
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3.2. Properties of geometric variations

As (Ωn) γp- converges to Ω, we have (un) converges to u in W 1,p
0 (D).

For proving the second condition of Mosco, consider a sequence un ∈ W 1,p
0 (Ωn)

weakly convergent in W 1,p
0 (D) to the function u. We need to show that u ∈ W 1,p

0 (Ω).

Let vn ∈ W 1,p
0 (Ωn) be such that

∆pvn = −∆pu in Ωn, (3.2.1)

and v ∈ W 1,p
0 (Ω) be such that

−∆pv = −∆pu in Ω. (3.2.2)

As (Ωn) γp- converges to Ω, we have that vn converges strongly to v in W 1,p
0 (D). We

will show that v = u which will prove that u ∈ W 1,p
0 (Ω). Taking vn − un as a test

function in the weak formulation of (3.2.1), we have∫
Ωn

|∇vn|p−2〈∇vn,∇(vn − un)〉 =

∫
Ωn

(−∆pu)(vn − un) (3.2.3)

Since that (un) converges weakly to u in W 1,p
0 (D) and vn converges to v strongly in in

the same space, we can take the limit as n tends to infty in (3.2.3). Therefore, we get∫
D

|∇v|p−2〈∇v,∇(v − u)〉 =

∫
D

(−∆pu)(v − u).

But as ∫
D

(−∆pu)(v − u) =

∫
D

|∇v|p−2〈∇v,∇(v − u)〉,

we have ∫
D

〈|∇v|p−2∇v − |∇u|p−2∇u,∇(v − u)〉 = 0.

By the strict convexity of function A(ξ) = |ξ|p we have ∇(u−v) = 0. This implies that

u = v in D. Since that v = 0 in ∂Ω, we conclude that u = 0 on ∂Ω. Thus, u ∈ W 1,p
0 (Ω)

and the second condition of the Mosco convergence is proved.

We will use the above results to prove the next theorem, which is a generalization

of Sverak’s result for the Laplacian (see [14]).
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3.2. Properties of geometric variations

Theorem 3.2.6. Let p > n − 1. Consider a sequence (Ωn) ⊂ ϑl(D) and assume that

Ωn converges with respect to the Hausdorff distance to Ω. Then λ1(Ωn) converges to

λ1(Ω).

Proof: By Theorem 3.2.3 and Remark 3.2.4, (Ωn)∞n=1 γp- converges to Ω. By Proposition

3.2.5, W 1,p
0 (Ωn) converges in the sense of Mosco to the space W 1,p

0 (Ω). We have

λ1(Ωn) = min
φ∈W 1,p

0 (Ωn),φ 6=0

∫
Ωn
|∇φ|p∫

Ωn
|φ|p

=

∫
Ωn

|∇un|p

where the minimum is obtained by un with
∫

Ωn
|un|p = 1, and

λ1(Ω) = min
φ∈W 1,p

0 (Ω),φ 6=0

∫
Ω
|∇φ|p∫

Ω
|φ|p

=

∫
Ω

|∇u|p

where the minimum is obtained by u with
∫

Ω
|u|p = 1. Let d ≥ 0 and let Ω′ ⊂ Ω be

an open set with dH(Ω′,Ω) ≤ d. As by hypothesis Ωn converges with respect to the

Hausdorff distance to Ω, we have that for n large enough, Ω′ ⊂ Ωn and so∫
D

|∇un|p =

∫
Ωn

|∇un|p = λ1(Ωn) ≤ λ1(Ω′).

Thus we conclude that (un)∞n=1 is bounded in W 1,p
0 (D). Assume without loss of

generality (un)∞n=1 converges weakly in this space to a function û. The second condition

of Mosco implies that û ∈ W 1,p
0 (Ω). Also, by Theorem 1.2.8, (un)∞n=1 converges strongly

to û in Lp(D). This gives,∫
Ω

|û|p =

∫
D

|û|p = lim
n→∞

∫
D

|un|p = 1.

Using the weak lower semicontinuity of the norm W 1,p
0 and as û ∈ W 1,p

0 (Ω), we get

lim inf
n→∞

∫
Ωn

|∇un|p ≥
∫
D

|∇û|p =

∫
Ω

|∇û|p

Therefore

lim inf
n→∞

λ1(Ωn) ≥ λ1(Ω).
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3.3. Derivative of the first eigenvalue

Using the first condition of Mosco, there exists a sequence (vn)∞n=1 with vn ∈ W 1,p
0 (Ωn)

for all n, such that vn converges strongly in W 1,p
0 (D) to u. Thus

λ1(Ωn) ≤
∫

Ωn
|∇vn|p∫

Ωn
|vn|p

,

and this implies that

lim supλ1(Ωn) ≤ lim sup

∫
D
|∇vn|p∫
D
|vn|p

= lim
n→∞

∫
D
|∇vn|p∫
D
|vn|p

=

∫
Ω

|∇u|p.

Thus

lim sup
n→∞

λ1(Ωn) ≤ λ1(Ω).

Therefore

λ1(Ω) ≥ lim sup
n→∞

λ1(Ωn) ≥ lim sup
n→∞

λ1(Ωn) ≥ λ1(Ω).

We conclude that λ1(Ωn) converges to λ1(Ω).

3.3 Derivative of the first eigenvalue

This section is based on [11]. Our aim is to show that λ1(Ω) is differentiable when

differentiable perturbations of the domain Ω are considered. So consider a family of

diffeomorphisms T = Tδ(x) ∈ C1(Ω,Rn), with small δ > 0, such that

Tδ(x) = x+ δR(x) + S(x, δ), (3.3.1)

where R, S(·, δ) ∈ C1(Ω,Rn), S(x, δ) = o(δ) when δ → 0 in C1(Ω,Rn).

We denote Ωδ = Tδ(Ω) and λ(δ) = λ1(Ωδ). By definition of λ(δ) we have,

λ(δ) = inf
u∈W 1,p

0 (Ωδ)

∫
Ωδ
|∇v(y)|p dy∫

Ωδ
|v(y)|p dy

. (3.3.2)
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3.3. Derivative of the first eigenvalue

We consider x = T−1
δ (y) in Ω, i.e. y ≈ x + δR(x) where x = (x1, . . . , xn) and

y = (y1, . . . , yn). If v(y) = u(x) then by chain rule

∂v

∂yi
=

n∑
j=1

∂u

∂xj
· ∂xj
∂yi

=
(
DT−1

δ

)∗∇u. (3.3.3)

In this way,

λ(δ) = inf
u∈W 1,p

0 (Ω)

∫
Ω
|D(x, δ)∇u|pC(x, δ) dx∫

Ω
|u|pC(x, δ) dx

,

where D(x, δ) =
(
DT−1

δ

)∗
, C(x, δ) = |det(DTδ(x))|. The matrix

(
∂xj
∂yi

)∗
is such that

(
∂xj
∂yi

)∗
=
(
(DTδ)

−1
)∗ ≈ ((I + δDR)−1

)∗ ≈ (I − δ(DR)∗) , (3.3.4)

where the neglected terms involve δ2 or higher powers of δ.

The next theorem is a continuity result.

Theorem 3.3.1. Let Ω ⊂ Rn be a bounded domain with C2,α boundary, λ(δ) the

first eigenvalue of p-Laplacian in the domain Ωδ = Tδ(Ω), where Tδ is a family of

C1 diffeomorphisms verifying (3.3.1). Then the function λ = λ(δ) is continuous at

δ = 0, and if φδ denotes the positive eigenfunction in Ωδ normalized as |φδ|∞ = 1 we

have

φδ → φ

in C1,β
0 , as δ → 0 for some 0 < β < 1, where φ is the positive normalized first

eigenfunction for δ = 0.

Proof: See GarcÃŋa et.al.[11].

Theorem 3.3.2. Let Ω ⊂ Rn be a bounded domain with C2,α boundary, Ωδ = Tδ(Ω)

the perturbation of Ω asociated to a family Tδ(x) = x+ δR(x) +S(x, δ) . Then the first

eigenvalue λ(δ) = λ1(Ωδ) of −∆p is differentiable with respect to δ at δ = 0. Moreover

λ′(0) = −(p− 1)

∫
∂Ω

〈R, n〉
∣∣∣∣∂φ∂n

∣∣∣∣p dσ, (3.3.5)
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3.3. Derivative of the first eigenvalue

where n is the outward unit normal vector and φ the positive first eigenfunction in Ω

normalized so that ∫
Ω

|φ|p dx = 1.

Proof: We recall that

λ(δ) = inf
u∈W 1,p

0 (G)

∫
Ω
|D(x, δ)∇u|pC(x, δ) dx∫

Ω
|u|pC(x, δ) dx

,

where D(x, δ) ≈ I − δ(DR)∗, C(x, δ) = |det(DTδ(x))|. Thus, we may take

A(x, δ, ξ) = (|D(x, δ) · ξ|2)
p
2C(x, δ)) for all ξ ∈ Rn

and

B(x, δ, z) = |z|pC(x, δ) for all z ∈ R

in Theorem 2.3.1. Now we calculate A1 and B1.

A1(x, δ, ξ) = |ξ|p∂δC(x, 0) + (∂δ(〈D(x, δ) · ξ,D(x, δ) · ξ〉)
p
2 )(x, 0, ξ)

= |ξ|pdivR(x) +
p

2
|ξ|p−2(〈Dδ(x, 0)ξ, ξ〉+ 〈ξ,Dδ(x, 0)ξ〉)

= |ξ|pdivR(x) +
p

2
|ξ|p−2(〈−(DR)∗ξ, ξ〉+ 〈ξ,−(DR)∗ξ〉)

= |ξ|pdivR(x)− p|ξ|p−2〈ξ,DRξ〉

(3.3.6)

and

B1(x, 0, z) = |z|p∂δC(x, 0) = |z|pdivR(x). (3.3.7)

Therefore, by (3.3.6), (3.3.7), (2.3.2) and the fact that ϕ is normalized, we havee

λ′(0) =

∫
Ω

(
|∇φ|pdivR(x)− p|∇φ|p−2〈∇φ,DR(x)∇φ〉

)
dx− λ0

∫
Ω

|φ|pdivR(x) dx,

(3.3.8)

where λ0 is the first eigenvalue for the domain Ω. Our intention is to perform an

integration by parts in this expression. The lack of C2 regularity of φ leads us to

consider the problem −div((ε+ |∇u|2)
p−2

2 ∇u) = λ0 φ
p−1 inΩ

u = 0 on ∂Ω
(3.3.9)
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3.3. Derivative of the first eigenvalue

for ε > 0 small. As a consequence of the quasilinear theory in [13], this problem has a

unique solution uε ∈ C2,α(Ω) and since λ0φ
p−1 ≥ 0, it follows that uε ≥ 0. Further, the

uniform C1,β estimates in ε > 0 implies that there exists u ∈ C1(Ω) such that uε → u

in C1(Ω) as ε→ 0. Moreover since for all ψ ∈ D(Ω),∫
Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε,∇ψ〉 dx = λ0

∫
Ω

φp−1ψ dx,

by taking limit as ε→ 0,∫
Ω

|∇u|p−2〈∇u,∇ψ〉 dx = λ0

∫
Ω

φp−1ψ dx.

Thus, both u and φ are weak solutions of the problem −∆pv = λ0φ
p−1 with the Dirichlet

condition. By uniqueness of solution, it follows that u = φ. Therefore uε → φ in C1(Ω)

as ε→ 0.

Now, considering 〈R,∇uε〉 as a test function in (3.3.9) and observing that this

function does not vanishes on ∂Ω, we have∫
Ω

λ0φ
p−1〈R,∇uε〉 dx =

∫
Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε,∇(〈R,∇uε〉)〉 dx

−
∫
∂Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε, n〉〈R,∇uε〉 dσ.
(3.3.10)

Also we get that∫
Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε,∇(〈R,∇uε〉)〉 dx =

∫
Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε, D2uεR +DR · ∇uε〉 dx

=

∫
Ω

(ε+ |∇uε|2)
p−2

2 〈D2uε∇uε, R〉 dx

+

∫
Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε, DR · ∇uε〉 dx

=

∫
Ω

〈
1

p
∇
((
ε+ |∇uε|2

) p
2

)
, R

〉
dx

+

∫
Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε, DR · ∇uε〉 dx

(3.3.11)
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3.3. Derivative of the first eigenvalue

Replacing (3.3.10) in (3.3.11) we obtain∫
Ω

λ0φ
p−1〈R,∇uε〉 dx =

∫
Ω

〈
1

p
∇
((
ε+ |∇uε|2

) p
2

)
, R

〉
dx

+

∫
Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε, DR · ∇uε〉 dx

−
∫
∂Ω

(ε+ |∇uε|2)
p−2

2 〈∇uε, n〉〈R,∇uε〉 dσ.

(3.3.12)

Letting ε tend to 0 in (3.3.12) we have∫
Ω

λ0φ
p−1〈R,∇φ〉 dx =

∫
Ω

〈
1

p
∇ (|∇φ|p) , R

〉
dx

+

∫
Ω

|∇φ|p−2〈∇φ,DR · ∇φ〉 dx

−
∫
∂Ω

|∇φ|p−2〈∇φ, n〉〈R,∇φ〉 dσ.

(3.3.13)

By integration by parts and considering that φ = 0 on ∂Ω, we obtain∫
Ω

φp−1〈R,∇φ〉 dx =

∫
Ω

〈
R,∇

(
φp

p

)〉
dx = −

∫
Ω

φp

p
divR dx. (3.3.14)

Also, using integration by parts we have∫
Ω

〈
1

p
∇ (|∇φ|p) , R

〉
dx =

∫
∂Ω

〈
|∇φ|p

p
R, n

〉
dσ −

∫
Ω

|∇φ|p

p
divR dx. (3.3.15)

So that by (3.3.14) and (3.3.15), (3.3.13) gives

−
∫

Ω

λ0
φp

p
divR dx =

∫
∂Ω

〈
|∇φ|p

p
R, n

〉
dσ −

∫
Ω

|∇φ|p

p
divR dx

+

∫
Ω

|∇φ|p−2〈∇φ,DR · ∇φ〉 dx−
∫
∂Ω

|∇φ|p−2〈∇φ, n〉〈R,∇φ〉 dσ.

(3.3.16)

Since φ = 0 on ∂Ω,∇φ =
∂φ

∂n
n in ∂Ω and n is the outward unit normal vector, (3.3.16)

now becomes

−
∫

Ω

λ0
φp

p
divR dx =

∫
∂Ω

〈
1

p

∣∣∣∣∂φ∂n
∣∣∣∣pR, n〉 dσ −

∫
Ω

|∇φ|p

p
divR dx

+

∫
Ω

|∇φ|p−2〈∇φ,DR · ∇φ〉 dx−
∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣p〈R, n〉 dσ. (3.3.17)
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3.3. Derivative of the first eigenvalue

Therefore, using (3.3.17) in (3.3.8), we get

λ′(0) = −(p− 1)

∫
∂Ω

〈R, n〉
∣∣∣∣∂φ∂n

∣∣∣∣p dσ. (3.3.18)
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Chapter 4

Minimization of the first eigenvalue for

the Dirichlet p- Laplacian

4.1 Existence and uniqueness of a minimizer for the

first eigenvalue among domains with the same

volume

There is a large history of eigenvalue minimization problems, especially the Dirichlet

Laplacian problem. A famous conjecture made by Lord Rayleigh is the following: "The

disk should minimize the first eigenvalue of the Laplacian Dirichlet among every open

set of given measure". This conjecture was proved simultaneously and independently by

G. Faber and E. Krahn. We shall deal with the p− Laplacian version of this theorem.

Theorem 4.1.1. Let Ω ⊂ Rn be a domain. Let B be a ball of the same volume as Ω,

then

λ1(B) ≤ λ1(Ω).

Proof: Let Ω be a domain and let Ω∗ be its Schwarz symmetrization. Recall that, by
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4.1. Existence and uniqueness of a minimizer for the first eigenvalue among domains
with the same volume

Proposition 3.1.7, λ1 is invariant by translation. Thus, if B is a ball with the same

volume as Ω, then λ1(B) = λ1(Ω∗). In this way, it is sufficient to work with Ω∗ instead

of an arbitrary ball B.

Let u be an eigenfunction asociated to λ1(Ω) and u∗ its Schwarz symmetrization.

Taking the function F (x) = |x|p in (2.1.9), we have that

∫
Ω

|u|p =

∫
Ω∗
|u∗|p. (4.1.1)

Further, the PÃşlya-SzegÃű inequality implies that∫
Ω∗
|∇u∗|pdx ≤

∫
Ω

|∇u|pdx. (4.1.2)

By (4.1.1), (4.1.2) and since u is an eigenfunction of λ1(Ω) we get∫
Ω∗
|∇u∗|p∫

Ω∗
|u∗|p

≤
∫

Ω
|∇u|p∫

Ω
|u|p

= λ1(Ω).

This implies

λ1(Ω∗) = min
ϕ∈W 1,p

0 (Ω∗),ϕ6=0

∫
Ω∗
|∇ϕ|p∫

Ω∗
|ϕ|p

≤
∫

Ω∗
|∇u|p∫

Ω∗
|u|p

≤ λ1(Ω).

We now show the uniqueness of the minimizer for λ1 among domains with the same

volume. This result has been shown by Bhatacharya.T.[4]. This proof is pretty technical

and is based on Talenti’s Theorem. We give two proofs. The first one is based on a

classical result of Brothers and Ziemer [5] and this should be found in Alvino et. al. [1].

Later, we give an original proof by considering an overdetermined problem á la Serrin

[24] for domains with C2 boundary.

Let us first consider the proof based the result of Brothers and Ziemer.

Theorem 4.1.2. Let Ω ⊂ Rn be a domain. Let B be a ball with the same volume as

Ω. If Ω is not a ball then

λ1(Ω) > λ1(B).
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with the same volume

Proof: Let Ω ⊂ Rn be a domain. By the observations made in the beginning of the

proof of Theorem 4.1.1 is sufficient to work with Ω∗ instead of an arbitrary ball B.

Let u be an eigenfunction asociated to λ1(Ω) and u∗ its Schwarz symmetrization. If

λ1(Ω) = λ1(Ω∗), then

λ1(Ω∗) = λ1(Ω) =

∫
Ω
|∇u|p∫

Ω
|u|p

≥
∫

Ω∗
|∇u∗|p∫

Ω∗
|u∗|p

≥ λ1(Ω∗).

Thus, ∫
Ω

|∇u|p =

∫
B

|∇u∗|p.

It also follows that the Rayleigh quotient of u∗ is equal to λ1(Ω∗), and therefore u∗

is an eigenfunction corresponding to λ1(Ω∗). Thus, by Corollary 3.1.20 we have that

|C∗| = 0, where C∗ = {∇u∗ = 0}. It implies that |C∗ ∩ u∗−1(0,M)| = 0. So, the

hypotesis of the second part of the Corollary 2.1.16 is satisfied . Therefore, we conclude

that there exists a translation of u∗ which is equal almost everywhere to u. However, as

u, u∗ are C1 functions in their respective domains (Proposition 3.1.11), we have indeed

that the translation of u∗ is equal to u everywhere in Ω. Therefore Ω is a ball.

Next, we give the new proof, for domains with C2 boundary

Theorem 4.1.3. Let Ω ⊂ Rn be a domain with C2 boundary which minimizes λ1

among domains of given volume. Then, there exists a negative constant c such that the

eigenfunction u, satisfy
∂u

∂n
= c on ∂Ω.

Proof: We observe that if Ω minimizes λ1 under the condition that V ol(Ω) = A, then

there exists a Lagrange multiplier C such that λ′1(0) = C · V ol′(0). So, it follows by

Theorems 3.3.2 and 2.4.1 that

−(p− 1)

∫
∂Ω

〈R, n〉
∣∣∣∣∂u∂n

∣∣∣∣p dσ = C

∫
∂Ω

〈R, n〉 dσ,

for every any vector field R(·) ∈ C1(Ω). But this implies that∫
∂Ω

[
−(p− 1)

∣∣∣∣∂u∂n
∣∣∣∣p − C] 〈R, n〉 dσ = 0. (4.1.3)
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As R is arbitrary, (4.1.3) implies that

−(p− 1)

∣∣∣∣∂u∂n
∣∣∣∣p = C.

Thus ∣∣∣∣∂u∂n
∣∣∣∣ =

(
−C
p− 1

) 1
p

, in ∂Ω.

But by Proposition 3.1.14, ∂u
∂n
< 0 on ∂Ω.

Therefore, we conclude that

∂u

∂n
= c on ∂Ω.

with c = −
(
−C
p−1

) 1
p .

Consider Ω a bounded domain with C2 boundary in Rn. Suppose there exists a

positive function u satisfying
−∆pu = λ1u

p−1 inΩ

u = 0 in ∂Ω

∂u
∂n

= constant in ∂Ω

(4.1.4)

in the weak sense. Must be Ω a ball?. In the afirmative case, we will have shown that

the ball is the unique minimizer of λ1 among bounded domains with C2 boundary such

that they have the same volume. Indeed, this result is proved in the next theorem.

Theorem 4.1.4. Let Ω be a bounded domain with C2 boundary in Rn. Suppose that

there exists a positive function u satisfying (4.1.4) in the weak sense. Then Ω is a ball.

Proof: Let T0 be a hyperplane in Rn not intersecting the domain Ω. We suppose this

plane to be moved continously parallel to T0 to new positions, until ultimately it begins

to intersect Ω. From that moment onward, at each stage the resulting plane T cuts off

from Ω a cap Σ(T ) which corresponds to the portion of Ω that lies on the same side of

T as the original plane T0.

For any cap Σ(T ) thus formed, we let Σ′(T ) be its reflection in T . We note that

Σ′(T ) is contained in Ω until Σ′(T ) becomes internally tangent to the boundary of Ω
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at some point P not on T . Denote the plane T when it reaches this position by Tα

and Σ(Tα) by Σ′. Our aim is to prove that Ω is symmetric with respect to Tα, i.e.,

Σ′ = Ω ∩ T+
α , where T+

α is the half plane Ω formed by Tα not containing T0. If we

suceed in proving this, then we may conclude that for any given direction in Rn, we

can find a plane Tα about which Ω is symmetric. But the only domain which have this

symmetry property are balls. Thus, our theorem would be proved.

Since, Σ′ ⊂ Ω∩T+
α , by Proposition 1.5.1 it is enough to show that ∂Σ′ ⊂ ∂(Ω∩T+

α ),

in order to conclude Σ′ = Ω ∩ T+
α . But as ∂Σ′ ⊂ (∂Σ′ ∩ T+

α ) ∪ (Ω ∩ Tα) and

∂(Ω ∩ T+
α ) ⊂ (∂Ω ∩ T+

α ) ∪ (Ω ∩ Tα). Thus, it is sufficient to show that

∂Σ′ ∩ T+
α ⊂ ∂Ω ∩ T+

α .

Assuming that ∂Σ′ ∩ T+
α * ∂Ω ∩ T+

α , we show that this leads to a contradiction.

Consider a point x0 ∈ ∂Σ′∩T+
α which belongs to ∂Ω∩T+

α where Σ′ is internally tangent

to ∂Ω∩T+
α and such that every neighborhoord of x0 contains points of ∂Σ′ ∩T+

α which

does not belong to ∂Ω ∩ T+
α .

For proving the assertion, we introduce a new function v defined in Σ′ by v(x) =
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u(x′), where x′ is the reflected value of x across Tα. We note that u is such that:

−∆pu = λ1u
p−1 in Σ′,

u ≥ 0 in ∂Σ′,

∂u

∂n
= c in ∂Σ′ ∩ ∂Ω;

while v satisfies

−∆pv = λ1v
p−1 in Σ′,

v = 0 in ∂Σ′ \ Tα,

v = u in ∂Σ′ ∩ Tα,
∂v

∂n
= c in ∂Σ′ \ Tα.

in the weak sense.

Step 1: We note that

−div(A(∇u)− A(∇v)) = −∆pu+ ∆pv = λ1(up−1 − vp−1) ≥ 0 in N (4.1.5)

in the weak sense, where A(ξ) = |ξ|p−2 · ξ for ξ = (ξ1, . . . ξn) ∈ Rn. Let w = u− v. By

the mean value theorem,

A(∇u)− A(∇v) = A(t∇u+ (1− t)∇v)|10

=

∫ 1

0

d

dt
A(t∇u+ (1− t)∇v) dt

=

∫ 1

0

(〈∫ 1

0

(∇Ai)(t∇u(x) + (1− t)∇v(x))dt,∇w
〉)n

i=1

dt

=

(〈∫ 1

0

(∇Ai)(t∇u(x) + (1− t)∇v(x))dt,∇w
〉
dt

)n
i=1

.

Thus by (4.1.5)

−
n∑
i=1

(〈∫ 1

0

(∇Ai)(t∇u(x) + (1− t)∇v(x))dt,∇w
〉
dt

)n
i=1

≥ 0
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in the weak sense. Let aij(x) =

∫ 1

0

∂Ai
∂xj

(t∇u(x) + (1 − t)∇v(x))dt, the function w

satisfies

−
n∑
i=1

∂

∂xi

(
aij

∂w

∂xj

)
≥ 0 in Σ′,

w ≥ 0 in ∂Sigma′ \ Tα,

w = 0 in ∂Σ′ ∩ Tα,

w = 0 in ∂Σ′ ∩ (∂Ω ∩ T+
α ).

Step 2. We shall now that ((aij)) is uniformly positive definite in a neighborhood

N of x0. By Proposition 1.5.3, there exists K such that

〈(aij)(t∇u(x) + (1− t)∇v(x))ξ, ξ〉 ≥ K

∫ 1

0

|t∇u(x) + (1− t)∇v(x)| dt |ξ|2. (4.1.6)

At x0, we can write

∇v(x0) =
∂v

∂n
(x0)n+∇∂Σ′∩T+

α
v(x0)

where ∇∂Σ′∩T+
α
v is the tangential component in x0. Since v = 0 in ∂Σ′ ∩ T+

α , we have

∇∂Σ′∩T+
α
v(x0) = 0, thus

∇v(x0) =
∂v

∂n
(x0)n.

Let us define

g(t, x) = |t∇u(x) + (1− t)∇v(x)|p−2.

We observe that g(t, x) is continuous with respect to t and x and as the normal derivative

of v in x0 is such that
∂v

∂n
< 0, we have g(0, x0) =

∣∣∣∣∂v∂n(x0)

∣∣∣∣ = |c| > 0. Thus, we can

find a neighborhood [0, t0]×N where N is a neighborhood of x0 in Σ′ and t0 ≤ 1, such

that

g(t, x) ≥ δ, ∀(t, x) ∈ [0, t0]×N

for some positive δ.

Therefore , ∫ t0

0

g(t, x) dt |ξ|2 ≥ δt0|ξ|2.
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4.1. Existence and uniqueness of a minimizer for the first eigenvalue among domains
with the same volume

Thus, the operator L =
n∑
i=1

∂

∂xi

(
aij

∂

∂xj

)
is elliptic in N and by Theorem 8.19 in [13]

we have

w = 0 or w > 0 in N. (4.1.7)

But w is not constant in Σ′ since Σ′ is internally tangent to Ω ∩ T+
α in x0 and we have

assumed that every neighborhood of x0 contains points of ∂Ω ∩ T+
α \ (∂Σ′ ∩ T+

α ), there

exists nearby points to x0 in ∂N ∩ ∂Σ′ where w > 0. It follows that w > 0 in N . Then,

we can argue like in Theorem 3.1.14 to show that
∂w

∂n
< 0 on ∂N ∩ ∂Σ′. This implies

that
∂u

∂n
(x0) <

∂v

∂n
(x0).

It is a contradiction, since
∂u

∂n
(x0) =

∂v

∂n
(x0) = c.

The following corollary says the ball is the unique minimizer for λ1 among domains

with the same surface area. The Laplacian version of this corollary for domains on R2

was first proved by the German mathematician Richard Courant, without the Faber-

Krahn inequality. Let us denote the surface area of a domain Ω, by S(Ω).
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Corollary 4.1.5. Let Ω ⊂ Rn be a domain. Let B be a ball with the same surface area

as Ω, then

λ1(Ω) ≥ λ1(B).

Moreover, if Ω is not a ball then

λ1(Ω) > λ1(B).

Proof: Let Ω ⊂ Rn be a domain and B′ a ball with the same volume as Ω. By Theorems

4.1.1 and 4.1.2,

λ1(Ω) ≥ λ1(B′),

where the equality holds if, and only if Ω is a translate of B′. Further, by the

isoperimetric inequality, and since Ω and B′ have the same volume, we have

S(Ω) ≥ S(B′).

Furthermore the equality holds if and only if Ω is a translate of B′. Applying a

homothety to B′ with k ≥ 1, obtain a ball B = kB′ such that S(B) = S(Ω). Then, by

Proposition 3.1.9, we have

λ1(B) =
λ1(B′)

kp
.

It follows that

λ1(Ω) ≥ λ1(B′) ≥ λ1(B′)

kp
= λ1(B),

and the equality holds if and only if Ω is a translate of B′ and k = 1, that is, if and

only if Ω is a translate of B.

4.2 The case of polygons

Since in the case of arbitrary domains with given volume λ1 is minimized by the ball

and only by the ball, it is natural to think that for planar polygons with given area,

the minimum of λ1 is obtained by the regular polygon. We prove this for the case of

triangles.

84



4.2. The case of polygons

Theorem 4.2.1. Let T be an arbitrary triangle. Let T ′ be an equilateral triangle with

the same area as T , then

λ1(T ) ≥ λ1(T ′).

Proof: The proof uses Steiner symmetrization. Initially we observe that if T is a triangle

whose first eigenfunction is u and T s is the Steiner symmetrization of T , then by

Proposition 2.2.10 and the Corollary 2.2.18, proceeding as in Theorem 4.1.1, we obtain

λ1(T ) ≥ λ1(T s).

Let T be an arbitrary triangle. Considering T0 = T , we apply to T a sequence of

Steiner symmetrizations with respect to the perpendicular bisector of each side, getting

a sequence of triangles which converges with respect to the Hausdorff distance to an

equilateral triangle T ′, which by Proposition 2.2.3, has the same area as T . More

precisely, let n ≥ 1 and let Tn the isosceles triangle obtained in step n. We denote

by hn its height associated to its basis, an the length of its basis and An the angle

subtended by its base with one of the sides of Tn. Consider the Figure 4.2. Since the

triangle Tn is isosceles, if we consider the right triangle of angle base π/2 − An, with

adjacent side hn and hypotenuse an+1 we have

sinAn =
hn
an+1

. (4.2.1)

Moreover, as Tn and Tn+1 have the same area

hn
an+1

=
hn+1

an
= sinAn. (4.2.2)

Denote by xn :=
hn
an

. The relation (4.2.2) gives

xn+1 · xn =
hn+1

an+1

· hn
an

= sin2An, (4.2.3)

and if anew consider the right triangle of acute angle An, with adjacent side hn,

hypotenuse an+1 and base
1

2
an we have

tanAn =
2hn
an

. (4.2.4)
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4.2. The case of polygons

Thus, from (4.2.3) and (4.2.4) we obtain

xn+1 =
sin2An
xn

=
sin2(arctan 2xn)

xn
=

4xn
1 + 4x2

n

.

Observe that the sequence defined by xn+1 =
4xn

1 + 4x2
n

converges to the fixed point of

the function f(x) =
4x

1 + 4x2
, which is x =

√
3

2
. In this way, as

tanAn = 2xn,

if n tends to +∞, then tanAn tends to
√

3, that is

lim
n→∞

An =
π

3
(4.2.5)

which is the measure of angle of an equilateral triangle. We can assume for every

n ≥ 0, Tn is contained in a fixed ball B. In this way, by Theorem 1.3.3, there exists

a subsequence still denoted by (Tn) which converges to Hausdorff distance to an open

set T ′ ⊂ B. Further, as the sequence of vertex P j
n of Tn, with j = 1, 2, 3 stay in B, we

can also asume that there exists a subsequence still denoted by (P j
n) which converges

to some point P j in B. Thus, T ′ is a triangle of vertices P j, j = 1, 2, 3. As the angle

An can be calculated as function of vertices (A = arccos (〈u, v〉|u||v|)) and the vertices

of Tn converge to the vertex of T ′, then An converges to an angle of T ′ and by (4.2.5),

T ′ is an equilateral triangle.

By Theorem 3.2.3 and Remark 3.2.4, λ1(Tn) converges to λ1(T ′) for 1 < p < ∞.

Therefore

λ1(T ′) = lim
n→∞

λ1(Tn) ≤ λ1(T ).
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4.2. The case of polygons

Figure 4.1: The triangle Tn and its Steiner symmetrization Tn+1.

We show that the equilateral triangle is the unique minimum for the above problem.

Theorem 4.2.2. Let T be an arbitrary triangle. Let T ′ be an equilateral with the same

area as T . If T is not equilateral then

λ1(T ) > λ1(T ′).

Proof: Let T be any triangle which is not equilateral. Then, there exists a side of T

for which this triangle is not symmetric with respect to the perpendicular bisector m

of such side. Applying a Steiner symmetrization to T with respect m, we get a triangle

T s, which is not congruent with T , such that λ1(T ) ≥ λ1(T s). If λ1(T ) = λ1(T s) and u
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4.2. The case of polygons

is an eigenfunction of λ1(T ), then

λ1(T s) = λ1(T ) =

∫
T
|∇u|p∫
T
|u|p

≥
∫
T s
|∇us|p∫

T s
|us|p

≥ λ1(T s).

Clearly ∫
T

|∇u|p =

∫
T s
|∇us|p,

and by Theorem 2.2.16 we conclude that T is a translation of T s, which is a

contradiction. Thus, λ1(T ) > λ1(T s) ≥ λ1(T ′).

Corollary 4.2.3. Let T be an arbitrary triangle. Let T ′ be an equilateral triangle with

the same perimeter as T , then

λ1(T ) ≥ λ1(T ′)

Moreover, if T is not an equilateral triangle

λ1(T ) > λ1(T ′)

Proof: Let T be a arbitrary triangle and T ′′ the equilateral triangle with the same area

as T . By the above theorem

λ1(T ) ≥ λ1(T ′′)

where the equality holds if and only if T = T ′′. Further, by the isoperimetric inequality

P (T ) ≥ P (T ′′)

where the equality holds if and only if T = T ′′. Applying a homothety to T ′′ with

k ≥ 1, we obtain an equilateral triangle T ′ = kT ′′ which is such that

P (T ) = P (T ′).

By Proposition 3.1.10,

λ1(T ′) =
λ1(T ′′)

kp
.

It follows that

λ1(T ) ≥ λ1(T ′′) ≥ λ1(T ′′)

kp
= λ1(T ′)

and the equality holds if and only if T = T ′.

88



4.2. The case of polygons

We consider the case of quadrilaterals. Applying a sequence of at most 3 Steiner

symmetrizations to a given quadrilateral, we transform this to a rectangle. Moreover,

as the Steiner symmetrization decreases λ1 and keeps fixed the area of a quadrilateral,

we have the next result.

Theorem 4.2.4. Let C be any quadrilateral. There exists a rectangle Ĉ of the same

area as C and such that

λ1(C) ≥ λ1(Ĉ) (4.2.6)

Proof: We look the most general case. If C is a quadrilateral, then symmetrize C

with respect to the straight line orthogonal any diagonal, obtaining a kite C ′ . Next,

we symmetrize C ′ with respect to the perpendicular bisector of a diagonal, getting a

rhombus C ′′(See figure 4.2). Finally, if symmetrize C ′′ with respect to the perpendicular

bisector of a side, we obtain a rectangle Ĉ, which has equal area as C and (4.2.6) holds.

Figure 4.2: A sequence of three Steiner symmetrizations transforms any quadrilateral

into a rectangle.

We believe that the square minimizes λ1 among rectangles of the same area.
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