

Universidad de Concepción Dirección de Postgrado Facultad de Ciencias Físicas y Matemáticas - Programa de Magíster en Matemática

Medidas e Integración No-Arquimedeana

Tesis para optar al grado de Magíster en Matemática

CAMILO GERARDO PÉREZ MELLA CONCEPCIÓN - CHILE 2013

Profesor Guía: José Aguayo Garrido Dpto. de Matemática, Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción

Medidas e Integración No-Arquimedeana

Camilo Pérez Mella

Universidad de Concepción

 $A\ Gerardo,\ \'Erica,\ Carola\ y\ Matias.$

Índice general

grade	ecimientos	
\mathbf{trod}	ucción	i
Pre	liminares	1
Med	lidas e Integrales E <mark>scalares</mark>	4
2.1.	Medidas	4
2.2.	Operadores Integrales	11
	2.2.1. Extensión de la Inte <mark>gral</mark>	18
	2.2.2. Caracterización de Funciones Integrables	25
Med	didas e Integrales con valores en Espacios Normados	29
3.1.	Medidas Vectoriales	29
3.2.	Operadores Integrales Vectoriales	30
Med	didas e Integrales con valores en Espacios Localmente Convexos	35
4.1.	Medidas Vectoriales	35
4.2.	Operadores Integrales Vectoriales	42
	4.2.1. Extensión de la Integral	50
	4.2.2. Caracterización de Funciones Integrables	56
El T	Teorema de Radon-Nikodym	59
5.1.	Funciones vectoriales integrables	59
	Med 3.1. 3.2. Med 4.1. 4.2.	Medidas e Integrales Escalares 2.1. Medidas 2.2. Operadores Integrales 2.2.1. Extensión de la Integral 2.2.2. Caracterización de Funciones Integrables Medidas e Integrales con valores en Espacios Normados 3.1. Medidas Vectoriales 3.2. Operadores Integrales Vectoriales Medidas e Integrales con valores en Espacios Localmente Convexos 4.1. Medidas Vectoriales 4.2. Operadores Integrales Vectoriales 4.2.1. Extensión de la Integral

Bibliografía			76
	5.3.	El Teorema de Radon-Nikodym	69
	5.2.	Medidas absolutamente continuas	64

Agradecimientos

Antes que todo, agradecer a mi familia. En particular a mis padres, Gerardo y Érica, por su apoyo y ayuda en cada uno de los días que vine a trabajar a la universidad y soportar mi mal genio en ocasiones de estrés.

En segundo lugar, quisiera dar a todos los profesores de la Facultad de Ciencias Físicas y Matemática. A todos los que me inspiraron con su trabajo y a quienes me guiaron a través de distintas asignaturas. Principalmente, agradezco al profesor José Aguayo por su paciencia y dedicación en la conducción de este trabajo.

Quiero agradecer también a mis amigos que son un pilar fundamental en mi vida, y en especial a mis compañeros. Definitivamente la universidad es una de las mejores etapas de la vida por la gente que uno conoce en ella.

A mi novia Andrea le doy las gracias por aguantarme durante todo el tiempo que estuve trabajando en esta tesis, cuando a veces no tenía mucho tiempo para estar con ella. Además, por celebrar cada avance de mi tesis como suyo. Te amo mucho.

Finalmente, agradecer a todos los funcionarios del Departamento de Matemática que de alguna u otra forma me ayudaron a alcanzar esta meta.

Introducción

En la segunda mitad del siglo XX, A. F. Monna y T. A. Springer [5] construyeron los cimientos de la Teoría de Integración No-Arquimedeana. Ambos estudiaron funciones definidas en un espacio topológico cero-dimensional localmente compacto que alcanzaban valores en un campo valuado no-arquimedeano.

Más tarde, en el 1969, W. H. Schikhof y A. C. M. van Rooij [8], demostraron que la condición de compacidad local sobre el espacio dominio no era necesaria. Y luego, dos años más tarde, Schikhof obtiene un teorema análogo al Radon-Nikodym de la teoría arquimedeana [6].

Tres décadas después, J. N. Aguayo junto a T. E. Gilsdorf, logran generalizar la teoría, considerando medidas e integrales vectoriales con valores en espacios normados [2]. Ese mismo año, Aguayo generaliza a valores en un espacio de Banach el teorema dado por Schikhof [1].

En esta tesis se expondrá detalladamente el trabajo de Schikhof y van Rooij para luego, basándonos en lo hecho por Aguayo y Gilsdorf, generalizar la teoría a valores vectoriales en un espacio topológico cero-dimensional localmente convexo.

Finalmente, a través de este estudio, se presentará y demostrará una versión análoga del Teorema de Radon-Nikodym bajo este mismo escenario.

Una construcción diferente

El siguiente ejemplo nos muestra que, de seguir las pautas de la Teoría de la Medida en el sentido clásico dentro del contexto no-arquimedeano, nos podríamos encontrar con comportamientos no deseados.

Ejemplo 1. Sea $(\mathbb{K}, |\cdot|)$ un campo con una valuación no arquimedeana completo con respecto a la ultramétrica inducida de manera natural por dicha valuación. Sea X un espacio ultramétrico compacto, Ω su σ -álgebra de Borel $y \mu : \Omega \to \mathbb{K}$ una función σ -aditiva tal que para cada $a \in X$, $\mu(\{a\}) = 0$. Se tiene que $\mu \equiv 0$.

En efecto, sean $Y \in \Omega$ y $\varepsilon > 0$. Para $a \in X$ definimos

$$R_0 = \{x \in X : |x - a| > 1\}$$

$$n \in \mathbb{N} \setminus \{0\}, \ R_n = \left\{ x \in X : \frac{1}{n+1} < |x - a| \le \frac{1}{n} \right\}$$

La colección $\{\{a\}\}\bigcup\{R_n: n=0,1,2,...\}$ es un cubriento disjunto dos a dos del espacio X. Así, $Y\cap\{a\}, Y\cap R_0, Y\cap R_1, Y\cap R_2,...$ es una partición de Y.

De la σ -aditividad de μ se tiene

$$\mu(Y) = \mu(Y \cap \{a\}) + \sum_{n=0}^{\infty} \mu(Y \cap R_n)$$

donde $\mu(Y \cap \{a\}) = 0$, por lo que

$$\lim_{n \to \infty} |\mu(Y \cap R_n)| = 0$$

es decir, existe $N \in \mathbb{N}$ tal que $n \geq N \Rightarrow |\mu(Y \cap R_n)| \leq \varepsilon$. Ahora definimos

$$B_a := \{a\} \cup R_N \cup R_{N+1} \cup R_{N+2} \cup \dots$$

 B_a es la bola centrada en a de radio $\frac{1}{N}$. Consecuencia de la desigualdad triangular fuerte es que para esta bola se tiene

$$|\mu(Y \cap B_a)| \le \varepsilon.$$

Consideramos ahora el cubrimiento $\{B_a : a \in X\}$ del espacio X. Por la compacidad de X podemos extraer un subcubrimiento finito $\{B_{a_1}, ..., B_{a_k}\}$ de bolas disjuntas (ya que X es un espacio ultramétrico). De esta forma:

$$|\mu(Y)| = \left| \mu \left(\bigcup_{1 \le i \le k} Y \cap B_{a_i} \right) \right|$$

$$= \left| \sum_{1 \le i \le k} \mu(Y \cap B_{a_i}) \right|$$

$$\leq \max_{1 \le i \le k} \{ |\mu(Y \cap B_{a_i})| \}$$

$$\leq \varepsilon.$$

Las causas de esta "trivialidad" son las propiedades de la σ -álgebra Ω y no, como se podría llegar a pensar, de la σ -aditividad de μ . De hecho, nuestro concepto de medida tendrá una condición de aditividad incluso más fuerte.

Capítulo 1

Preliminares

Sea X un conjunto fijo distinto de vacío.

Definición 2. Sea Ω una colección de subconjuntos de X. Diremos que Ω es un anillo de subconjuntos de X si para todo $U, V \in \Omega$, tenemos $U \cup V \in \Omega$, $U \cap V \in \Omega$ y $U \setminus V \in \Omega$. Además, diremos que Ω cubre a X si $\cup \{U : U \in \Omega\} = X$.

El nombre "anillo" viene del hecho que Ω se comporta como uno (en el sentido algebraico) considerando a la diferencia simétrica como una suma y a la intersección como un producto.

Teorema 3. Sea Ω un anillo de subconjuntos de X que lo cubre. Se tiene que Ω genera una topología cero-dimensional en X.

Demostración. Ya que Ω es cerrado bajo la intersección finita y cubre a X, es la base de una topología en X. Por otro lado, sea $U \in \Omega$. Como $X = \bigcup V_{\alpha}$ con $V_{\alpha} \in \Omega$ se tiene

$$X \setminus U = (\cup V_{\alpha}) \setminus U = \cup (V_{\alpha} \setminus U)$$

donde cada $V_{\alpha} \setminus A$ es abierto. Por lo tanto, U es cerrado. Luego, cada elemento de Ω es un clopen para la topología generada sobre X, y por tanto, X es un espacio cero-dimensional.

A menos que se indique lo contrario, Ω representará un anillo de subconjuntos de X. Además, consideraremos que X está dotado de la topología inducida por Ω .

Denotamos por E a un espacio localmente \mathbb{K} -convexo Hausdorff completo y por Γ a la familia de seminormas continuas que definen su topología.

Denotamos por \mathcal{X}_U a la función característica de $U \subset X$ con valores en \mathbb{K} . Además, si $e \in E$ definimos $\mathcal{X}_U \otimes e$ por

$$\mathcal{X}_U \otimes e : X \to E, \qquad \mathcal{X}_U \otimes e(x) = \begin{cases} e, & x \in U \\ 0, & x \notin U \end{cases}$$

Luego, definimos $\mathcal{F}(X, E) = \langle \{\mathcal{X}_U \otimes e : U \in \Omega, e \in E\} \rangle$, es decir, si $f \in \mathcal{F}(X, E)$ significa que existen $U_1, ..., U_n \in \Omega$ (sin perder generalidad, se pueden suponer disjuntos dos a dos) y $e_1, ..., e_n \in E$ tales que

$$f = \sum_{i=1}^{n} \mathcal{X}_{U_i} \otimes e_i.$$

Para $p \in \Gamma$, $g: X \to E$ e $Y \subset X$ definimos

$$||g||_{Y,p} = \sup_{x \in Y} p(g(x)).$$

Si h es una función de X en $\mathbb K$ y f está definida en X con valores E, se define el operador $h\otimes f$ por

$$h \otimes f : X \to E, \qquad h \otimes f(x) = h(x)f(x).$$

Por otro lado, si $(f_{\alpha})_{\alpha \in \Lambda}$ es una red de funciones de X en K escribiremos $f_{\alpha} \downarrow 0$ para indicar que

- $\lim_{\alpha} f_{\alpha} = 0$ puntualmente
- $|f_{\lambda}| \leq |f_{\alpha}|$ cuando $\lambda \geq \alpha$.

Para una red $(U_{\alpha})_{\alpha \in \Lambda}$ de subconjuntos de X diremos que $U_{\alpha} \downarrow \emptyset$ si $\mathcal{X}_{U_{\alpha}} \downarrow 0$.

Finalmente, enunciamos un teorema conocido que será usado a lo largo de esta tesis.

Teorema 4. (de Dini) Sea Y un espacio topológico. Si $\{f_{\alpha}\}_{\alpha}$ es una red decreciente de funciones de Y en \mathbb{R} tal que $f_{\alpha} \longrightarrow 0$ puntualmente, entonces $f_{\alpha} \longrightarrow 0$ uniformemente sobre cada subconjunto compacto de Y.

Capítulo 2

Medidas e Integrales Escalares

2.1. Medidas

Definición 5. Una función conjunto $\mu: \Omega \to \mathbb{K}$ se dice que es una medida escalar sobre Ω si es aditiva y si satisface las condiciones [M] y [B]:

[M] Sea $(U_{\alpha})_{\alpha \in \Lambda}$ una red en Ω tal que $U_{\alpha} \downarrow \emptyset$. Para cada $\alpha \in \Lambda$ sea $V_{\alpha} \in \Omega$, $V_{\alpha} \subset U_{\alpha}$. Se tiene que $\lim \mu(V_{\alpha}) = 0$.

[B] Para cada $U \in \Omega$, el conjunto $\{\mu(V) : V \in \Omega, V \subset U\}$ es acotado.

Observación 6.

- $\mu(\emptyset) = 0$
- $Si \emptyset$ es un elemento de la red, entonces la condición [M] se cumple trivialmente.
- Si μ cumple con [M], entonces es σ-aditiva.
 En efecto, sea {B₁, B₂, ...} una colección de elementos de Ω disjuntos dos a dos tales que ∪ B_n ∈ Ω y ε > 0. Sea U_k = ∪ B_n con k ≥ 0, k ∈ N. Es fácil ver que U_k ↓ Ø. Por hipótesis μ satisface [M], por lo que existe N ∈ N tal que

$$k \ge N \Longrightarrow |\mu(U_k)| \le \varepsilon.$$

Por la aditividad de μ se tiene

$$k \ge N \Longrightarrow \left| \mu \left(\bigcup_{n=1}^{\infty} B_n \right) - \sum_{n=1}^{k} \mu(B_n) \right| = \left| \mu \left(\bigcup_{n=k+1}^{\infty} B_n \right) \right| \le \varepsilon.$$

y por lo tanto

$$\mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} \mu(B_n).$$

Lema 7. Sea Ω un anillo de subconjuntos que cubre X y sea $\mu:\Omega\to\mathbb{K}$ una función aditiva. Para $U\in\Omega$ se define $\mu_{|U}:\Omega\to\mathbb{K}$ por $\mu_{|U}(V)=\mu(U\cap V)$. Se tiene que μ es una medida si y sólo si cada $\mu_{|U}$ lo es, cualquiera sea $U\in\Omega$.

Demostración. (\Rightarrow) Sea $U \in \Omega$. La aditividad de μ implica la aditividad de $\mu_{|_U}$. Dado $V \in \Omega$, se tiene

$$\{\mu_{|_U}(W): W \in \Omega, W \subset V\} \subset \{\mu(W): W \in \Omega, W \subset V\},$$

por lo que $\mu_{|_U}$ cumple con [B].

Por otro lado, sea $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ una red tal que $U_{\alpha}\downarrow\emptyset$ y para cada ${\alpha}\in\Lambda$ elegimos $V_{\alpha}\subset U_{\alpha}$. La red $\{U\cap V_{\alpha}\}_{{\alpha}\in\Lambda}$ es tal que $U\cap V_{\alpha}\downarrow\emptyset$ por lo que

$$\lim \mu_{|_{U}}(V_{\alpha}) = \lim \mu(U \cap V_{\alpha}) = 0,$$

y entonces $\mu_{|_U}$ satisface [M].

 (\Leftarrow) Dado $U \in \Omega$,

$$\{\mu(V): V \in \Omega, V \subset U\} = \{\mu_{|_U}(V): V \in \Omega, V \subset U\}$$

por lo que μ cumple con [B].

Finalmente, consideramos una red $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ con $U_{\alpha}\downarrow\emptyset$ y elegimos $V_{\alpha}\in U_{\alpha}, V_{\alpha}\subset U_{\alpha}$. Sea $\varepsilon>0$. Fijamos $\beta\in\Lambda$. Como $\mu_{|_{U_{\beta}}}$ es una medida, existe $\gamma\in\Lambda$ tal que

$$\alpha \ge \gamma \Rightarrow \left| \mu_{|U_{\beta}}(V_{\alpha}) \right| \le \varepsilon.$$

Sea $\delta \geq \{\beta, \gamma\}$. Se tiene que si $\alpha \geq \delta$ entonces

$$|\mu(V_{\alpha})| = |\mu(V_{\alpha} \cap U_{\beta})| = |\mu_{|\beta}(V_{\alpha})| \le \varepsilon.$$

Luego, μ satisface la condición [M] y por tanto es una medida.

Para $A \subset X$ abierto definimos la función conjunto:

$$||A||_{\mu} := \sup\{|\mu(U)| : U \in \Omega, U \subset A\}$$

Lema 8. Sea $\mu: \Omega \to \mathbb{K}$ una medida escalar, $A \ y \ B$ abiertos en $X \ y \ a \in X$. Entonces

- (a) $A \subset B \Longrightarrow ||A||_{\mu} \le ||B||_{\mu}$.
- (b) $||A||_{\mu} = \sup\{||U||_{\mu} : U \in \Omega, U \subset A\}.$
- (c) $||A \cup B||_{\mu} \le \max\{||A||_{\mu}, ||B||_{\mu}\}.$

Demostración.

(a)
$$||A||_{\mu} = \sup\{|\mu(U)| : U \in \Omega, U \subset A\} \le \sup\{|\mu(U)| : U \in \Omega, U \subset B\} = ||B||_{\mu}.$$

(b) Sea $U \in \Omega$, $U \subset A$. Como $|\mu(U)| \leq ||U||_{\mu}$, entonces

$$\sup\{|\mu(U)| : U \in \Omega, U \subset A\} \le \sup\{||U||_{\mu} : U \in \Omega, U \subset A\}$$
$$\Rightarrow ||A||_{\mu} \le \sup\{||U||_{\mu} : U \in \Omega, U \subset A\}.$$

Por otro lado,

$$||U||_{\mu} = \sup\{|\mu(V)| : V \in \Omega, V \subset U\} \le \sup\{|\mu(V)| : V \in \Omega, V \subset A\}$$
$$\Rightarrow \sup\{||U||_{\mu} : U \in \Omega, U \subset A\} \le ||A||_{\mu}.$$

(c)

$$\begin{split} ||A \cup B||_{\mu} &= ||A \cup (B \setminus A)||_{\mu} \\ &= \sup\{|\mu(U)| : U \in \Omega, U \subset A \cup (B \setminus A)\} \\ &= \sup\{|\mu[(U \cap A) \cup (U \cap (B \setminus A))]| : U \in \Omega, U \subset A \cup B\} \\ &\leq \sup\{\max\{|\mu(U \cap A)|, |\mu(U \cap (B \setminus A))|\} : U \in \Omega, U \subset A \cup B\} \\ &= \max\left\{\sup_{U \in \Omega, U \subset A \cup B} |\mu(U \cap A)|, \sup_{U \in \Omega, U \subset A \cup B} |\mu(U \cap (B \setminus A))|\right\} \\ &\leq \max\left\{\sup_{U \in \Omega, U \subset A} |\mu(U \cap A)|, \sup_{U \in \Omega, U \subset B} |\mu(U \cap (B \setminus A))|\right\} \\ &\leq \max\left\{\sup_{U \in \Omega, U \subset A} |\mu(U)|, \sup_{U \in \Omega, U \subset B} |\mu(U)|\right\} \\ &= \max\{||A||_{\mu}, ||B||_{\mu}\} \end{split}$$

Ahora bien, sobre el conjunto X definimos

$$\mathcal{N}_{\mu}(a) := \inf\{||U||_{\mu} : U \text{ abierto, } a \in U\}$$
 $(a \in X)$

Lema 9. Sea $\mu: \Omega \to \mathbb{K}$ una medida escalar y $a \in X$. Se tiene que

$$\mathcal{N}_{\mu}(a) = \inf\{||U||_{\mu} : U \in \Omega, a \in U\}.$$

Demostración. Claramente,

$$\mathcal{N}_{\mu}(a) \le \inf\{||U||_{\mu} : U \in \Omega, a \in U\}.$$

Sea V abierto con $a \in V$. Como Ω es una base para la topología en X, existe $U \in \Omega$ tal que $a \in U \subset V$. Por el lema anterior, $||U||_{\mu} \leq ||V||_{\mu}$. Por lo que

$$\inf\{||U||_{\mu}: U \in \Omega, a \in U\} \le ||V||_{\mu}$$

$$\Rightarrow \inf\{||U||_{\mu}: U \in \Omega, a \in U\} \le \mathcal{N}_{\mu}(a).$$

Si μ es una medida, entonces satisface [B], por lo que $||\cdot||_{\mu}$ y \mathcal{N}_m son siempre un número real positivo (finito).

Teorema 10. Para cada abierto A,

$$||A||_{\mu} = \sup_{x \in A} \mathcal{N}_{\mu}(x).$$

Demostración. Para todo $x \in A$, $\mathcal{N}_{\mu}(x) \leq ||A||_{\mu}$. Por lo tanto

$$\sup_{x \in A} \mathcal{N}_{\mu}(x) \le ||A||_{\mu}.$$

Para probar la desigualdad contraria, es suficiente probar que

$$\forall U \in \Omega, \quad |\mu(U)| \le \sup_{x \in U} \mathcal{N}_{\mu}(x).$$

Sea $U \in \Omega$ y $\varepsilon > 0$. Sea $s = \varepsilon + \sup\{\mathcal{N}_{\mu}(x) : x \in U\}$ (podemos suponer que $s < +\infty$, pues si no la demostración es trivial). Mostraremos que $|\mu(U)| \leq s$. La familia $\Lambda = \{V \in \Omega : ||V||_{\mu} \leq s\}$ es un cubrimiento de U ya que si $x \in U$ entonces $\mathcal{N}_{\mu}(x) \leq s$, por lo que existe $V \in \Omega$ tal que $x \in V$ y $||V||_{\mu} \leq s$. Por otro lado, si $V_1, V_2 \in \Lambda$, entonces cualquiera sea $W \subset V_1 \cup V_2$ se tiene

$$|\mu(W)| = |\mu(W \cap V_1) + \mu(W \setminus V_1)| \le \max\{||V_1||_{\mu}, ||V_2||_{\mu}\} \le s.$$

Por lo tanto, si $V_1, V_2 \in \Lambda$ entonces $V_1 \cup V_2 \in \Lambda$. De esta forma Λ es un conjunto dirigido. Consideramos la red $\{U \setminus V\}_{V \in \Lambda}$. Esta red es tal que $U \setminus V \downarrow \emptyset$, por lo que lím $\mu(U \setminus V) = 0$, lo que implica que existe $V_0 \in \Lambda$ tal que $|\mu(U \setminus V_0)| \leq s$. Así,

$$|\mu(U)| \le \max\{|\mu(U \cap V_0)|, |\mu(U \setminus V_0)|\} \le \max\{||V_0||_{\mu}, |\mu(U \setminus V_0)|\} \le s.$$

Teorema 11. \mathcal{N}_{μ} es semicontinua superior. Más aún, si $U \in \Omega$, entonces para cada $\delta > 0$, $\{x \in U : \mathcal{N}_{\mu}(x) \geq \delta\}$ es compacto.

Demostración. Sea $\delta > 0$. Para probar que \mathcal{N}_{μ} es semicontinua superior, basta demostrar que $\{x \in X : \mathcal{N}_{\mu}(x) < \delta\}$ es abierto. Sea $x_0 \in X$ tal que $\mathcal{N}_{\mu}(x_0) < \delta$. Existe $U \in \Omega$,

 $x_0 \in U$ tal que $||U||_{\mu} < \delta$. Luego, por el teorema anterior, $\mathcal{N}_{\mu} \leq \delta$ sobre U, por lo que $U \subset \{x \in X : \mathcal{N}_{\mu}(x) < \delta\}$.

Sea $U \in \Omega$ y $U_{\delta} = \{x \in U : \mathcal{N}_{\mu}(x) \geq \delta\}$. Sea $\{V_{\alpha}\}_{{\alpha} \in \Lambda}$ un cubrimiento por abiertos (básicos) de U_{δ} . Si $x \in U_{\delta}$ elegimos $U_x = V_{\alpha}$ donde V_{α} es algún abierto del cubrimiento que contiene a x. Por otro lado, si $x \in U \setminus U_{\delta}$ elegimos U_x de manera que $U_x \subset U \setminus U_{\delta}$ (se puede por la semicontinuidad de \mathcal{N}_{μ}). Para cada subconjunto finito F de U definimos

$$U_F = U \setminus \bigcup_{x \in F} U_x.$$

La clase $\Lambda = \{F \subset U : F \text{ finito}\}$ es un conjunto dirigido si se considera el orden parcial $F_1 \leq F_2 \Leftrightarrow F_1 \subset F_2$. Luego, $\{U_F : F \in \Lambda\}$ es una red en Ω tal que $U_F \downarrow \emptyset$. Para cada $F \in \Lambda$ elegimos $W_F \in \Omega$, $W_F \subset U_F$ tal que $|\mu(W_F)| \geq \frac{1}{2}||U_F||_{\mu}$. Como μ cumple la propiedad [M] de la definición de medida, $\lim \mu(W_F) = 0$, por lo que existe $F_0 \in \Lambda$ tal que $|W_{F_0}||_{\mu} < \delta$, lo que implica que $U_{\delta} \cap W_{F_0} = \emptyset$. Por tanto

$$U_{\delta} \subset \bigcup \{ U_x : x \in F_0 \} = \bigcup \{ U_x : x \in U_{\delta} \cap F_0 \}$$

y $\{U_x : x \in U_\delta \cap F_0\}$ es una subcolección finita de $\{V_\alpha\}_{\alpha \in \Lambda}$. Por lo tanto, U_δ es compacto.

Corolario 12. Sea G un grupo topológico cero-dimensional, Ω un anillo de subconjuntos de G tal que sea la base de la topología dada en G, y μ una medida en Ω . Suponga que Ω y μ son invariantes bajo traslaciones (es decir, si $U \in \Omega$ y $a \in G$, entonces $aU \in \Omega$ y $\mu(aU) = \mu(U)$). Entonces, o bien $\mu \equiv 0$ o G es localmente compacto.

Demostración. Primero notar que \mathcal{N}_{μ} es constante. En efecto, para $c \in G$ y $U \in \Omega$, se tiene $||cU||_{\mu} = ||U||_{\mu}$. Sean $a, b \in G$. Cualquiera sea $U \in \Omega$ tal que $a \in U$ se tiene

$$\mathcal{N}_{\mu}(b) = \inf\{||W||_{\mu} : W \in \Omega, b \in W\} \le ||ba^{-1}U||_{\mu} = ||U||_{\mu}$$
$$\Rightarrow \mathcal{N}_{\mu}(b) \le \mathcal{N}_{\mu}(a).$$

Análogamente se prueba la desigualdad contraria. Luego, todo elemento de Ω es compacto, a menos que $\mathcal{N}_{\mu} = 0$.

En el trabajo de Schikhof y van Rooij (ver [8]) la condición de "acotamiento" de las medidas es menos exigente. Ésta dice lo siguiente

[B'] Para cada $a \in X$ existe $U \in \Omega$ tal que $\{\mu(V) : V \in \Omega, V \subset U\}$ sea acotado.

Dicha alteración no afecta en la teoría que a continuación procede, excepto por el hecho que podríamos tener "menos" medidas. En el ejemplo siguiente observamos que la condición [B'] es equivalente a [B] si nos encontramos en un espacio localmente compacto.

Ejemplo 13. Sea X un espacio topológico cero-dimensional localmente compacto. Sea Ω el anillo de los abiertos compactos de X. La topología generada por Ω coincide con la dada original en X. Claramente, [B] implica [B']. Sea $\mu:\Omega\to\mathbb{K}$ una función aditiva que satisfaga [B']. Sea $U\in\Omega$. Para cada $a\in U$ existe $V_a\in\Omega$ tal que $a\in V_a$ $y\{\mu(V):V\in\Omega,V\subset V_a\}$ es acotado. La familia $\{V_a:a\in U\}$ es un cubrimiento por abiertos de U. Por tanto, existen $a_1,...a_n\in U$ tales que $U\subset\bigcup_{k=1}^n V_{a_k}$. Más aún, podemos asumir que los V_{a_k} son disjuntos dos a dos. Así,

$$\{\mu(V): V \in \Omega, V \subset U\} \subset \left\{\mu(V): V \in \Omega, V \subset \bigcup_{k=1}^{n} V_{a_k}\right\}$$
$$= \bigcup_{k=1}^{n} \{\mu(V): V \in \Omega, V \in V_{a_k}\}$$

Por lo tanto μ satisface [B].

2.2. Operadores Integrales

Para un espacio vectorial \mathcal{F} de funciones \mathbb{K} -valuadas definidas en X, sea

$$\Omega(\mathcal{F}) := \{ U \subset X : f \mathcal{X}_U \in \mathcal{F} \text{ para cada } f \in \mathcal{F} \}.$$

 Ω es un anillo de subconjuntos que cubre X (de hecho, $X \in \Omega$). Denotamos por $\tau(\mathcal{F})$ a la topología generada por $\Omega(\mathcal{F})$.

Definición 14. Un espacio vectorial \mathcal{F} de funciones \mathbb{K} -valuadas definidas en X se denomina un Espacio de Wolfheze si

- (a) cada $f \in \mathcal{F}$ es $\tau(\mathcal{F})$ -continua y
- (b) para cada $a \in X$ existe $f \in \mathcal{F}$ tal que $f(a) \neq 0$.

Teorema 15. Si \mathcal{F} es un esp<mark>acio de Wolfheze, $\tau(\mathcal{F})$ es la topología más débil que hace continua a cada $f \in \mathcal{F}$.</mark>

Demostración. Sea Υ una topología que hace continua a cada $f \in \mathcal{F}$. Sea $a \in X$. Sea $U \in \Omega(\mathcal{F})$ tal que $a \in U$. Basta mostrar que existe V un Υ -abierto tal que $a \in V \subset U$. Existe $f \in \mathcal{F}$ tal que f(a) = 1. Definimos $V := \{x : f\mathcal{X}_U(x) \neq 0\}$. Se tiene que $a \in V \subset U$. Además, $V = X \setminus (f\mathcal{X}_U)^{-1}(\{0\})$ y $f\mathcal{X}_U$ es Υ -continua. Por lo tanto V es un Υ -abierto.

Definición 16. Sea \mathcal{F} un espacio de Wolfheze. Un operador integral, o simplemente una integral, en \mathcal{F} es una aplicación lineal $I: \mathcal{F} \to \mathbb{K}$ tal que

[I] Sea $(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} tal que $f_{\alpha} \downarrow 0$. Para cada $\alpha \in \Lambda$ sea $g_{\alpha} \in \mathcal{F}$, con $|g_{\alpha}| \leq |f_{\alpha}|$. Se tiene que $\lim_{\alpha} I(g_{\alpha}) = 0$.

Observación 17. Esta condición es equivalente a

[I'] Si $(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} tal que $f_{\alpha} \downarrow 0$ y $\delta > 0$, existe un $\alpha \in \Lambda$ tal que $|I(g)| \leq \delta$ cuando $|g| \leq |f_{\alpha}|$.

En efecto:

$$[I] \Rightarrow [I']$$

Si [I'] es falsa, entonces existe $(f_{\alpha})_{\alpha \in \Lambda}$, $f_{\alpha} \in \mathcal{F}$ y $f_{\alpha} \downarrow 0$ y $\delta > 0$ tal que para cada $\alpha \in \Lambda$ tenemos un $g_{\alpha} \in \mathcal{F}$ tal que $|g_{\alpha}| \leq |f_{\alpha}|$ y $|I(g_{\alpha})| > \delta$, pero por hipótesis $\lim_{\alpha} I(g_{\alpha}) = 0$ lo que es una contradicción.

$$[I'] \Rightarrow [I]$$

Sea $(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} con $f_{\alpha} \downarrow 0$ y para cada $\alpha \in \Lambda$ elegimos $g_{\alpha} \in \mathcal{F}$ tal que $|g_{\alpha}| \leq |f_{\alpha}|$. Probaremos que $\lim_{\alpha} I(g_{\alpha}) = 0$. Sea $\delta > 0$. Existe $\alpha_0 \in \Lambda$ tal que para cada $g \in \mathcal{F}$ con $|g| \leq |f_{\alpha_0}|$, $|I(g)| \leq \delta$. Ahora, si $\alpha \geq \alpha_0$, entonces $|g_{\alpha}| \leq |f_{\alpha}| \leq |f_{\alpha_0}|$. Por lo tanto,

$$|I(g_{\alpha})| \leq \delta.$$

Ejemplo 18. Sea X un espacio topologíco cero-dimensional localmente compacto. Sea \mathcal{F} el espacio de todas las funciones continuas $f: X \to \mathbb{K}$ tal que $\{x: f(x) \neq 0\}$ es contenido en un compacto. Este \mathcal{F} es un espacio de Wolfheze $y \tau(\mathcal{F})$ es la topología originalmente dada en X.

En efecto: llamamos $\mathcal T$ la topología original en X. Sea W un $\mathcal T$ -clopen $\mathcal T$ -compacto. Sea $f \in \mathcal F$. La función $\mathcal X_W f$ es $\mathcal T$ -continua. Además

$$\{x: \mathcal{X}_W f(x) \neq 0\} \subset \{x: f(x) \neq 0\}$$

por lo que $\mathcal{X}_W f \in \mathcal{F}$. De esta forma $W \in \Omega(\mathcal{F}) \subset \tau(\mathcal{F})$. Por lo tanto $\mathcal{T} \subset \tau(\mathcal{F})$. Esto implica que cada $f \in \mathcal{F}$ es $\tau(\mathcal{F})$ continua.

Por otro lado, consideramos $a \in X$. Existe W \mathcal{T} -clopen \mathcal{T} -compacto tal que $a \in W$. La función \mathcal{X}_W es \mathcal{T} -continua y $\{x \in X : \mathcal{X}_W(x) \neq 0\} = W$, por lo que $\mathcal{X}_W \in \mathcal{F}$. Como $\mathcal{X}_W(a) \neq 0$, y por lo anterior, \mathcal{F} es un Espacio de Wolfheze.

Finalmente, sólo resta probar que $\tau(\mathcal{F}) \subset \mathcal{T}$, pero esto es directo del Teorema 15.

Cuando no haya riesgo de confusión, escribiremos Ω y τ en lugar de $\Omega(\mathcal{F})$ y $\tau(\mathcal{F})$, respectivamente. Los conceptos topológicos a los que se hagan referencias serán con respecto a τ , a no ser que explicite lo contrario.

Sea I una integral en \mathcal{F} . Para $f \in \mathcal{F}$ y $U \in \Omega$ se define

$$\mu_f: \Omega \to \mathbb{K}, \quad \mu_f(U) = I(f\mathcal{X}_U).$$

Claramente μ_f es aditiva.

[M] Sea $(U_{\alpha})_{\alpha \in \Lambda}$ una red en Ω tal que $U_{\alpha} \downarrow \emptyset$. Para cada $\alpha \in \Lambda$, sea $V_{\alpha} \in \Omega$, $V_{\alpha} \subset U_{\alpha}$. Definimos $f_{\alpha} = f \mathcal{X}_{U_{\alpha}}$. Se tiene que $f_{\alpha} \downarrow 0$ y si $g_{\alpha} = f \mathcal{X}_{V_{\alpha}}$, entonces $g_{\alpha} \in \mathcal{F}$ y $|g_{\alpha}| \leq |f_{\alpha}|$. Aplicando [I], tenemos

$$\lim_{\alpha} \mu_f(V_{\alpha}) = \lim_{\alpha} I(g_{\alpha}) = 0.$$

[B] Supongamos que $\sup\{|\mu_f(U)|: U \in \Omega\} = \infty$. Sea $\alpha \in \mathbb{K}$ tal que $|\alpha| > 1$. Existe una sucesión $U(1), U(2), \ldots \in \Omega$ tal que para cada $i \in \mathbb{N}$,

$$|\mu_f(U(i))| = |I(f\mathcal{X}_{U(i)})| \ge |\alpha|^i,$$

pero $\alpha^{-i}f \downarrow 0$ y $|\alpha^{-i}f\mathcal{X}_{U(i)}| \leq |\alpha^{-i}f|$, por lo que

$$\lim_{\alpha} \alpha^{-i} I(f \mathcal{X}_{U(i)}) = 0,$$

lo que es una contradicción.

Se sigue que μ_f es una medida. De esta forma, para cada $f \in \mathcal{F}$ podemos definir una medida μ_f en Ω y, por tanto, una \mathcal{N}_{μ_f} correspondiente. El siguiente teorema relaciona todas las \mathcal{N}_{μ_f} determinadas por un espacio de Wolfheze y una integral definida sobre éste.

Teorema 19. Sea \mathcal{F} un espacio de Wolfheze e I un operador integral definido en \mathcal{F} . Existe una única $\mathcal{N}_I: X \to [0, \infty[$ τ -semicontinua superior tal que $|f|\mathcal{N}_I = \mathcal{N}_{\mu_f}$ para cada $f \in \mathcal{F}$.

Demostración. Para $f \in \mathcal{F}$ escribiremos \mathcal{N}_f en vez de \mathcal{N}_{μ_f} .

Unicidad: Sean $\mathcal{N}_I, \mathcal{M}_I : X \to [0, \infty[$ funciones τ -semicontinuas superior tales que para cada $f \in \mathcal{F}$, $|f|\mathcal{N}_I = \mathcal{N}_f$ y $|f|\mathcal{M}_I = \mathcal{N}_f$. Sea $a \in X$. Existe $f \in \mathcal{F}$ tal que $f(a) \neq 0$. Así, $\mathcal{N}_I(a) = \mathcal{M}_I(a)$.

Existencia: Sean $f, g \in \mathcal{F}, a \in X$ y $\delta > 0$. Sea h = f(a)g - g(a)f y sea Λ el conjunto dirigido $\{U \in \Omega : a \in U\}$ con $U_1 \leq U_2$ si $U_2 \subset U_1$. Se tiene que, $(h\mathcal{X}_U)_{U \in \Lambda}$ es una red en \mathcal{F} y $h\mathcal{X}_U \downarrow 0$. Entonces, existe $U \in \Lambda$ tal que $|I(h\mathcal{X}_V)| \leq \delta$ para todo $V \subset U$. Por la semicontinuidad superior de \mathcal{N}_f podemos asumir que $\mathcal{N}_f(x) \leq \mathcal{N}_f(a) + \delta$ para $x \in U$. Si $V \subset U$, entonces

$$|f(a)\mu_g(V) - g(a)\mu_f(V)| = |I(h\mathcal{X}_V)| \le \delta$$

у

$$|\mu_f(V)| \le \sup{\mathcal{N}_f(x) : x \in V} \le \mathcal{N}_f(a) + \delta.$$

Así,

$$|f(a)\mu_q(V)| \le \max\{\delta, |g(a)|(\mathcal{N}_f(a) + \delta)\}$$

para todo $V \subset U$. De la definición de \mathcal{N}_g se sigue que

$$|f(a)|\mathcal{N}_g(a) \le \max\{\delta, |g(a)|(\mathcal{N}_f(a) + \delta)\}.$$

Por la arbitrariedad de δ , $|f(a)|\mathcal{N}_g(a) \leq |g(a)|\mathcal{N}_f(a)$. Análogamente se prueba la desigualdad contraria. Por tanto, $|f|\mathcal{N}_g = |g|\mathcal{N}_f$. De esta forma, la función \mathcal{N}_I definida en X por $\mathcal{N}_I(x) = \frac{1}{|f(x)|}\mathcal{N}_f(x)$, donde f es cualquier función que no se anula en x, está bien definida.

Para probar la τ -semicontinuidad de \mathcal{N}_I , tomamos $\delta > 0$ y $a \in X$. Existe $f \in \mathcal{F}$ tal que f(a) = 1. Sea $V = \{x \in X : |f(x) - 1| < 1\}$. Como f es τ -continua, V es τ -abierto (pues es la imagen inversa por f de la bola centrada en 1 de radio 1) y, además, $a \in V$. Más aún, |f| = 1 sobre V. En efecto, si existe $x \in V$ tal que $|f(x)| \neq 1$ entonces $|f(x) - 1| = \max\{|f(x)|, 1\} < 1$ por lo que máx $\{|f(x)|, 1\} = |f(x)|$, es decir, |f(x)| > 1, lo que es una contradicción. Por otro lado, \mathcal{N}_f es τ -semicontinua superior (Teorema 11) por lo que existe $W \in \Omega$, $a \in W$ tal que para todo $x \in W$, $\mathcal{N}_f(x) < \mathcal{N}_f(a) + \delta$. Luego, si consideramos $U = V \cap W$, tenemos que $a \in U$ y para cada $x \in U$,

$$\mathcal{N}_I(x) = |f(x)|\mathcal{N}_I(x) = \mathcal{N}_f(x) < \mathcal{N}_f(a) + \delta = \mathcal{N}_I(a) + \delta.$$

Corolario 20. Para $f \in \mathcal{F}$ sea $||f||_I := ||X||_{\mu_f}$. Entonces,

$$||f||_I = \sup_{x \in X} |f(x)| \mathcal{N}_I(x)$$

$$||f||_{I} = \sup\{|I(g)| : g \in \mathcal{F}; |g| \le |f|\}$$

y para cada $\delta > 0$, $\{x : |f(x)|\mathcal{N}_I(x) \geq \delta\}$ es τ -compacto.

Demostración. La primera afirmación sigue de Teorema 10.

Demostraremos la segunda afirmación:

$$||f||_{I} = \sup\{|\mu_{f}(U)| : U \in \Omega\}$$

$$= \sup\{|I(f\mathcal{X}_{U})| : U \in \Omega\}$$

$$\leq \sup\{|I(g)| : g \in \mathcal{F}; |g| \leq |f|\}$$

$$\leq \sup\{||g||_{I} : g \in \mathcal{F}; |g| \leq |f|\}$$

$$\leq ||f||_{I}$$

en donde la última desigualdad es consecuencia de la primera afirmación.

Finalmente, del hecho que $X \in \Omega$ y por el Teorema 11, se concluye el corolario. \square

Corolario 21. Para cada $a \in X$ y cada $\delta > 0$, existe $U \in \Omega$ tal que $a \in U$ y $\{x \in U : \mathcal{N}_I(x) \geq \delta\}$ es τ -compacto.

Demostración. Como \mathcal{F} es Wolfheze, existe $f \in \mathcal{F}$ tal que f(a) = 1. El conjunto $\{x : |f(x) - 1| < 1\}$ contiene un $U \in \Omega$ tal que $a \in U$. Para $x \in U$, |f(x)| = 1, por lo que $\mathcal{N}_I = \mathcal{N}_{\mu_f}$ en U. Luego, por Teorema 11, se tiene lo pedido.

En función de dar una caracterización de un operador integral, consideramos lo siguiente: Denotamos por $\Phi(\mathcal{F})$ a la colección de todas las funciones τ -semicontinuas superior $\phi: X \to [0, \infty[$ que satisfacen la siguiente propiedad:

$$(\forall f \in \mathcal{F})(\forall \delta > 0)(\{x : |f(x)|\phi(x) \ge \delta\} \text{ es } \tau\text{-compacto}).$$

 $\Phi(\mathcal{F})$ contiene las funciones características \mathbb{R} -valuadas de los subconjuntos compactos de X. Para $\phi \in \Phi(\mathcal{F})$ se define

$$||f||_{\phi} := \sup_{x \in X} |f(x)|\phi(x) \qquad (f \in \mathcal{F})$$

lo que resulta ser una seminorma no-arquimedeana en \mathcal{F} .

La familia $\{||\cdot||_{\phi}\}_{\phi\in\Phi}$ genera una topología localmente convexa Hausdorff en \mathcal{F} , la que llamaremos topología estricta (Ver [4]).

Teorema 22. Sea \mathcal{F} un espacio de Wolfheze. Sea $I: \mathcal{F} \to \mathbb{K}$ una aplicación lineal. Las siguientes afirmaciones son equivalentes:

- (1) I es una integral.
- (2) I es estrictamente conti<mark>n</mark>ua.
- (3) Sea $f \in \mathcal{F}$ y sea $(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} tal que lím $f_{\alpha} = 0$ uniformemente sobre compactos y $|f_{\alpha}| \leq |f|$ para cada $\alpha \in \Lambda$. Se tiene

$$\lim I(f_{\alpha}) = 0.$$

Demostración.

 $(1) \Rightarrow (2)$ Primero notar que $\mathcal{N}_I \in \Phi(\mathcal{F})$. Sea $f \in \mathcal{F}$.

$$|I(f)| = |\mu_f(X)| \le ||X||_{\mu_f} = \sup_{x \in X} \mathcal{N}_{\mu_f}(x) = \sup_{x \in X} |f(x)| \mathcal{N}_I = ||f||_I$$

Por tanto I es estrictamente continua en 0, y por linealidad, I es estrictamente continua.

(2) \Rightarrow (3) Por hipótesis, existe $\phi \in \Phi(\mathcal{F})$ tal que para $g \in \mathcal{F}$, $|I(g)| \leq ||g||_{\phi}$. Sea $f \in \mathcal{F}$, $\delta > 0$ y sea $(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} tal que lím $f_{\alpha} = 0$ uniformemente sobre compactos y $|f_{\alpha}| \leq |f|$ para cada $\alpha \in \Lambda$. El conjunto $\mathcal{Q} := \{x : |f(x)|\phi(x) \geq \delta\}$ es τ -compacto. Por τ -semicontinuidad, $||\phi||_{\mathcal{Q}} < +\infty$ y existe $\alpha_0 \in \Lambda$ tal que

$$\alpha \ge \alpha_0 \Rightarrow ||f_{\alpha}||_{\mathcal{Q}}||\phi||_{\mathcal{Q}} < \delta$$

pues lím $f_{\alpha} = 0$ uniformemente sobre \mathcal{Q} . Por otro lado, si $x \notin \mathcal{Q}$,

$$\forall \alpha \in \Lambda, \quad |f_{\alpha}(x)|\phi(x) \le |f(x)|\phi(x) < \delta.$$

Así, para $\alpha \geq \alpha_0$, tenemos $|I(f_{\alpha})| \leq ||f_{\alpha}||_{\phi} \leq \delta$.

 $(3) \Rightarrow (1)$ Sea $(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} tal que $f_{\alpha} \downarrow 0$. Para $\alpha \in \Lambda$ elegimos $g_{\alpha} \in \mathcal{F}$ tal que $|g_{\alpha}| \leq |f_{\alpha}|$. Por el Teorema de Dini, lím $f_{\alpha} = 0$ uniformemente sobre cada τ -compacto. Por lo tanto, lím $g_{\alpha} = 0$ uniformemente sobre cada τ -compacto. Luego, lím $I(g_{\lambda}) = 0$.

A continuación, se vincula lo visto anteriormente sobre Medidas con Operadores Integrales. Es más, se muestra una manera natural y simple de definir integrales a partir de una medida y viceversa.

Teorema 23. Sea Ω un anillo de subconjuntos de X tal que $X \in \Omega$. El espacio vectorial $\mathcal{G} = \langle \{\mathcal{X}_U : U \in \Omega\} \rangle$ es un espacio de Wolfheze, $\Omega(\mathcal{G}) = \Omega$ y $\tau(\mathcal{G}) = \tau(\Omega)$. Además, si $\mu : \Omega \to \mathbb{K}$ es una función conjunto aditiva, entonces existe una única función lineal $I : \mathcal{G} \to \mathbb{K}$ tal que $I(\mathcal{X}_U) = \mu(U)$ para $U \in \Omega$. Más aún, el operador I es una integral en \mathcal{G} si y sólo si μ es una medida en Ω .

Demostración. Claramente, \mathcal{G} es un espacio de Wolfheze. Del hecho que f es una combinación lineal finita de elementos de $\{\mathcal{X}_U : U \in \Omega\}$ se tiene que $\Omega \subset \Omega(\mathcal{G})$. Sea $V \in \Omega(\mathcal{G})$. Elegimos $f = \mathcal{X}_X$. Se tiene que $\mathcal{X}_V = f\mathcal{X}_V \in \mathcal{G}$. Así, existen $U_1, ...U_n \in \Omega$, $\alpha_1, ..., \alpha_n \in \mathbb{K}$ tales que $\mathcal{X}_V = \sum_{i=1}^n \alpha_i \mathcal{X}_{U_i}$. Podemos suponer que los U_i son disjuntos dos a dos y que $U_i \subset V$, para cada $i \in \{1, ..., n\}$. Luego, $\bigcup U_i \subset V$. Por otro lado, si $x \in V$ entonces $\sum_{i=1}^n \alpha_i \mathcal{X}_{U_i}(x) = 1$, por lo que existe $k \in \{1, ..., n\}$ tal que $x \in U_k$, lo que implica que $V \subset \bigcup U_i$. Por lo tanto $\Omega(\mathcal{G}) = \Omega$. En conclusión, $V \in \Omega$. Esto implica que $\tau(\mathcal{G}) = \tau(\Omega)$.

Por otro lado, si μ es tal como en la hipótesis, la existencia y unicidad de I son directas de la aditividad de μ .

Supongamos que I es un integral. Fijamos $U \in \Omega$. Por teorema 7, basta mostrar que $\mu_{|U}$ es una medida en Ω . Por Teorema 19, $|\mathcal{X}_U|\mathcal{N}_I = \mathcal{N}_{\mu_{\mathcal{X}_U}}$ y así, para V en Ω se tiene

$$|m_{|U}(V)| = |m(U \cap V)|$$

$$= |I(\mathcal{X}_{U \cap V})|$$

$$\leq ||\mathcal{X}_{U \cap V}||_{I}$$

$$\leq ||\mathcal{X}_{U}||_{I}$$

$$= \sup_{x \in U} \mathcal{N}_{I}(x)$$

$$= \sup_{x \in U} \frac{\mathcal{N}_{\mu_{\mathcal{X}_{U}}}(x)}{|\mathcal{X}_{U}(x)|}$$

$$= \sup_{x \in U} \mathcal{N}_{\mu_{\mathcal{X}_{U}}}(x)$$

$$= ||U||_{\mu_{\mathcal{X}_{U}}} < +\infty$$

en donde la última desigualdad se cumple pues $\mu_{\mathcal{X}_U}$ es una medida en Ω . Así, $\mu_{|_U}$ satisface la condición [B]. La demostración de que cumple con [M] es una consecuencia directa de la propiedad [I].

Ahora bien, supongamos que μ es una medida. Tenemos que $\mathcal{N}_{\mu} \in \Phi(\mathcal{G})$. Cada $f \in \mathcal{G}$ puede ser escrita como una suma finita $\sum \alpha_i \mathcal{X}_{U_i}$ donde $\alpha_i \in \mathbb{K}$, $U_i \in \Omega$ y $U_i \cap U_j = \emptyset$ si $i \neq j$. Entonces

$$\left| I\left(\sum \alpha_i \mathcal{X}_{U_i} \right) \right| = \left| \sum \alpha_i \mu(U_i) \right| \le \max_i \sup_{x \in U_i} |\alpha_i| \mathcal{N}_{\mu}(x) = ||f||_{\mathcal{N}_{\mu}}$$

y por tanto, I es estrictamente continua.

2.2.1. Extensión de la Integral

En esta sección \mathcal{F} es un espacio de Wolfheze, I es un operador integral definido en \mathcal{F} , $\Omega = \Omega(\mathcal{F})$ y $\tau = \tau(\mathcal{F}) = \tau(\Omega)$.

Para cualquier $g: X \to \mathbb{K}$ se define

$$||g||_I = \sup\{|g(x)|\mathcal{N}_I(x) : x \in X\}.$$

Sabemos que $|I(g)| \le ||g||_I < \infty$ cuando $g \in \mathcal{F}$.

Definición 24. Una función g se dice I-integrable si para cada $\delta > 0$ existe una $f \in \mathcal{F}$ tal que $||f - g||_I < \delta$.

Las funciones integrables forman un espacio vectorial $\mathcal{L}(I)$ que contiene a \mathcal{F} . Es más, \mathcal{F} es $||\cdot||_I$ -denso en $\mathcal{L}(I)$. Por lo tanto, existe una única extensión I^* de I al espacio $\mathcal{L}(I)$ tal que $|I^*(g)| \leq ||g||_I$ para todo $g \in \mathcal{L}(I)$.

De inmediato surgen de forma natural las preguntas ¿Es $\mathcal{L}(I)$ un espacio de Wolfheze?¿Es I^* una integral en $\mathcal{L}(I)$? Para responderlas, necesitamos una descripción más explícita de $\mathcal{L}(I)$.

Lema 25. Sea $Y \subset X$ y $Q \subset Y$ τ -compacto. Para cada función τ -continua $f: Y \to \mathbb{K}$ y cada $\delta > 0$ existe una $g \in \mathcal{F}$ tal que $||g||_X \le ||f||_Q$, $|g| \le |f|$ en Y y $||g - f||_Q < \delta$.

Demostración. Todos los términos topológicos en esta demostración son con respecto a τ .

Sea $s = ||f||_Q$. Asumimos que $\delta s^{-1} < 1$. El conjunto $Q' = \{x \in Q : |f(x)| \ge \delta\}$ es compacto. Para cada $a \in Q'$ elegimos $g_a \in \mathcal{F}$ con $g_a(a) = 1$ y $U_a \in \Omega$ tal que

$$a \in U_a \subset g_a^{-1}(B_{\delta s^{-1}}(1)) = \{x : |g_a(x) - 1| < \delta s^{-1}\}$$

У

$$Y \cap U_a \subset \{x : |f(x) - f(a)| < \delta\}$$

(por continuidad de f). Se tiene que $|g_a|=1$ en U_a y |f|=|f(a)| en $Y\cap U_a$ (ya que $a\in Q'$). Por compacidad, existe un cubrimiento finito $U_{a(1)},...,U_{a(k)}\in\Omega$ de Q'. Definiendo

$$V(i) = U_{a(i)} \setminus \bigcup \{U_{a(j)} : j < i\}$$

obtenemos un cubrimiento disjunto $\{V(1),...,V(k)\}$ de Q'. Para $x \in V(i)$, tenemos que $|g_{a(i)}(x)| = 1$ y |f(x)| = |f(a(i))|.

Definimos la función $g: X \to \mathbb{K}$ por

$$g = \sum_{i=1}^{k} f(a(i))g_{a(i)}\mathcal{X}_{V(i)}.$$

Claramente $g \in \mathcal{F}$ y $||g||_X \leq ||f||_Q$. Sea $x \in Y$. Si $x \notin \bigcup V(i)$ es directo que

$$|g(x)| \le |f(x)|.$$

Si $x \in V(i)$, entonces

$$|g(x)| = |f(a(i))||g_{a(i)}(x)| = |f(a(i))| = |f(x)|.$$

Por tanto, $|g| \leq |f|$ en Y. Ahora sea $x \in Q$. Si $x \in V(i)$ entonces

$$|g(x) - f(x)| = |f(a(i))g_{a(i)}(x) - f(x)|$$

$$= |f(a(i))|[g_{a(i)}(x) - 1] + [f(a(i)) - f(x)]|$$

$$\leq \max\{s\delta s^{-1}, \delta\}$$

$$= \delta.$$

Si $x \notin \bigcup V(i)$, entonces $x \notin Q'$ y $|g(x) - f(x)| = |f(x)| < \delta$. Por lo tanto, $||g - f||_Q \le \delta$.

Para t > 0, consideramos

$$X_t = \{x : \mathcal{N}_I(x) \ge t\}.$$

El siguiente Teorema nos entrega una caracterización de $\mathcal{L}(I)$ con respecto a τ .

Teorema 26. Una función $f:X\to\mathbb{K}$ es I-integrable si y sólo si satisfacen las siguientes condiciones

- (a) f es τ -continua en cada X_t , t > 0.
- (b) Para cada $\delta > 0$, existe un τ -compacto Q, contenido en algún X_t , tal que $|f|\mathcal{N}_I \leq \delta$ fuera de Q.

Demostración. Nuevamente, la topología en X es τ .

Sea $f \in \mathcal{L}(I)$. Existe una sucesión de funciones $g_1, g_2, ...$ de \mathcal{F} tal que

$$\lim ||f - g_n||_I = 0.$$

Ahora, si t > 0 y $x \in X_t$, entonces

$$|f(x) - g_n(x)| = \frac{|f(x) - g_n(x)|\mathcal{N}_I(x)}{\mathcal{N}_I(x)} \le \frac{1}{t}||f - g_n||_I$$

por lo que lím $g_n = f$ uniformemente en cada X_t . Esto implica que f es continua en X_t .

Por otro lado, podemos considerar $g \in \mathcal{F}$ tal que

$$||q - f||_I < \delta.$$

El conjunto $U = \{x : |g(x)|\mathcal{N}_I(x) \geq \delta\}$ es compacto. Sea $1 \geq t > 0$ tal que $t||g||_U \leq \delta$ y sea $Q = U \cap X_t$. Sea $x \in X \setminus Q$. Si $x \notin U$, entonces $|g(x)|\mathcal{N}_I(x) < \delta$. Si por otro lado, $x \in U \setminus Q$, entonces $x \notin X_t$, lo que implica $\mathcal{N}_I(x) < t$. Así,

$$|f(x)|\mathcal{N}_I(x) \le \max\{|f(x) - g(x)|\mathcal{N}_I(x), |g(x)|\mathcal{N}_I(x)\} \le \max\{\delta, t||g||_U\} < \delta.$$

Recíprocamente, asumimos que f satisface (1) y (2). Sea $\delta > 0$. Contruiremos una $g \in \mathcal{F}$ tal que $||f - g||_I \leq \delta$. Sean Q y t tales que Q sea un compacto contenido en algún X_t . Las funciones f y \mathcal{N}_I son acotadas en Q. Sea M > 0 tal que

$$||f||_Q \leq M \text{ y } ||\mathcal{N}_I||_Q \leq M.$$

Consideramos

$$s = \min\{t, \delta M^{-1}\}.$$

Por el Teorema 25, existe $g \in \mathcal{F}$ tal que $||g||_X \le ||f||_Q$, $|g| \le |f|$ en X_s y $||g - f||_Q \le s$. Ahora bien, en Q se cumple que

$$|f - g| \mathcal{N}_I \le sM \le \delta,$$

y por (2) en $X_s \setminus Q$ se tiene

$$|f - g|\mathcal{N}_I \le |f|\mathcal{N}_I \le \delta.$$

Por último, fuera de X_s ,

$$|f - g|\mathcal{N}_I \le \max\{|f|\mathcal{N}_I, |g|\mathcal{N}_I\} \le \max\{\delta, ||f||_Q s\} = \delta.$$

Por lo tanto $||f - g||_I \le \delta$.

Consideremos el conjunto

 $\Omega^* := \{ U \subset X : U \cap X_t \text{ es un clopen en } X_t \text{ para cada } t > 0,$

con respecto a la topología relativa inducida por τ }.

 Ω^* es un anillo. La topología en X que tiene a Ω^* como base se llamará τ^* . Se observa claramente que $\tau \subset \tau^*$.

Lema 27. Una función $h: X \to \mathbb{K}$ es τ^* -continua si y sólo si es τ -continua en cada X_t .

Demostración. Sea A un clopen en \mathbb{K} . Si $h: X \to \mathbb{K}$ es τ -continua en cada X_t , entonces $h^{-1}(A) \in \Omega^*$, es decir, h es τ^* -continua. Por otro lado, si h es τ^* -continua, entonces

$$h^{-1}(A) = \bigcup_{V \in \Lambda} V$$

con $\Lambda \subset \Omega^*$. Como

$$h^{-1}(A) \cap X_t = \bigcup_{V \in \Lambda} (V \cap X_t),$$

h es τ -continua en cada X_t .

Ahora podemos contestar las interrogantes planteadas anteriormente.

Teorema 28. $\mathcal{L}(I)$ es un espacio de Wolfheze, I^* es una integral sobre $\mathcal{L}(I)$. Más aún, $\mathcal{N}_{I^*} = \mathcal{N}_I$, $\mathcal{L}(I^*) = \mathcal{L}(I)$ y $I^{**} = I^*$.

Demostración.

• $\mathcal{L}(I)$ es un espacio de Wolfheze.

Sea $f \in \mathcal{L}(I)$. Por el Lema anterior y el Teorema 26, f es τ^* -continua y

$$\Omega^* \subset \Omega(\mathcal{L}(I)).$$

Así, f es $\tau(\mathcal{L}(I))$ -continua y del hecho que $\mathcal{F} \subset \mathcal{L}(I)$ se obtiene lo pedido.

• I^* es una integral en $\mathcal{L}(I)$.

Si $\mathcal{N}_I \in \Phi(\mathcal{L}(I))$, entonces I^* es estrictamente continua y por tanto, una integral en $\mathcal{L}(I)$. Del Teorema 15, se tiene que $\tau^* = \tau(\mathcal{L}(I))$. Así, \mathcal{N}_I es $\tau(\mathcal{L}(I))$ -semicontinua superior pues $\tau \subset \tau^*$. Sea $f \in \mathcal{L}(I)$ y $\delta > 0$. El conjunto $\{x : |f(x)|\mathcal{N}_I(x) \geq \delta\}$ es $\tau(\mathcal{L}(I))$ -compacto por el Teorema 20. Por lo tanto $\mathcal{N}_I \in \Phi(\mathcal{L}(I))$.

$$lacksquare$$
 $\mathcal{N}_{I^*}=\mathcal{N}_I.$

Demostramos que \mathcal{N}_{I^*} es la menor función ψ definida en X a valores reales no negativos $\tau(\mathcal{L}(I))$ -semicontinua superior tal que

$$|I^*(f)| \le \sup_{x \in X} |f(x)| \psi(x).$$

pues de esto se sigue que $\mathcal{N}_{I^*} \leq \mathcal{N}_I$.

En efecto, sea Ψ la familia de tales funciones ψ . Claramente

$$\inf\{\psi:\psi\in\Psi\}\leq\mathcal{N}_{I^*}.$$

Ahora tomamos $\psi \in \Psi$, $a \in X$ y $\varepsilon > 0$. Elegimos $U \in \Omega(\mathcal{L}(I))$ tal que $a \in U$ y $\psi(x) \leq \psi(a) + \varepsilon$ para cada $x \in U$. Sea $f \in \mathcal{L}(I)$ tal que |f(a)| = 1 y $|f| \leq 1$. Se tiene que $\mathcal{X}_U f \in \mathcal{L}(I)$ y $|I^*(\mathcal{X}_U f)| \leq ||\mathcal{X}_U f||_{\psi}$. Por Corolario 20, se tiene

$$||\mathcal{X}_{U}f||_{I^{*}} = \sup\{|I^{*}(g)| : g \in \mathcal{L}(I), |g| \leq |\mathcal{X}_{U}f|\}$$

$$\leq \sup\{||g||_{\psi} : g \in \mathcal{L}(I^{*}), |g| \leq |\mathcal{X}_{U}f|\}$$

$$\leq ||\mathcal{X}_{U}f||_{\psi}$$

lo que implica que

$$\mathcal{N}_{I^*}(a) \leq \sup_{x \in U} |f(x)| \mathcal{N}_{I^*}(x)$$

$$\leq \sup_{x \in U} |f(x)| \psi(x)$$

$$\leq \sup_{x \in U} \psi(x)$$

$$\leq \psi(a) + \varepsilon.$$

De la arbitrariedad de ε y $a \in X$ se tiene $\mathcal{N}_{I^*} \leq \psi$. Como $\mathcal{N}_I \in \Psi$, se concluye que $\mathcal{N}_{I^*} \leq \mathcal{N}_I$.

Para demostrar la desigualdad contraria, suponemos que existe $a \in X$ y $t \in [0, +\infty[$ tales que

$$\mathcal{N}_{I^*}(a) < t < \mathcal{N}_I(a).$$

Por Teorema 21, existe $U \in \Omega^*$ tal que $a \in U$ y para cada $\delta > 0$, $\{x \in U : \mathcal{N}_{I^*}(x) \geq \delta\}$ es τ^* -compacto. Podemos suponer que $U \subset \{x : \mathcal{N}_{I^*}(x) < t\}$. Por la definición de τ^* y el hecho que X_t es τ -cerrado, $U \cup (X \setminus X_t)$ es τ -abierto, ya que $U = \cup \{U \cap X_t : t > 0\}$.

Por otro lado, existe $f' \in \mathcal{F}$ tal que f'(a) = 1. Como $\{x : |f'(x) - 1| < 1\}$ es un τ -abierto, existe $V \in \Omega$ tal que $a \in V$ y |f'| = 1 sobre V. Sea $f = f'\mathcal{X}_V$. Se tiene que $f \in \mathcal{F}$, f(a) = 1 y $|f| \le 1$. Como $a \in U \cup (X \setminus X_t)$ se tiene

$$t < |f(a)|\mathcal{N}_I(a)$$

$$= \mathcal{N}_{\mu_f}(a)$$

$$\leq ||U \cup (X \setminus X_t)||_{\mu_f}$$

$$= \sup\{|\mu_f(W)| : W \in \Omega, W \subset U \cup (X \setminus X_t)\}$$

Por lo tanto, existe un $W \in \Omega$ tal que $|I(f\mathcal{X}_W)| > t$. Esto implica que,

$$f\mathcal{X}_W\mathcal{X}_U \in \mathcal{L}(I)$$

У

$$|I^*(f\mathcal{X}_W - f\mathcal{X}_{W \cap U})| \le ||f\mathcal{X}_W - f\mathcal{X}_{W \cap U}||_I$$

$$\le ||\mathcal{X}_W - \mathcal{X}_{W \cap U}||_I$$

$$= \sup\{\mathcal{N}_I(x) : x \in W \setminus U\}$$

$$\le \sup\{\mathcal{N}_I(x) : x \in X \setminus X_t\}$$

$$\le t < |I(f\mathcal{X}_W)|$$

Por lo que

$$|I^*(f\mathcal{X}_W) - I^*(f\mathcal{X}_W\mathcal{X}_U)| \le t < |I^*(f\mathcal{X}_W)|$$

y así

$$t < |I^*(f\mathcal{X}_{W\cap U})|$$

$$\leq \sup\{|f(x)|\mathcal{N}_{I^*}(x) : x \in W \cap U\}$$

$$\leq \sup\{\mathcal{N}_{I^*}(x) : x \in U\} \leq t$$

lo que es una contradicción. Por lo tanto $\mathcal{N}_{I^*}(x) \geq \mathcal{N}_I(x)$ para cada $x \in X$.

El resto del teorema es directo.

2.2.2. Caracterización de Funciones Integrables

La integrabilidad tiene una elegante descripción en términos de \mathcal{N}_I y de la topología τ^* . Antes de la caracterización demostremos el siguiente lema:

Lema 29. Un conjunto $Q \subset X$ es τ^* -compacto si, y sólo si, es τ -compacto y $Q \setminus X_t$ es finito para algún t > 0.

Demostración. (\iff) Sea t > 0. Sea A un τ^* -abierto en X_t , es decir, existe B τ^* -abierto en X tal que $A = B \cap X_t$. Existe $\{U_\alpha\}_\alpha$ colección de elementos de Ω^* tal que $B = \cup U_\alpha$. Así, $A = \bigcup (U_\alpha \cap X_t)$ donde cada $U_\alpha \cap X_t$ es un τ -clopen en X_t (por definición de Ω^*).

25

Por lo tanto, A es un τ -abierto en X_t . En consecuencia, las topologías τ y τ^* coinciden en cada X_t , t > 0.

Por otro lado, sea t > 0 tal que $Q \setminus X_t$ es finito. Sea $\{V_\alpha\}_\alpha$ cubrimiento de $Q \cap X_t$ por τ -abiertos en X y V un τ -abierto en X que cubre $Q \setminus X_t$. Por hipótesis, Q es τ -compacto y como

$$Q = (Q \cap X_t) \cup (Q \setminus X_t)$$

existen $V_1, ..., V_k$ elementos de dicho cubrimiento tales que

$$Q \setminus X_t \subset Q \subset \left(\bigcup V_n\right) \bigcup V.$$

Por lo tanto $Q \cap X_t$ es τ -compacto, y por lo anterior, $Q \cap X_t$ es τ^* -compacto. Se concluye que Q es un τ^* -compacto.

 (\Longrightarrow) Recíprocamente, sea Q un conjunto τ^* -compacto. Como $\tau \subset \tau^*$ se tiene que Q es τ -compacto. Sea $Q_0 = \{x \in Q : x \in X_t \text{ para algún } t > 0\}$.

Demostraremos la siguiente afirmación: Cada subconjunto de $Q \setminus Q_0$ es τ^* -clopen, $Q \setminus Q_0$ es finito y Q_0 es τ^* -compacto. En efecto: sea $A \subset Q \setminus Q_0$ y consideramos $B \in \Omega$. Notemos que para todo t > 0, $A \cap X_t = \emptyset$ y

$$(X \setminus A) \cap B \cap X_t = B \cap X_t.$$

Por lo tanto $A \cap B \in \Omega^*$ y $(X \setminus A) \cap B \in \Omega^*$. Luego, A es un τ^* -abierto pues

$$A = A \cap \bigcup_{B \in \Omega} B = \bigcup_{B \in \Omega} A \cap B$$

pero también es τ^* -cerrado ya que

$$X \setminus A = (X \setminus A) \cap \bigcup_{B \in \Omega} B = \bigcup_{B \in \Omega} (X \setminus A) \cap B.$$

Así, $Q \setminus Q_0$ es un τ^* -clopen, y por tanto, un τ^* -compacto. Por otro lado, para cada $x \in Q \setminus Q_0$, el conjunto $\{x\}$ es un τ^* -clopen. Entonces, existen $x_1, ..., x_n \in Q \setminus Q_0$ tales

que $Q \setminus Q_0 \subset \{x_1, ..., x_n\}$. Luego, $Q \setminus Q_0$ es finito. Finalmente, la τ^* -compacidad de Q implica la τ^* -compacidad de Q_0 .

Ahora bien, por lo anterior, es suficiente mostrar que existe t > 0 tal que $Q_0 \subset X_t$. Supongamos que Q_0 no vive en ningún X_t , esto es, ínf $\{\mathcal{N}_I(x) : x \in Q_0\} = 0$. Sea $\alpha \in \mathbb{K}$ con $0 < |\alpha| < 1$. Existen $a_1, a_2, a_3, ... \in Q_0$ tales que para cada $n \in \mathbb{N}$, $\mathcal{N}_I(a_n) < |\alpha|^n$ y $\mathcal{N}_I(a_n) < \mathcal{N}_I(a_{n-1})$. Por la τ^* -semicontinuidad de \mathcal{N}_I , para cada n podemos elegir $U_n \in \Omega^*$ con $a_n \in U_n$ tal que $\mathcal{N}_I < |\alpha|^n$ sobre U_n . Definimos la función

$$g: X \to \mathbb{K}, \quad g = \sum_{n=1}^{\infty} \alpha^{-n} \mathcal{X}_{U_n \cap \{x: \mathcal{N}_I(x) > 0\}}.$$

Sea $x \in X$. Si $\mathcal{N}_I(x) = 0$, entonces g(x) = 0. Si, por otro lado, existe s > 0 tal que $\mathcal{N}_I(x) \geq s$ entonces x vive en, a lo más, una cantidad finita de básicos U_n . Por lo tanto, g está bien definida. Por otra parte, cualquiera sea t > 0, $g_{|_{X_t}} = \sum_{n=1}^{\infty} \alpha^{-n} \mathcal{X}_{U_n \cap X_t}$ es localmente constante y cada $U_n \cap X_t$ es un τ -clopen en X_t , por lo que $g_{|_{X_t}}$ es τ -continua en X_t . Por Lema 27, g es τ *-continua en X.

Finalmente, notamos que

$$\dots U_{n+1} \subset U_n \subset \dots \subset U_2 \subset U_1$$

por lo que si elegimos $b_1, b_2, ..., b_n, ... \in Q_0$ de manera que para cada $n \in \mathbb{N}, b_n \in U_n \setminus U_{n+1}$, obtenemos una sucesión tal que

$$|g(b_1)| < |g(b_2)| < \dots < |g(b_n)| < \dots$$

lo que contradice el hecho que Q_0 es τ^* -compacto.

Teorema 30. $\mathcal{L}(I)$ consiste en todas las funciones $f: X \to \mathbb{K}$ tales que

- (1') f es τ^* -continua
- (2') Para cada $\delta > 0$, $\{x : |f(x)|\mathcal{N}_I(x) \ge \delta\}$ es τ^* -compacto.

27

Demostración. Se demostrará que (1') y (2') son equivalentes a (1) y (2) del Teorema 26, respectivamente.

Del Lema 27, es evidente que (1) es equivalente a (1'). Por otro lado, la equivalencia entre (2) y (2') es una consecuencia del lema anterior y del hecho que en cada X_t las topologías τ y τ^* coinciden.

Capítulo 3

Medidas e Integrales con valores en Espacios Normados

A través de este capítulo se mostrará que la teoría precedente puede ser ampliada a un contexto más general. Las demostraciones serán omitidas para aligerar la lectura, no obstante, éstas serán detalladas en el próximo capítulo, el cual corresponde, a su vez, a una generalización de lo actual.

Durante el presente capítulo, E denotará a un \mathbb{K} -espacio de Banach no-arquimedeano, cuya norma será representada por $||\cdot||$.

3.1. Medidas Vectoriales

Sea X un conjunto no vacío y Ω un anillos de subconjuntos que lo cubren.

Definición 31. Una función conjunto finitamente aditiva $m: \Omega \to E$ se denomina medida vectorial si cumple las siguientes dos condiciones:

[B]
$$\{m(U): U \in \Omega\}$$
 es $||\cdot||$ -acotado.

[M] Para cualquier red (U_{α}) en Ω tal que $U_{\alpha} \downarrow \emptyset$ y para cualquier $V_{\alpha} \in \Omega$ con $V_{\alpha} \subset U_{\alpha}$ se cumple que

$$\lim_{\alpha} m(V_{\alpha}) = 0.$$

Si W es un abierto de X definimos

$$||W||_m = \sup\{||m(U)|| : U \in \Omega; U \subset W\}$$

y para $x \in X$

$$\mathcal{N}_m(x) = \inf\{||W||_m : x \in W, W \in \Omega\}$$

Teorema 32. Sea $m: \Omega \to E$ una medida vectorial, $A \ y \ B$ abiertos en $X \ y \ a \in X$.

- (a) Si $A \subset B$, entonces $||A||_m \le ||B||_m$.
- (b) $||A||_m = \sup\{||U||_m : U \in \Omega, U \subset A\}.$
- (c) $||A \cup B||_m \le \max\{||A||_m, ||B||_m\}.$
- (d) Para cada $a \in X$,

$$\mathcal{N}_{m}(x) = \inf\{||U||_{m} : U \in \Omega; x \in U\}.$$

- (e) Si $m_1, m_2 : \Omega \to E$ son dos medidas entonces $m_1 + m_2$ y $m_1 m_2$ son medidas vectoriales definidas en Ω y
 - (i) $\mathcal{N}_{m_1+m_2} \leq \max\{\mathcal{N}_{m_1}, \mathcal{N}_{m_2}\}$
 - (ii) $|\mathcal{N}_{m_1} \mathcal{N}_{m_2}| \leq \mathcal{N}_{m_1 m_2}$
- $(f) ||A||_m = \sup_{x \in A} \mathcal{N}_m(x).$

3.2. Operadores Integrales Vectoriales

Sea $\mathcal F$ un espacio vectorial de funciones definidas en X con valores en $\mathbb K$. En el capítulo anterior, vimos que la colección

$$\Omega(\mathcal{F}) = \{ U \subset X : \mathcal{X}_U f \in \mathcal{F} \text{ para cada } f \in \mathcal{F} \}$$

es un anillo de subconjuntos de X que lo cubre. De hecho, es la base de una topología cero-dimensional a la que llamaremos $\tau(\mathcal{F})$. Además \mathcal{F} se denomina un Espacio de Wolfheze si

- (a) cada $f \in \mathcal{F}$ es $\tau(\mathcal{F})$ -continua y
- (b) para cada $a \in X$ existe $f \in \mathcal{F}$ tal que $f(a) \neq 0$.

Recordamos además el Teorema 15 que nos dice que si \mathcal{F} es un espacio de Wolfheze, entonces $\tau(\mathcal{F})$ es la topología más débil que hace continua a cada $f \in \mathcal{F}$.

Definición 33. Sea \mathcal{F} un espacio de Wolfheze. Un operador integral, o simplemente una integral, en \mathcal{F} es una aplicación lineal $I: \mathcal{F} \to E$ tal que

[I] Sea $(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} tal que $f_{\alpha} \downarrow 0$. Para cada $\alpha \in \Lambda$ sea $g_{\alpha} \in \mathcal{F}$, con $|g_{\alpha}| \leq |f_{\alpha}|$. Se tiene que $\lim_{\alpha} I(g_{\alpha}) = 0$.

Observación 34. Esta condi<mark>c</mark>ión es equivalente a

[I'] $Si(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} tal que $f_{\alpha} \downarrow 0$ y $\delta > 0$, existe un $\alpha \in \Lambda$ tal que $||I(g)|| \leq \delta$ cuando $|g| \leq |f_{\alpha}|$.

De ahora en adelante I será un operador integral definido en un espacio de Wolfheze \mathcal{F} , Ω el anillo correspondiente y τ la topología generada en X.

Para $f \in \mathcal{F}$ definimos

$$m_f: \Omega(\mathcal{F}) \to E, \quad m_f(U) = I(f\mathcal{X}_U).$$

Claramente, m_f está bien definida. Además es una medida vectorial en Ω .

Para simplificar la notación, denotaremos por \mathcal{N}_f a $\mathcal{N}_{m_f}.$

Teorema 35. Existe una única función $\mathcal{N}_I: X \to [0, \infty[$ tal que para cada $f \in \mathcal{F}$

$$|f|\mathcal{N}_I = \mathcal{N}_f.$$

Más aún, \mathcal{N}_I es τ -semicontinua superior.

Para $f \in \mathcal{F}$, definimos

$$||f||_I = ||X||_{m_f}.$$

Se tiene

$$||f||_{I} = \sup_{x \in X} |f(x)| \mathcal{N}_{I}(x) = \sup_{x \in X} \{||I(g)|| : g \in \mathcal{F}, |g| \le |f|\}.$$

Además, $\{x \in X : |f(x)|\mathcal{N}_I(x) \ge \delta\}$ es τ -compacto, para cada $\delta > 0$.

Denotaremos por $\Phi(\mathcal{F})$ la colección de todas las funciones τ -semicontinua superior $\phi: X \to [0, +\infty[$ tales que satisfacen la siguiente propiedad

$$(\forall f \in \mathcal{F})(\forall \delta > 0)(\{x \in X : |f(x)|\phi(x) \ge \delta\} \text{ es } \tau\text{-compacto}).$$

Notar que $\mathcal{N}_I \in \Phi(\mathcal{F})$. Para cada $\phi \in \Phi(\mathcal{F})$ definimos

$$||f||_{\phi} = \sup_{x \in X} |f(x)|\phi(x).$$

Es fácil ver que $||\cdot||_{\phi}$ es una seminorma no-arquimedeana en \mathcal{F} por lo que la colección $\{||\cdot||_{\phi}:\phi\in\Phi(\mathcal{F})\}$ genera una topología localmente convexa en \mathcal{F} , llamada topología estricta.

El siguiente teorema nos da una caracterización de un operador integral.

Teorema 36. Sea $I: \mathcal{F} \to E$ un operador lineal. Las siguientes condiciones son equivalentes:

- 1. I es una integral en \mathcal{F} .
- 2. I es estrictamente continua
- 3. Para cada red (f_{α}) en \mathcal{F} y cada $f \in \mathcal{F}$ tal que $f_{\alpha} \to 0$ uniformemente sobre τ -compactos y $|f_{\alpha}| \leq |f|$, se tiene

$$\lim_{\alpha} I(f_{\alpha}) = 0.$$

Ejemplo 37. Sea X un conjunto no vacío y Ω un anillo de subconjuntos de X tal que $X \in \Omega$. Sea \mathcal{G} el espacio vectorial generado por $\{\mathcal{X}_U : U \in \Omega\}$. Se demuestra que $\Omega = \Omega(\mathcal{G})$. De esta forma, \mathcal{G} es un espacio de Wolfheze.

Ahora bien, sea $m: \Omega \to E$ una función finitamente aditiva. Existe un único operador lineal I definido en \mathcal{G} con valores en E tal que

$$I(\mathcal{X}_U) = m(U) \ para \ cada \ U \in \Omega.$$

Se tiene que I es un operador integral en \mathcal{G} si y sólo si m es una medida en Ω .

Definición 38. Una función $f: X \to \mathbb{K}$ es I-integrable si para cada $\varepsilon > 0$, existe $h \in \mathcal{F}$ tal que

$$||f-h||_I \leq \varepsilon.$$

Denotaremos por $\mathcal{L}(I)$ a la familia de todas las funciones I-integrables.

Para $\delta > 0$, se define

$$X_{t,p} = \{x \in X : \mathcal{N}_{I,p} \ge t\}.$$

La topología que consideraremos en X_t es la relativa inducida por τ en X.

Una caracterización de estas funciones es la siguiente:

Teorema 39. Sea $f: X \to \mathbb{K}$ una función. Se tiene que f es I-integrable si y sólo si cumple las siguientes dos condiciones:

- 1) f es τ -continua en cada X_t , para cada t > 0.
- 2) Para cada $\delta > 0$, existe un τ -compacto Q_{δ} contenido en algún X_t tal que

$$|f(x)|\mathcal{N}_I(x) \leq \delta$$
; para cada $x \in X \setminus Q$.

Es fácil ver que $\mathcal{L}(I)$ es un espacio vectorial sobre \mathbb{K} por lo que $\Omega(\mathcal{L}(I))$ es un anillo de subconjuntos de X que lo cubre. Así, $\Omega(\mathcal{L}(I))$ genera una topología cero-dimensional

que llamamos $\tau(\mathcal{L}(I))$. Notar también que \mathcal{F} es $||\cdot||_{I}$ -denso en $\mathcal{L}(I)$. En consecuencia, el operador integral I puede extenderse de manera única a un operador $I^*: \mathcal{L}(I) \to E$ lineal continuo, esto es, tal que

$$||I^*(f)|| \le ||f||_I$$
 para cada $f \in \mathcal{L}(I)$.

El siguiente teorema muestra que I^* es un operador integral.

Teorema 40. El espacio $\mathcal{L}(I)$ es un espacio de Wolfheze y la extensión I^* es un operador integral en $\mathcal{L}(I)$.

Corolario 41. $\mathcal{N}_{I^*} = \mathcal{N}_I, \ \mathcal{L}(I^*) = \mathcal{L}(I) \ y \ I^{**} = I^*.$

Capítulo 4

Medidas e Integrales con valores en Espacios Localmente Convexos

Una vez hecho el estudio de la Teoría de la Medida e Integración sobre campos escalares y exhibido el hecho que dicha teoría puede ser extendida a espacios vectoriales normados, desarrollaremos una generalización de los conceptos de medida y de operador integral a valores en espacios localmente convexos, basada en lo anterior.

Sea E un espacio topológico locamente \mathbb{K} -convexo, con Γ su familia de seminormas continuas asociada.

4.1. Medidas Vectoriales

Sea X un conjunto no vacío y Ω un anillo de subconjuntos de X tal que lo cubra.

Definición 42. Una función conjunto finitamente aditiva $m: \Omega \to E$ se denomina medida vectorial si cumple las siguientes dos condiciones:

[B] $\{m(U): U \in \Omega\}$ es acotado en E

[M] Para cualquier red (U_{α}) en Ω tal que $U_{\alpha} \downarrow \emptyset$ y para cualquier $V_{\alpha} \in \Omega$ con $V_{\alpha} \subset U_{\alpha}$ se cumple que

$$\lim_{\alpha} m(V_{\alpha}) = 0.$$

A modo de ejemplo, tenemos el siguiente resultado.

Ejemplo 43. Sea X un espacio topológico localmente compacto Hausdorff y sea Ω la colección de todos los subconjuntos compactos abiertos de X. Denotamos por $C_c(X, \mathbb{K})$ el conjunto de las funciones continuas con soporte compacto. Sea $I: C_c(X, \mathbb{K}) \to E$ un operador lineal que satisface: Para cada $p \in \Gamma$, existe $M_p > 0$ tal que si $f \in C_c(X, \mathbb{K})$, entonces

$$p(I(f)) \le M_p||f||_{\infty}$$

 $donde ||f||_{\infty} = \sup\{|f(x)| : x \in X\}.$

Definimos $m: \Omega \to E$ por $m(U) = I(\mathcal{X}_U)$. Claramente, m es finitamente aditiva. Si $p \in \Gamma$, como $||\mathcal{X}_U|| = 1$, se tiene que $p(m(U)) \leq M_p$ para algún $M_p > 0$. Por lo tanto $\{m(U): U \in \Omega\}$ es acotado. Para la tercera condición, consideramos una red $(U_\alpha)_{\alpha \in \Lambda}$ en Ω tal que $U_\alpha \downarrow \emptyset$ y para cada α elegimos $V_\alpha \in \Omega$ con $V_\alpha \subset U_\alpha$. Fijamos $\alpha_0 \in \Lambda$. Si $W_\alpha = U_\alpha \cap U_{\alpha_0}$, entonces $W_\alpha \downarrow 0$. Como U_{α_0} es compacto y $\{W_\alpha : \alpha \in \Lambda\}$ es una familia de subconjuntos cerrados de U_{α_0} (el espacio es Hausdorff) con $\cap W_\alpha = \emptyset$, se tiene que la familia no cumple la PIF. Es decir, existen $\alpha_1, ..., \alpha_n \in \Lambda$ tales que $\cap W_{\alpha_i} = \emptyset$. Ahora, para $\alpha \geq \max\{\alpha_1, ..., \alpha_n\}$ se tiene que U_α , y por tanto V_α , es vacío. Esto prueba que $\lim_\alpha m(V_\alpha) = 0$.

Volviendo al caso general, consideramos m una medida. Si fijamos una seminorma $p \in \Gamma$, entonces para W un abierto de X definimos

$$||W||_{m,p} = \sup\{p(m(U)) : U \in \Omega; U \subset W\}$$

Lema 44. Sea $m: \Omega \to \mathbb{K}$ una medida vectorial, $A \ y \ B$ abiertos en X.

- (a) Si $A \subset B$, entonces $||A||_{m,p} \leq ||B||_{m,p}$.
- (b) $||A||_{m,p} = \sup\{||U||_{m,p} : U \in \Omega, U \subset A\}.$
- (c) $||A \cup B||_{m,p} \le \max\{||A||_{m,p}, ||B||_{m,p}\}.$

Demostración.

(a)

$$||A||_{m,p} = \sup\{p(m(U)) : U \in \Omega, U \subset A\}$$

$$\leq \sup\{p(m(U)) : U \in \Omega, U \subset B\} = ||B||_{m,p}.$$

(b) Sea $U \in \Omega$, $U \subset A$. Como $p(m(U)) \leq ||U||_{m,p}$, entonces

$$\sup\{p(m(U)): U \in \Omega, U \subset A\} \le \sup\{||U||_{m,p}: U \in \Omega, U \subset A\}$$
$$\Rightarrow ||A||_{m,p} \le \sup\{||U||_{m,p}: U \in \Omega, U \subset A\}.$$

Por otro lado,

$$||U||_{m,p} = \sup\{p(m(V)) : V \in \Omega, V \subset U\} \le \sup\{p(m(V)) : V \in \Omega, V \subset A\}$$
$$\Rightarrow \sup\{||U||_{m,p} : U \in \Omega, U \subset A\} \le ||A||_{m,p}.$$

(c)

$$||A \cup B||_{m,p} = ||A \cup (B \setminus A)||_{m,p}$$

$$= \sup\{p(m(U)) : U \in \Omega, U \subset A \cup (B \setminus A)\}$$

$$= \sup\{p(m[(U \cap A) \cup (U \cap (B \setminus A))]) : U \in \Omega, U \subset A \cup B\}$$

$$\leq \sup\{\max\{p(m(U \cap A)), p(m(U \cap (B \setminus A)))\} : U \in \Omega, U \subset A \cup B\}$$

$$= \max\left\{\sup_{U \in \Omega, U \in A \cup B} p(m(U \cap A)), \sup_{U \in \Omega, U \in A \cup B} p(m(U \cap (B \setminus A)))\right\}$$

$$\leq \max\left\{\sup_{U \in \Omega, U \subset A} p(m(U)), \sup_{U \in \Omega, U \subset B} p(m(U))\right\}$$

$$= \max\{||A||_{m,p}, ||B||_{m,p}\}$$

Teorema 45. Sea $m: \Omega \to E$ una función conjunto finitamente aditiva tal que $\{m(V): V \in \Omega\}$ es acotado. Entonces, m es una medida si, y sólo si, para cada $p \in \Gamma$ y cada red $(U_{\alpha})_{\alpha \in I}$ en Ω con $U_{\alpha} \downarrow \emptyset$ se tiene

$$\lim_{\alpha} ||U_{\alpha}||_{m,p} = 0$$

Demostración. (Es directo del hecho que

$$p(m(V)) \leq ||U||_{m,p}$$
; para $V \subset U, V \in \Omega$.

 (\Longrightarrow) Sea $p \in \Gamma$ y sea $(U_{\alpha})_{\alpha \in I}$ una red en Ω tal que $U_{\alpha} \downarrow \emptyset$. Probaremos que

$$\lim_{\alpha} ||U_{\alpha}||_{m,p} = 0.$$

Si $||U_{\alpha_0}||_{m,p} = 0$ para algún $\alpha_0 \in I$, entonces no hay nada que probar. Por lo tanto, supongamos que $||U_{\alpha}||_{m,p} > 0$ para cada $\alpha \in I$ y elegimos $V_{\alpha} \in U_{\alpha}$, $V_{\alpha} \in \Omega$, de manera que

$$\frac{1}{2}||U_{\alpha}||_{m,p} \le p(m(V_{\alpha})).$$

Ahora, como lím $p(m(V_{\alpha})) = 0$, se obtiene lo deseado.

Ahora bien, para $x \in X$ consideramos la función a valores reales positivos

$$\mathcal{N}_{m,p}(x) = \inf\{||W||_{m,p} : x \in W, W \text{ es abierto}\}.$$

Teorema 46. Para cada $x \in X$,

$$\mathcal{N}_{m,p}(x) = \inf\{||U||_{m,p} : U \in \Omega; x \in U\}.$$

Demostración. Claramente, $\mathcal{N}_{m,p}(x) \leq \inf\{||U||_{m,p} : U \in \Omega; x \in U\}$. Recíprocamente, sea W un abierto tal que $x \in W$. Existe $U \in \Omega$ tal que $x \in U \subset W$, lo que implica que $||U||_{m,p} \leq ||W||_{m,p}$. Por tanto

$$\inf\{||U||_{m,p}: U \in \Omega, x \in U\} \le ||W||_{m,p}.$$

Tomando ínfimo al lado derecho de la desigualdad, se obtiene

$$\inf\{||U||_{m,p}: U \in \Omega, x \in U\} \le \mathcal{N}_{m,p}(x).$$

Teorema 47. Sea $p \in \Gamma$. Para cada abierto W de X se tiene

$$||W||_{m,p} = \sup \{ \mathcal{N}_{m,p}(x) : x \in W \}.$$

Demostración. Por definición, si $x \in W$, entonces $\mathcal{N}_{m,p}(x) \leq ||W||_{m,p}$, por lo que

$$\sup_{x \in W} \mathcal{N}_{m,p}(x) \le ||W||_{m,p}.$$

Para probar la desigualdad contraria, basta probar que para cada $V \subset W$, con $V \in \Omega$, se cumple

$$p(m(V)) \le \sup_{x \in W} \mathcal{N}_{m,p}(x).$$

Sea $V \in \Omega, V \subset W$. Sea s > 0 tal que $\sup \{ \mathcal{N}_{m,p}(x) : x \in W \} \leq s$. Se define $\Lambda = \{ T \in \Omega : ||T||_{m,p} \leq s \}$. Esta colección es un cubrimiento de V. En efecto, si $a \in V$ entonces $a \in W$ por lo que $\mathcal{N}_{m,p}(a) \leq s$. Así, existe $U \in \Omega$ tal que $a \in U$ y $||U||_{m,p} \leq s$. Luego, $U \in \Lambda$.

Ahora bien, consideramos $T_1, T_2 \in \Lambda$ y $U \in \Omega$ con $U \subset T_1 \cup T_2$. Se tiene

$$p(m(U)) \leq p[m(U \cap T_1) + m(U \cap (T_2 \setminus T_1))]$$

$$\leq \max\{p(m(U \cap T_1)), p(m(U \cap (T_2 \setminus T_1)))\}$$

$$\leq \max\{||U \cap T_1||_{m,p}, ||U \cap (T_2 \setminus T_1)||_{m,p}\}$$

$$\leq \max\{||T_1||_{m,p}, ||T_2||_{m,p}\} \leq s$$

$$\implies ||T_1 \cup T_2||_{m,p} \leq s$$

Por lo tanto, Λ es cerrado bajo uniones finitas. De esta manera Λ es un conjunto dirigido. Por tanto $(V \setminus T)_{T \in \Lambda}$ es una red en Ω tal que $V \setminus T \downarrow \emptyset$ y m es una medida, se tiene que

$$\lim_{T} ||V \setminus T||_{m,p} = 0$$

Por lo que existe $T_0 \in \Lambda$ tal que $||V \setminus T_0||_{m,p} \leq s$. Y así,

$$p(m(V)) \le \max\{p(m(V \cap T_0)), p(m(V \setminus T_0))\} \le s.$$

Notar que, como consecuencia de la condición [B], la función conjunto $||\cdot||_{m,p}$, y por ende también $\mathcal{N}_{m,p}$, es siempre finita.

Teorema 48. Si $p \in \Gamma$, entonces $\mathcal{N}_{m,p}$ es semicontinua superior (s.c.s.). Es más, si $U \in \Omega$ y $\delta > 0$, entonces

$$U_{\delta,p} := \{x \in U : \mathcal{N}_{m,p}(x) \geq \delta\}$$
 es compacto.

Demostración. Para probar que $\mathcal{N}_{m,p}$ es s.c.s. es suficiente mostrar que $X_{\delta,p}$ es cerrado. Si $y \in X \setminus X_{\delta,p}$ entonces $\mathcal{N}_{m,p}(y) < \delta$ por lo que existe $U \in \Omega$ tal que $y \in U$ y $||U||_{m,p} < \delta$. Ahora, para este U se tiene

$$z \in U \Longrightarrow \mathcal{N}_{m,p}(z) < \delta \Longrightarrow z \in X \setminus X_{\delta,p},$$

por lo que $U \subset X \setminus X_{\delta,p}$.

Por otro lado, sea $\{V_{\alpha}\}_{{\alpha}\in\Phi}$ un cubrimiento por abiertos de $U_{\delta,p}$. Sin perder generalidad podemos suponer que cada V_{α} es un clopen. Es más, como $U_{\delta,p}\subset U$, podemos considerar $V_{\alpha}\subset U$. Ahora bien, sea $x\in U$. Si $x\in U_{\delta,p}$, elegimos $U_x=V_{\alpha}$ para algún $\alpha\in\Phi$ tal que $x\in V_{\alpha}$. Si $x\notin U_{\delta,p}$, tomamos U_x como sigue: Como $\mathcal{N}_{m,p}$ es s.c.s., existe $U_x\in\Omega$ tal que $x\in U_x\subset U\setminus U_{\delta,p}$.

Para cualquier subconjunto finito F de U, definimos $U_F = U \setminus \bigcup_{x \in F} U_x$. Claramente, $(U_F)_F$ es una red en Ω tal que $U_F \downarrow \emptyset$, por lo que

$$\lim_{F}||U_F||_{m,p}=0.$$

Así, dado $\delta > 0$, existe $F_0 \subset U$ finito tal que $||U_{F_0}||_{m,p} < \delta$, por lo que para cada $y \in U_{F_0}$, $\mathcal{N}_{m,p}(y) < \delta$, es decir, $U_{F_0} \cap U_{\delta,p} = \emptyset$. Esto es,

$$U_{\delta,p} \subset \bigcup_{x \in F_0} U_x = \bigcup_{x \in F_0} V_{\alpha}.$$

De esta forma, $U_{\delta,p}$ es compacto.

Teorema 49. Sean $m_1, m_2 : \Omega \to E$ dos medidas vectoriales. Se tiene que $m_1 + m_2$ y $m_1 - m_2$ son medidas vectoriales definidas en Ω . Más aún, cualquiera sea $p \in \Gamma$, se cumple

(a) $\mathcal{N}_{m_1+m_2,p} \le \max\{\mathcal{N}_{m_1,p}, \mathcal{N}_{m_2,p}\}$

$$|\mathcal{N}_{m_1,p} - \mathcal{N}_{m_2,p}| \le \mathcal{N}_{m_1-m_2,p}$$

Demostración. De la definición de medida, es directo que m_1+m_2 y m_1-m_2 son medidas vectoriales en Ω . Por otro lado, dado $U \in \Omega$ notar que

$$||U||_{m_1+m_2,p} \le \max\{||U||_{m_1,p},||U||_{m_2,p}\}.$$

Así, para $x \in X$

(a)

$$\mathcal{N}_{m_1+m_2,p}(x) = \inf\{||U||_{m_1+m_2,p} : U \in \Omega, x \in U\}$$

$$\leq \inf\{\max\{||U||_{m_1,p}, ||U||_{m_2,p}\} : U \in \Omega, x \in U\}$$

$$= \max\{\inf\{||U||_{m_1,p} : U \in \Omega, x \in U\}, \inf\{||U||_{m_2,p} : U \in \Omega, x \in U\}\}$$

$$= \max\{\mathcal{N}_{m_1,p}(x), \mathcal{N}_{m_2,p}(x)\}$$

(b)

$$\mathcal{N}_{m_1,p}(x) = \mathcal{N}_{m_1-m_2+m_2,p}(x) \le \max\{\mathcal{N}_{m_1-m_2,p}(x), \mathcal{N}_{m_2,p}(x)\} \le \mathcal{N}_{m_1-m_2,p} + \mathcal{N}_{m_2,p}(x)$$

$$\Longrightarrow \mathcal{N}_{m_1,p}(x) - \mathcal{N}_{m_2,p}(x) \le \mathcal{N}_{m_1-m_2,p}(x).$$

Análogamente, se demuestra que $\mathcal{N}_{m_2,p}(x) - \mathcal{N}_{m_1,p}(x) \leq \mathcal{N}_{m_1-m_2,p}(x)$.

4.2. Operadores Integrales Vectoriales

Al igual que en el caso escalar, denotamos por \mathcal{F} a un espacio vectorial de funciones \mathbb{K} -valuadas definidas en X. Consideramos

$$\Omega(\mathcal{F}) = \{ U \subset X : f \mathcal{X}_U \in \mathcal{F} \text{ para cada } f \in \mathcal{F} \}$$

En la sección 2.2 se vio que $\Omega(\mathcal{F})$ es un anillo y $X \in \Omega(\mathcal{F})$. Denotamos por $\tau(\mathcal{F})$ a la topología cero-dimensional en X generada por $\Omega(\mathcal{F})$. Además, recordamos que \mathcal{F} se dice que es un Espacio de Wolfheze si cada $f \in \mathcal{F}$ es $\tau(\mathcal{F})$ -continua y para cada $a \in X$, existe $f \in \mathcal{F}$ tal que $f(x) \neq 0$ (ver Definición 14). En este caso, el Teorema 15 nos dice que la topología $\tau(\mathcal{F})$ es la topología en X más débil tal que hace continua a cada $f \in \mathcal{F}$.

De ahora en adelante \mathcal{F} denotará un espacio de Wolfheze.

Definición 50. Un operador lineal $I: \mathcal{F} \to E$ es un operador integral en \mathcal{F} , o simplemente una integral, si

[I] Para cada red $(f_{\alpha})_{\alpha \in \Lambda}$ en \mathcal{F} tal que $f_{\alpha} \downarrow 0$ y para cada $g_{\alpha} \in \mathcal{F}$ con $|g_{\alpha}| \leq |f_{\alpha}|$, se tiene

$$\lim_{\alpha} I(g_{\alpha}) = 0$$

Observación 51. La condición [I] es equivalente a

[I'] Para cada red $(f_{\alpha})_{{\alpha}\in\Lambda}$ tal que $f_{\alpha}\downarrow 0$ y para cada $p\in\Gamma$ y $\delta>0$ se tiene:

Existe $\alpha \in \Lambda$ tal que $p(I(g)) < \delta$ para cualquier $g \in \mathcal{F}, |g| \leq |f_{\alpha}|$.

En efecto:

$$[I] \Rightarrow [I']$$

Sea $\delta > 0$ y $p \in \Gamma$. Existe $\alpha_0 \in \Lambda$ tal que $\alpha \geq \alpha_0 \Rightarrow p(I(f_\alpha)) \leq \delta$. Sea $g \in \mathcal{F}$ tal que $|g| \leq |f_{\alpha_0}|$. Definimos

$$h_{\alpha} = \begin{cases} f_{\alpha}, & \alpha \neq \alpha_{0} \\ g - f_{\alpha}, & \alpha = \alpha_{0}. \end{cases}$$

Se tiene que $(h_{\alpha})_{\alpha \in \Lambda}$ es una red en \mathcal{F} tal que $|h_{\alpha}| \leq |f_{\alpha}|$, por lo que existe $\alpha_1 \in \Lambda$ tal que

$$\alpha \ge \alpha_1 \Rightarrow p(I(h_\alpha)) \le \delta.$$

Así, eligiendo $\overline{\alpha} \in \Lambda$ tal que $\overline{\alpha} \ge \alpha_0$ y $\overline{\alpha} \ge \alpha_1$ se tiene

$$p(I(g)) \le \max\{p(I(g) - I(f_{\overline{\alpha}})), p(I(f_{\overline{\alpha}}))\} = \max\{p(I(h_{\overline{\alpha}})), p(I(f_{\overline{\alpha}}))\} \le \delta.$$

$$[I'] \Rightarrow [I]$$

Sea $(f_{\alpha})_{\alpha \in \Lambda}$ una red en \mathcal{F} con $f_{\alpha} \downarrow 0$ y para cada $\alpha \in \Lambda$ elegimos $g_{\alpha} \in \mathcal{F}$ tal que $|g_{\alpha}| \leq |f_{\alpha}|$. Probaremos que $\lim_{\alpha} I(g_{\alpha}) = 0$. Sea $p \in \Gamma$, $\delta > 0$. Existe $\alpha_0 \in \Lambda$ tal que si $g \in \mathcal{F}$ con $|g| \leq |f_{\alpha_0}|$, entonces $p(I(g)) \leq \delta$. Ahora, si $\alpha \geq \alpha_0$, entonces $|g_{\alpha}| \leq |f_{\alpha_0}|$. Por lo tanto, $p(I(g_{\alpha})) \leq \delta$.

Sea I un operador integral E-valuado definido en \mathcal{F} . Para $f \in \mathcal{F}$ definimos

$$m_f: \Omega(\mathcal{F}) \to E, \quad m_f(U) = I(f\mathcal{X}_U).$$

Claramente, m_f está bien definida. Además es finitamente aditiva.

Sea $(U_{\alpha})_{\alpha \in \Lambda}$ una red en $\Omega(\mathcal{F})$ tal que $U_{\alpha} \downarrow \emptyset$. Para cada $\alpha \in \Lambda$, sea $V_{\alpha} \in \Omega(\mathcal{F})$, $V_{\alpha} \subset U_{\alpha}$. Definimos $f_{\alpha} = f\mathcal{X}_{U_{\alpha}}$. Se tiene que $f_{\alpha} \downarrow 0$ y si $g_{\alpha} = f\mathcal{X}_{V_{\alpha}}$, entonces $g_{\alpha} \in \mathcal{F}$ y $|g_{\alpha}| \leq |f_{\alpha}|$. Aplicando [I], tenemos

$$\lim_{\alpha} m_f(V_{\alpha}) = \lim_{\alpha} I(g_{\alpha}) = 0.$$

y por lo tanto m_f cumple con [M].

Por otro lado, sea $p \in \Gamma$ y supongamos que

$$\sup\{p(m_f(U)): U \in \Omega(\mathcal{F})\} = +\infty.$$

Sea $\alpha \in \mathbb{K}$ tal que $|\alpha| > 1$. Existe una sucesión $U(1), U(2), ... \in \Omega(\mathcal{F})$ tal que $p(I(f\mathcal{X}_{U(i)})) \geq |\alpha|^i$ para cada i. Pero $\alpha^{-i}f \downarrow 0$ y $|\alpha^{-i}f\mathcal{X}_{U(i)}| \leq |\alpha^{-i}f|$, por lo que lím $\alpha^{-i}I(f\mathcal{X}_{U(i)}) = 0$, lo que es una contradicción. Por lo tanto m_f satisface la condición [B]. Se sigue que m_f es una medida vectorial definida en $\Omega(\mathcal{F})$.

Para simplificar la notación, denotaremos por $\mathcal{N}_{f,p}$ a $\mathcal{N}_{m_f,p}$.

Lema 52. Si $I: \mathcal{F} \to E$ es un operador integral en \mathcal{F} , $f, g \in \mathcal{F}$, $a \in X$ y $p \in \Gamma$ entonces

$$|f(a)|\mathcal{N}_{g,p}(a) = |g(a)|\mathcal{N}_{f,p}(a).$$

Demostración. Sea $\Lambda = \{U \in \Omega(\mathcal{F}) : a \in U\}$. Λ es un conjunto dirigido con el orden parcial $U_1 \leq U_2 \Leftrightarrow U_2 \subset U_1$. Definimos h = f(a)g - g(a)f. La red $(h\mathcal{X}_U)_{U \in \Lambda}$ en \mathcal{F} es tal que $h\mathcal{X}_U \downarrow 0$, y como I es un operador integral, $\lim I(h\mathcal{X}_U) = 0$. Sea $\delta > 0$. Existe $U_0 \in \Lambda$ tal que $p(I(g\mathcal{X}_V)) < \delta$ para cada $V \in \Omega$, $V \subset U_0$. Por la $\tau(\mathcal{F})$ -semicontinuidad superior de $\mathcal{N}_{f,p}$ podemos suponer que

$$\forall x \in U_0, \ \mathcal{N}_{f,p}(x) < \mathcal{N}_{f,p}(a) + \delta.$$

Así, para $V \in \Omega, V \subset U_0$ se tiene

$$p(f(a)m_g(V) - g(a)m_f(V)) = p(I(h\mathcal{X}_V)) < \delta$$

у

$$p(m_f(V)) \le ||V||_{m_f,p} = \sup \{\mathcal{N}_{f,p}(x) : x \in V\} \le \mathcal{N}_{f,p}(a) + \delta.$$

Por lo tanto

$$\begin{split} p(f(a)m_{g}(V)) &= p([f(a)m_{g}(V) - g(a)m_{f}(V)] + g(a)m_{f}(V)) \\ &\leq \max\{p(f(a)m_{g}(V) - g(a)m_{f}(V)), p(g(a)m_{f}(V))\} \\ &\leq \max\{\delta, |g(a)|[\mathcal{N}_{f,p}(a) + \delta]\} \end{split}$$

y así

$$|f(a)|\mathcal{N}_{g,p}(a) \le |f(a)|||U_0||_{m_g,p} \le \max\{\delta, |g(a)|[\mathcal{N}_{f,p}(a) + \delta]\}.$$

Por la arbitrariedad de δ , se tiene

$$|f(a)|\mathcal{N}_{g,p}(a) \leq |g(a)|\mathcal{N}_{f,p}(a).$$

Intercambiando f por g y repitiendo el procedimiento anterior, obtenemos la igualdad.

Teorema 53. Sea I un operador integral en \mathcal{F} y $p \in \Gamma$. Existe una única función $\mathcal{N}_{I,p}: X \to [0, \infty[$ tal que para cada $f \in \mathcal{F}$

$$|f|\mathcal{N}_{I,p} = \mathcal{N}_{f,p}.$$

Más aún, $\mathcal{N}_{I,p}$ es $\tau(\mathcal{F})$ -s.c.s.

Demostración. Para cada $x \in X$, podemos elegir $f \in \mathcal{F}$ tal que $f(x) \neq 0$ y definir

$$\mathcal{N}_{I,p}: X \to [0, \infty[, \mathcal{N}_{I,p}(x) = \frac{1}{|f(x)|} \mathcal{N}_{f,p}(x).$$

 $\mathcal{N}_{I,p}$ está bien definida pues si $g \in \mathcal{F}$ es cualquier función tal que $g(x) \neq 0$ entonces, $|f(x)|\mathcal{N}_{g,p}(x) = |g(x)|\mathcal{N}_{f,p}(x)$ (lema anterior).

Para probar la unicidad, suponemos que existe $\mathcal{M}_{I,p}: X \to [0, \infty[$ función tal que para cada $f \in \mathcal{F}, |f|\mathcal{M}_{I,p} = \mathcal{N}_{f,p}$. Sea $a \in X$. Existe $f \in \mathcal{F}$ tal que $f(a) \neq 0$. Así,

$$\mathcal{N}_{I,p}(a) = \frac{\mathcal{N}_{f,p}(a)}{|f(a)|} = \mathcal{M}_{I,p}(a).$$

Para probar que $\mathcal{N}_{I,p}$ es $\tau(\mathcal{F})$ -s.c.s., tomamos $\delta > 0$ y $a \in X$. Existe $f \in \mathcal{F}$ tal que f(a) = 1. Sea $V = \{x \in X : |f(x) - 1| < 1\}$. Como f es $\tau(\mathcal{F})$ -continua, V es $\tau(\mathcal{F})$ -abierto (pues es la imagen inversa por f de la bola centrada en 1 de radio 1). Además, $a \in V$. Más aún, |f| = 1 sobre V. Por otro lado, $\mathcal{N}_{f,p}$ es $\tau(\mathcal{F})$ -s.c.s. (Teorema 11) por lo que existe $W \in \Omega(\mathcal{F})$, $a \in W$ tal que para todo $x \in W$, $\mathcal{N}_{f,p}(x) < \mathcal{N}_{f,p}(a) + \delta$. Luego, si consideramos $U = V \cap W$, tenemos que $a \in U$ y para cada $x \in U$,

$$\mathcal{N}_{I,p}(x) = |f(x)|\mathcal{N}_{I,p}(x) = \mathcal{N}_{f,p}(x) < \mathcal{N}_{f,p}(a) + \delta = \mathcal{N}_{I,p}(a) + \delta.$$

Corolario 54. Sea I una integral en \mathcal{F} y $p \in \Gamma$. Para $f \in \mathcal{F}$, definimos

$$||f||_{I,p} = ||X||_{m_f,p}.$$

Se tiene

$$||f||_{I,p} = \sup_{x \in X} |f(x)| \mathcal{N}_{I,p}(x) = \sup\{p(I(g)) : g \in \mathcal{F}, |g| \le |f|\}.$$

Más aún, $\{x \in X : |f(x)|\mathcal{N}_{I,p}(x) \geq \delta\}$ es $\tau(\mathcal{F})$ -compacto, para cada $\delta > 0$.

Demostración. La primera igualdad se tiene del hecho que

$$||X||_{m_f,p} = \sup_{x \in X} \mathcal{N}_{f,p}(x)$$

y del teorema anterior. Por otro lado, si $g \in \mathcal{F}$ se tiene

$$p(I(g)) = p(I(g\mathcal{X}_X)) = p(m_g(X)) \le ||X||_{m_g,p} = ||g||_{I,p},$$

por lo que

$$||f||_{I,p} = \sup\{p(m(U)) : U \in \Omega\}$$

$$= \sup\{p(I(f\mathcal{X}_X)) : U \in \Omega\}$$

$$\leq \sup\{p(I(g)) : g \in \mathcal{F}, |g| \leq |f|\}$$

$$\leq \sup\{||g||_{I,p} : g \in \mathcal{F}, |g| \leq |f|\}$$

$$\leq ||f||_{I,p}.$$

Por tanto, la segunda igualdad queda demostrada.

Finalmente, la última afirmación es directa del hecho que $X \in \Omega(\mathcal{F}), |f|\mathcal{N}_{I,p} = \mathcal{N}_{f,p}$ y del Teorema 48.

Corolario 55. Para cada $a \in X$, existe $U \in \Omega(\mathcal{F})$ tal que $a \in U$ y $\{x \in U : \mathcal{N}_{I,p}(x) \geq \delta\}$ es $\tau(\mathcal{F})$ -compacto para cada $\delta > 0$.

Demostración. Sea $a \in X$ y $f \in \mathcal{F}$ tal que f(a) = 1. El conjunto $\{x : |f(x) - 1| < 1\}$ es un $\tau(\mathcal{F})$ -abierto (pues corresponde a la preimagen a través de f de la bola abierta en \mathbb{K} centrada en 1 de radio 1) por lo que contiene algún $U \in \Omega(\mathcal{F})$ con $a \in U$. Notar que para todo $x \in U$, |f(x)| = 1, por lo que $\mathcal{N}_{I,p} = \mathcal{N}_{f,p}$ en U. Así, por Teorema 48, $\{x \in U : \mathcal{N}_{I,p} \geq \delta\} = \{x \in U : \mathcal{N}_{f,p} \geq \delta\}$ es $\tau(\mathcal{F})$ -compacto.

Hemos probado que si I es un operador integral en \mathcal{F} , $\mathcal{N}_{I,p}$ es $\tau(\mathcal{F})$ -s.c.s. y que para cualquier $f \in \mathcal{F}$ y $\delta > 0$, el conjunto $\{x \in X : |f(x)|\mathcal{N}_{I,p}(x) \geq \delta\}$ es $\tau(\mathcal{F})$ -compacto. Denotaremos por $\Phi(\mathcal{F})$ a la colección de todas las funciones $\phi : X \to [0, \infty[\ \tau(\mathcal{F})$ -s.c.s. que satisfacen

$$(\forall f \in F)(\forall \delta > 0)(\{x \in X : |f(x)|\phi(x) \ge \delta\} \text{ es } \tau(\mathcal{F})\text{-compacto}).$$

Si consideramos $K \subset X$ un $\tau(\mathcal{F})$ -compacto y definimos $\phi = \mathcal{X}_K$, para $f \in \mathcal{F}$ y $\delta > 0$ se tiene $\{x \in X : |f(x)|\phi(x) \geq \delta\} = \{x \in K : |f(x)| \geq \delta\}$ es un $\tau(\mathcal{F})$ -cerrado dentro de un $\tau(\mathcal{F})$ -compacto. Luego, $\{x \in X : |f(x)|\phi(x) \geq \delta\}$ es $\tau(\mathcal{F})$ -compacto. En consecuencia, $\Phi(\mathcal{F}) \neq \emptyset$. De manera similiar, se prueba que $\Phi(\mathcal{F})$ es cerrado bajo el supremo e ínfimo sobre subconjuntos finitos de $\Phi(\mathcal{F})$. Como dijimos anteriormente, si I es un operador integral, $\mathcal{N}_{I,p} \in \Phi(\mathcal{F})$.

Ahora, para $\phi \in \Phi(\mathcal{F})$ definimos

$$||f||_{\phi} = \sup_{x \in X} |f(x)|\phi(x).$$

Claramente, $||\cdot||_{\phi}$ es una seminorma no-arquimedeana en \mathcal{F} . Por lo tanto, la colección $\{||\cdot||_{\phi}: \phi \in \Phi(\mathcal{F})\}$ genera una topología localmente convexa en \mathcal{F} a la que llamaremos topología estricta en \mathcal{F} .

Teorema 56. Sea $I: \mathcal{F} \to E$ un operador lineal. Las siguientes condiciones son equivalentes:

- 1. I es una integral en \mathcal{F} .
- 2. I es estrictamente contin<mark>u</mark>a
- 3. Para cada red (f_{α}) en \mathcal{F} y cada $f \in \mathcal{F}$ tal que $f_{\alpha} \to 0$ uniformemente sobre τ -compactos y $|f_{\alpha}| \leq |f|$, se tiene

$$\lim_{\alpha} I(f_{\alpha}) = 0.$$

Demostración.

1) \Rightarrow 2) I es estrictamente continua, ya que para cada $p \in \Gamma$, $\mathcal{N}_{I,p} \in \Phi(\mathcal{F})$ y dada $f \in \mathcal{F}$,

$$p(I(f)) = p(I(f\mathcal{X}_X)) = p(m_f(X)) \le ||X||_{m_f,p} = ||f||_{\mathcal{N}_{I,p}}.$$

2) \Rightarrow 3) Sea $p \in \Gamma$ y $\varepsilon > 0$. Si I es estrictamente continua, existe $\phi \in \Phi(\mathcal{F})$ y $\delta > 0$ tal que

$$||f||_{\phi} \le \delta \Longrightarrow p(I(f)) \le \varepsilon$$

Sean $f \in \mathcal{F}$ y $\{f_{\alpha}\}_{{\alpha} \in \Lambda}$ una red de elementos de \mathcal{F} tal que $f_{\alpha} \to 0$ uniformemente sobre $\tau(\mathcal{F})$ -compactos y $|f_{\alpha}| \leq |f|$. Sea $Q = \{x \in X : |f(x)|\phi(x) \geq \delta\}$. Como Q es $\tau(\mathcal{F})$ -compacto y ϕ $\tau(\mathcal{F})$ -s.c.s., tenemos $||\phi||_Q = \sup_{x \in Q} \phi(x) < \infty$ por lo que existe α_0 tal que

$$\alpha \ge \alpha_0 \Longrightarrow |f_{\alpha}(x)| \le \frac{\delta}{||\phi||_P}$$
 uniformemente en Q ,

es decir,

$$\alpha \geq \alpha_0 \Longrightarrow |f_{\alpha}(x)|\phi(x) \leq \delta$$
 para cada $x \in Q$.

Por otro lado, si $x \notin Q$,

$$|f_{\alpha}(x)|\phi(x) \le |f(x)|\phi(x) < \delta.$$

Por lo tanto, para $x \in X$ y $\alpha \ge \alpha_0$ se tiene

$$||f_{\alpha}||_{\phi} = \sup_{x \in X} |f_{\alpha}(x)| \phi(x) \le \delta$$

lo que implica

$$p(I(f_{\alpha})) \le \varepsilon \operatorname{si} \alpha \ge \alpha_0.$$

3) \Rightarrow 1) Sea (f_{α}) una red en \mathcal{F} tal que $f_{\alpha} \downarrow 0$. Para cada α , elegimos $g_{\alpha} \in \mathcal{F}$ con $|g_{\alpha}| \leq |f_{\alpha}|$. Por Teorema de Dini, $f_{\alpha} \to 0$ sobre $\tau(\mathcal{F})$ -compactos. Así,

$$\lim_{\alpha} I(g_{\alpha}) = 0.$$

Ejemplo 57. Sea X un conjunto no vacío y Ω un anillo de subconjuntos de X tal que $X \in \Omega$. Sea \mathcal{G} el espacio vectorial generado por $\{\mathcal{X}_U : U \in \Omega\}$. Sea $U \in \Omega$. Para $g \in \mathcal{G}$ existen $U_1, ...U_n \in \Omega$ disjuntos dos a dos y $\alpha_1, ..., \alpha_n \in \mathbb{K}$ tales que $g = \sum \alpha_i \mathcal{X}_{U_i}$. Se tiene,

$$g\mathcal{X}_{U} = \left(\sum_{i=1}^{n} \alpha_{i} \mathcal{X}_{U_{i}}\right) \mathcal{X}_{U} = \sum_{i=1}^{n} \alpha_{i} \mathcal{X}_{U_{i} \cap U}$$

donde cada $U_i \cap U \in \Omega$. Esto implica que $g\mathcal{X}_U \in \mathcal{G}$ y por tanto $U \in \Omega(\mathcal{G})$. Es decir $\Omega \subset \Omega(\mathcal{G})$.

48

Por otro lado, sea $U \in \Omega(\mathcal{G})$. Por hipótesis, $f = \mathcal{X}_X \in \mathcal{G}$ por lo que $\mathcal{X}_U = f\mathcal{X}_U \in \mathcal{G}$. Así, existen $V_1, ..., V_n \in \Omega$ tales que $U = \cup V_i$. Por lo tanto $U \in \Omega$. En consecuencia, $\Omega = \Omega(\mathcal{G})$. De esta forma, \mathcal{G} es un espacio de Wolfheze.

Ahora bien, sea $m: \Omega \to E$ una función finitamente aditiva. Existe un único operador lineal I definido en \mathcal{G} con valores en E tal que

$$I(\mathcal{X}_U) = m(U) \ para \ cada \ U \in \Omega.$$

Se tiene que I es un operador integral si y sólo si m es una medida. En efecto, supongamos que I es una integral. Para $f = \mathcal{X}_X \in \mathcal{G}$ se tiene que la correspondiente m_f es una medida en Ω . Pero en este caso, $m_f = m$. Por otro lado, si m es una medida y $p \in \Gamma$ entonces $\mathcal{N}_{m,p} \in \Phi(\mathcal{G})$. Para cada $U \in \Omega$ se cumple

$$p(I(\mathcal{X}_U)) = p(m(U)) \le ||U||_{m,p} = ||\mathcal{X}_U||_{m,p} = \sup_{x \in U} \mathcal{N}_{m,p}(x)$$

y para $g \in \mathcal{G}$ existen $\alpha_1, ..., \alpha_n \in \mathbb{K}$ y $U_1, ..., U_n \in \Omega$ disjuntos dos a dos tales que

$$p(I(g)) = p\left(I\left(\sum_{i=1}^{n} \alpha_{i} \mathcal{X}_{U_{i}}\right)\right)$$

$$= p\left(\sum_{i=1}^{n} \alpha_{i} m(U_{i})\right)$$

$$\leq \max\{|\alpha_{i}| p(m(U_{i}))\}$$

$$\leq \max\left\{\sup_{x \in U_{i}} |\alpha_{i}| \mathcal{N}_{m,p}\right\}$$

$$= \sup_{x \in X} |g(x)| \mathcal{N}_{m,p}(x)$$

$$= ||f||_{\mathcal{N}_{m,p}}$$

por lo que I es una integral.

4.2.1. Extensión de la Integral

Definición 58. Sea $I: \mathcal{F} \to E$ un operador integral en \mathcal{F} . Una función $f: X \to \mathbb{K}$ es I-integrable si para cada $\varepsilon > 0$ y cada $p \in \Gamma$, existe $h \in \mathcal{F}$ tal que

$$||f-h||_{I,p} \leq \varepsilon.$$

Denotaremos por $\mathcal{L}(I)$ a la familia de todas las funciones I-integrables.

Para $\delta > 0$ y $p \in \Gamma$, se define

$$X_{t,p} = \{ x \in X : \mathcal{N}_{I,p} \ge t \}.$$

La topología que consideraremos en $X_{t,p}$ es la relativa inducida por $\tau(\mathcal{F})$ en X.

Una caracterización de estas funciones es la siguiente:

Teorema 59. Sea $f: X \to \mathbb{K}$ una función. Se tiene que f es I-integrable si y sólo si cumple las siguientes dos condiciones:

- 1) f es $\tau(\mathcal{F})$ -continua en cada $X_{t,p}$, para cada t > 0 y $p \in \Gamma$.
- 2) Para cada $\delta > 0$ y $p \in \Gamma$, existe un $\tau(\mathcal{F})$ -compacto $Q_{\delta,p}$ contenido en algún $X_{t,p}$ tal que

$$|f(x)|\mathcal{N}_{I,p}(x) \leq \delta$$
; para cada $x \in X \setminus Q$.

Demostración. Sea $f \in \mathcal{L}(I)$. Sea $p \in \Gamma$. Existe una sucesión $\{g_n\}_n$ en \mathcal{F} tal que

$$\lim_{n \to \infty} ||f - g_n||_{I,p} = 0.$$

Ahora, si t > 0 y $x \in X_{t,p}$, entonces

$$|g_n(x) - f(x)| = \frac{|g_n(x) - f(x)|\mathcal{N}_{I,p}(x)}{\mathcal{N}_{I,p}(x)} \le \frac{1}{t}||g_n - f||_{I,p}$$

Así, $(g_n)_n$ converge uniformemente a f sobre $X_{t,p}$, y por tanto, f es $\tau(\mathcal{F})$ -continua en $X_{t,p}$.

Sea $\delta > 0$. Existe $g \in \mathcal{F}$ tal que $||f - g||_{I,p} \leq \delta$. El conjunto

$$Q' = \{ x \in X : |g(x)| \mathcal{N}_{I,p}(x) \ge \delta \}$$

es $\tau(\mathcal{F})$ -compacto en X. Si elegimos t > 0 tal que $t||g||_{Q'} < \delta$, entonces $Q = Q' \cap X_{t,p}$ también es $\tau(\mathcal{F})$ -compacto. Ahora supongamos que $x \notin Q$. Si $x \notin Q'$ tenemos que $|g(x)|\mathcal{N}_{I,p}(x) < \delta$. Por otro lado, si $x \in Q' \setminus Q$, entonces $x \notin X_{t,p}$, lo que implica $\mathcal{N}_{I,p}(x) < t$. Así,

$$|f(x)|\mathcal{N}_{I,p}(x) \le \max\{|f(x) - g(x)|\mathcal{N}_{I,p}(x), |g(x)|\mathcal{N}_{I,p}(x)\} \le \max\{\delta, t||g||_{Q'}\} < \delta.$$

Recíprocamente, supongamos que f satisface las condiciones 1) y 2). Sea $\delta > 0$ y $p \in \Gamma$. Construiremos una $g \in \mathcal{F}$ tal que $||f - g||_{I,p} \leq \delta$.

Sean Q y t>0 tales que Q sea un $\tau(\mathcal{F})$ -compacto contenido en algún $X_{t,p}$. Las aplicaciones f y \mathcal{N}_I son acotadas en Q. Sea M>0, con $M\geq ||f||_Q$, $M\geq ||\mathcal{N}_{I,p}||_Q$. Sea

$$s = \min\left\{t, \delta M^{-1}\right\}.$$

Notar que $Q \subset X_{t,p} \subset X_{s,p}$ y $f: X_{s,p} \to \mathbb{K}$ es $\tau(\mathcal{F})$ -continua. Por el Lema 25, existe $g \in \mathcal{F}$ tal que $||g|| \le ||f||_Q$, $|g| \le |f|$ en $X_{s,p}$ y $||g - f||_Q \le s$.

Ahora bien, si $x \in Q$ se cumple que

$$|f(x) - g(x)| \mathcal{N}_{I,p}(x) \le sM \le \delta,$$

si $x \in X_{s,p} \setminus Q$ se tiene

$$|f(x) - g(x)|\mathcal{N}_{I,p}(x) \le |f(x)|\mathcal{N}_{I,p}(x) \le \delta$$

y si $x \notin X_{s,p}$, entonces

$$|f(x) - g(x)|\mathcal{N}_{I,p}(x) \le \max\{|f(x)|\mathcal{N}_{I,p}(x), |g(x)|\mathcal{N}_{I,p}(x)\}\}$$

$$\le \max\{\delta, ||f||_{Q^s}\} = \delta.$$

Por lo tanto,

$$||f - g||_{I,p} \le \delta.$$

El siguiente corolario nos da ejemplos de funciones fuera de \mathcal{F} que son I-integrables.

Corolario 60. Si $f: X \to \mathbb{K}$ es acotada y $\tau(\mathcal{F})$ -continua, entonces f es I-integrable.

Demostración. Claramente, f cumple con la condición (1) del Teorema anterior. Sea $\delta > 0$ y $p \in \Gamma$. Por el Teorema 54, el conjunto

$$Q = \{x \in X : |f(x)|\mathcal{N}_{I,p}(x) \ge \delta\}$$

es $\tau(\mathcal{F})$ -compacto. Además, si llamamos $s = \frac{\delta}{||f||}$, entonces

$$Q \subset \left\{ x \in X : \mathcal{N}_{I,p}(x) \ge \frac{\delta}{||f||} \right\} = X_{s,p}.$$

Luego, f satisface la condición (2) del Teorema anterior.

Claramente, $\mathcal{L}(I)$ es un espacio vectorial sobre \mathbb{K} . Luego, $\Omega(\mathcal{L}(I))$ es un anillo de subconjuntos de X que genera una topología cero-dimensional que llamamos $\tau(\mathcal{L}(I))$. Notar también que si $\mathcal{L}(I)$ es dotado de la topología localmente convexa generada por la familia $\{||\cdot||_{I,p}\}_{p\in\Gamma}$, entonces \mathcal{F} es denso en $\mathcal{L}(I)$. En consecuencia, el operador integral I puede extenderse de manera única a un operador $I^*:\mathcal{L}(I)\to E$ lineal continuo, esto es, tal que

$$p(I^*(f)) \leq ||f||_{I,p}$$
 para cada $p \in \Gamma$ y $f \in \mathcal{L}(I)$.

Al igual que en el caso escalar, $\mathcal{L}(I)$ es un Espacio de Wolfheze e I^* es una integral sobre $\mathcal{L}(I)$. Antes de demostrar esto, consideremos la siguiente colección:

$$\Omega^* = \{ V \subset X : V \cap X_{t,p} \text{ es un } \tau(\mathcal{F})\text{-clopen en } X_{t,p}, \text{ para todo } t > 0 \text{ y } p \in \Gamma \}$$

Claramente Ω^* es un anillo de subconjuntos de X tal que $X \in \Omega^*$. Denotamos por τ^* a la topología cero-dimensional generada por Ω^* en X. Consecuencia del Teorema 59, es que $\Omega^* \subset \Omega(\mathcal{L}(I))$. Así, la topología τ^* es menos fina que $\tau(\mathcal{L}(I))$.

Lema 61. Una función $f: X \to \mathbb{K}$ es τ^* -continua si y sólo si es continua en cada $X_{t,p}$.

Demostración. Sea A un clopen en E, t > 0 y $p \in \Gamma$. Si $f: X|_{X_{t,p}} \to E$ es $\tau(\mathcal{F})$ -continua en cada $X_{t,p}$, entonces por definición $f^{-1}(A) \in \Omega^*$, por lo que f es τ^* -continua. Por otro lado, si f es τ^* -continua, entonces existe $\Lambda \subset \Omega^*$ tal que $f^{-1}(A) = \bigcup \{V: V \in \Lambda\}$. Como

$$f^{-1}(A) \cap X_{t,p} = \bigcup \{V \cap X_{t,p} : V \in \Lambda\}$$

entonces $f^{-1}(A) \cap X_{t,p}$ es un τ -abierto, por lo que f es $\tau(\mathcal{F})$ -continua en $X_{t,p}$.

Teorema 62. Sea $I: \mathcal{F} \to E$ un operador integral sobre \mathcal{F} . Se tiene que $\mathcal{L}(I)$ también es un espacio de Wolfheze y la extensión I^* es un operador integral en $\mathcal{L}(I)$.

Demostración. Consideramos $f \in \mathcal{L}(I)$. Por Teorema 59 y Lema 61, f es τ^* -continua y por tanto, $\tau(\mathcal{L}(I))$ -continua. Del hecho que $\mathcal{F} \subset \mathcal{L}(I)$, se concluye que $\mathcal{L}(I)$ es un espacio de Wolfheze.

Por otro lado, falta ver que I^* es una integral en $\mathcal{L}(I)$. Notar que

$$\Omega(\mathcal{F}) \subset \Omega(\mathcal{L}(I)).$$

En efecto: sea $V \in \Omega(\mathcal{F})$. Mostraremos que $f\mathcal{X}_V \in \mathcal{L}(I)$ para $f \in \mathcal{L}(I)$. Sea $\varepsilon > 0$ y $p \in \Gamma$. Existe $g \in \mathcal{F}$ tal que $||f - g||_{I,p} \le \varepsilon$ y $g\mathcal{X}_V \in \mathcal{F}$. Así

$$||f\mathcal{X}_{V} - g\mathcal{X}_{V}||_{I,p} = \sup_{x \in V} |f(x) - g(x)| \mathcal{N}_{I,p}(x)$$

$$\leq ||f - g||_{I,p}$$

$$< \varepsilon.$$

Por lo tanto, $V \in \Omega(\mathcal{L}(I))$. Lo que implica que $\tau(\mathcal{F}) \subset \tau(\mathcal{L}(I))$. Luego, $\mathcal{N}_{I,p}$ es $\tau(\mathcal{L}(I))$ -semicontinua superior. Además, $\tau(\mathcal{L}(I))$ es la topología más débil que hace continua a cada $f \in \mathcal{L}(I)$ por lo que $\tau^* = \tau(\mathcal{L}(I))$. Del hecho que τ^* y $\tau(\mathcal{F})$ inducen la misma topología en $X_{t,p}$ se tiene que $\mathcal{N}_{I,p} \in \Phi(\mathcal{L}(I))$ y de esta forma I^* es estrictamente continua.

Del teorema 56 se obtiene lo buscado.

Corolario 63. $\mathcal{N}_{I^*,p} = \mathcal{N}_{I,p}$ para cada $p \in \Gamma$, $\mathcal{L}(I^*) = \mathcal{L}(I)$ y $I^{**} = I^*$.

Demostraci'on. Consideramos Ψ la familia de todas las funciones ψ definidas en X a valores reales no negativos tales que

- ψ es $\tau(\mathcal{L}(I))$ -semicontinua superior
- $p(I^*(f)) \le ||f||_{\psi}, f \in \mathcal{L}(I).$

Sea $\psi \in \Psi$, $a \in X$ y $\varepsilon > 0$. Elegimos $U \in \Omega(\mathcal{L}(I))$ tal que $a \in U$ y $\psi(x) \leq \psi(a) + \varepsilon$ para cada $x \in U$. Sea $f \in \mathcal{L}(I)$ tal que |f(a)| = 1 y $|f| \leq 1$. Se tiene que $\mathcal{X}_U f \in \mathcal{L}(I)$ y

$$p(I^*(\mathcal{X}_U f)) \le ||\mathcal{X}_U f||_{\psi}.$$

Por Corolario 54, se tiene

$$||\mathcal{X}_{U}f||_{I^{*},p} = \sup\{p(I^{*}(g)) : g \in \mathcal{L}(I), |g| \leq |\mathcal{X}_{U}f|\}$$

$$\leq \sup\{||g||_{\psi} : g \in \mathcal{L}(I), |g| \leq |\mathcal{X}_{U}f|\}$$

$$\leq ||\mathcal{X}_{U}f||_{\psi}$$

lo que implica que

$$\mathcal{N}_{I^*,p}(a) \leq \sup_{x \in U} |f(x)| \mathcal{N}_{I^*,p}(x)$$

$$\leq \sup_{x \in U} |f(x)| \psi(x)$$

$$\leq \sup_{x \in U} \psi(x)$$

$$\leq \psi(a) + \varepsilon.$$

De la arbitrariedad de ε se concluye $\mathcal{N}_{I^*,p}(a) \leq \psi(a)$. Como $\mathcal{N}_{I,p} \in \Psi$, tenemos que $\mathcal{N}_{I^*,p} \leq \mathcal{N}_{I,p}$.

Para probar la desigualdad contraria, supongamos que existe $a \in X$ y t > 0 tal que $\mathcal{N}_{I^*,p}(a) < t < \mathcal{N}_{I,p}(a)$. Por Corolario 55, existe $V \in \Omega(\mathcal{L}(I))$ tal que $a \in V$ y $\{x \in V : \mathcal{N}_{I^*,p}(x) \geq \delta\}$ es $\tau(\mathcal{L}(I))$ -compacto para todo $\delta > 0$. Como $\tau(\mathcal{L}(I)) = \tau^*$, existe $U \in \Omega^*$ tal que $a \in U \subset V$. Del hecho que $a \in \{x \in V : \mathcal{N}_{I^*,p}(x) < t\}$ y ya

que dicho conjunto es τ^* -abierto, podemos elegir U contenido en dicho conjunto. Por otro lado, como $X_{t,p}$ es $\tau(\mathcal{F})$ -cerrado en X y $U \cap X_{t,p}$ es $\tau(\mathcal{F})$ -clopen en $X_{t,p}$, entonces $U \cup (X \setminus X_{t,p})$ es τ -abierto, ya que $U = \cup \{U \cap X_{t,p} : t > 0\}$. Luego, si $f \in \mathcal{F}$, con |f(a)| = 1 y $|f| \leq 1$, se tiene

$$t < |f(a)| \mathcal{N}_{I,p}(a)$$

$$= \mathcal{N}_{m_f,p}(a)$$

$$\leq ||U \cup (X \setminus X_{t,p})||_{m_f,p}$$

$$= \sup\{p(m_f(W)) : W \in \Omega, W \subset U \cup (X \setminus X_{t,p})\}$$

lo que implica que existe $W \in \Omega, W \subset U \cup (X \setminus X_{t,p})$ tal que

$$p(I(\mathcal{X}_W f)) = p(m_f(W)) > t.$$

Como $\mathcal{X}_W f \in \mathcal{F} \subset \mathcal{L}(I)$ y $U \in \Omega^* \subset \Omega(\mathcal{L}(I))$, se tiene que $\mathcal{X}_U(\mathcal{X}_W f) = \mathcal{X}_{U \cap W} f \in \mathcal{L}(I)$. Por definición de I^* , tenemos

$$p(I^{*}(\mathcal{X}_{W}f - \mathcal{X}_{U \cap W}f)) \leq ||\mathcal{X}_{W}f - \mathcal{X}_{U \cap W}f||_{I,p}$$

$$= \sup_{x \in X} |\mathcal{X}_{W \setminus U}f(x)|\mathcal{N}_{I,p}(x)$$

$$\leq \sup_{x \in X} |\mathcal{X}_{W \setminus U}|\mathcal{N}_{I,p}(x); \qquad (|f| \leq 1)$$

$$= \sup_{x \in W \setminus U} \mathcal{N}_{I,p}(x)$$

$$\leq \sup_{x \in X \setminus X_{t,p}} \mathcal{N}_{I,p}(x); \qquad (W \setminus U \subset X \setminus X_{t,p})$$

$$\leq t.$$

Luego,

$$p(I^*(\mathcal{X}_W f - \mathcal{X}_{U \cap W} f)) < t < p(I(\mathcal{X}_W f)).$$

Ahora, como $\mathcal{X}_W f \in \mathcal{F}$, entonces $I^*(\mathcal{X}_W f) = I(\mathcal{X}_W f)$ y por lo que

$$p(I^*(\mathcal{X}_W f - \mathcal{X}_{U \cap W} f)) < t < p(I^*(\mathcal{X}_W f)).$$

Por lo tanto,

$$t < p(I^*(\mathcal{X}_{U \cap W} f)) \le \sup_{x \in W \cap U} |f(x)| \mathcal{N}_{I^*,p}(x)$$
$$\le \sup_{x \in U} |f(x)| \mathcal{N}_{I^*,p}(x)$$
$$\le t$$

lo que es un absurdo. Por lo tanto, $\mathcal{N}_{I^*,p} \geq \mathcal{N}_{I,p}$.

4.2.2. Caracterización de Funciones Integrables

Finalizamos la sección de Integración dando una caracterización de las funciones integrables con respecto a la topología τ^*

Lema 64. Sea $Q \subset X$. Las siguientes afirmaciones son equivalentes:

- a) Q es τ^* -compacto
- b) Q es τ -compacto y $Q \setminus X_{t,p}$ es finito para algún t > 0 y algún $p \in \Gamma$.

Demostración. $(b) \Longrightarrow (a)$

Sea t > 0 y $p \in \Gamma$. Sea A un τ^* -abierto en $X_{t,p}$, es decir, existe B τ^* -abierto en X tal que $A = B \cap X_{t,p}$. Existe $\{U_{\alpha}\}_{\alpha}$ colección de elementos de Ω^* tal que $B = \cup U_{\alpha}$. Así, $A = \bigcup (U_{\alpha} \cap X_{t,p})$ donde cada $U_{\alpha} \cap X_{t,p}$ es un τ -clopen en $X_{t,p}$ (por definición de Ω^*). Por lo tanto, A es un τ -abierto en $X_{t,p}$. En consecuencia, las topologías τ y τ^* coinciden en cada $X_{t,p}$, t > 0, $p \in \Gamma$.

Por otro lado, sea t > 0 y $p \in \Gamma$ tal que $Q \setminus X_{t,p}$ es finito. Sea $\{V_{\alpha}\}_{\alpha}$ cubrimiento de $Q \cap X_{t,p}$ por τ -abiertos en X y V un τ -abierto en X que cubre $Q \setminus X_{t,p}$. Por hipótesis, Q es τ -compacto y como

$$Q = (Q \cap X_{t,p}) \cup (Q \setminus X_{t,p})$$

existen $V_1, ..., V_k$ elementos de dicho cubrimiento tales que

$$Q \setminus X_{t,p} \subset Q \subset \left(\bigcup V_n\right) \bigcup V.$$

Por lo tanto $Q \cap X_{t,p}$ es τ -compacto, y por lo anterior, $Q \cap X_{t,p}$ es τ^* -compacto. Se concluye que Q es un τ^* -compacto.

$$(a) \Longrightarrow (b)$$

Recíprocamente, sea Q un conjunto τ^* -compacto. Como $\tau \subset \tau^*$ se tiene que Q es τ -compacto. Sea $Q_0 = \{x \in Q : x \in X_{t,p} \text{ para algún } t > 0 \text{ y algún } p \in \Gamma\}.$

Demostraremos la siguiente afirmación: Cada subconjunto de $Q \setminus Q_0$ es τ^* -clopen, $Q \setminus Q_0$ es finito y Q_0 es τ^* -compacto. En efecto: sea $A \subset Q \setminus Q_0$ y consideramos $B \in \Omega$. Notemos que para todo t > 0 y $p \in \Gamma$, $A \cap X_{t,p} = \emptyset$ y

$$(X \setminus A) \cap B \cap X_{t,p} = B \cap X_{t,p}.$$

Por lo tanto $A \cap B \in \Omega^*$ y $(X \setminus A) \cap B \in \Omega^*$. Luego, A es un τ^* -abierto pues

$$A = A \cap \bigcup_{B \in \Omega} B = \bigcup_{B \in \Omega} A \cap B$$

pero también es τ^* -cerrado ya que

$$X \setminus A = (X \setminus A) \cap \bigcup_{B \in \Omega} B = \bigcup_{B \in \Omega} (X \setminus A) \cap B.$$

Así, $Q \setminus Q_0$ es un τ^* -clopen, y por tanto, un τ^* -compacto. Por otro lado, para cada $x \in Q \setminus Q_0$, el conjunto $\{x\}$ es un τ^* -clopen. Entonces, existen $x_1, ..., x_n \in Q \setminus Q_0$ tales que $Q \setminus Q_0 \subset \{x_1, ..., x_n\}$. Luego, $Q \setminus Q_0$ es finito. Finalmente, la τ^* -compacidad de Q implica la τ^* -compacidad de Q_0 .

Ahora bien, por lo anterior, es suficiente mostrar que existe t > 0 y $p \in \Gamma$ tal que $Q_0 \subset X_{t,p}$. Supongamos que Q_0 no vive en ningún $X_{t,p}$, esto es, para cada $p \in \Gamma$, $\inf\{\mathcal{N}_{I,p}(x): x \in Q_0\} = 0$. Sea $p \in \Gamma$ y $\alpha \in \mathbb{K}$ con $0 < |\alpha| < 1$. Existen $a_1, a_2, a_3, \ldots \in Q$ tales que para cada $n \in \mathbb{N}$, $\mathcal{N}_{I,p}(a_n) < |\alpha|^n$ y $\mathcal{N}_{I,p}(a_n) < \mathcal{N}_{I,p}(a_{n-1})$. Como $\mathcal{N}_{I,p}$ es τ^* -semicontinua superior, para cada n podemos elegir $U_n \in \Omega^*$ tal que $\mathcal{N}_{I,p} < |\alpha|^n$

sobre U_n . Definimos la función

$$g: X \to \mathbb{K}, \quad g = \sum_{n=1}^{\infty} \alpha^{-n} \mathcal{X}_{U_n \cap \{x: \mathcal{N}_{I,p}(x) > 0\}}.$$

Sea $x \in X$. Si $\mathcal{N}_{I,p}(x) = 0$, entonces g(x) = 0. Si, por otro lado, existe s > 0 tal que $\mathcal{N}_{I,p}(x) \geq s$ entonces x vive en, a lo más, una cantidad finita de básicos U_n . Por lo tanto, g está bien definida. Por otra parte, cualquiera sea t > 0, $g_{|_{X_{t,p}}} = \sum_{n=1}^{\infty} \alpha^{-n} \mathcal{X}_{U_n \cap X_{t,p}}$ es localmente constante y cada $U_n \cap X_{t,p}$ es un τ -clopen en $X_{t,p}$, por lo que la restricción $g_{|_{X_{t,p}}}$ es τ -continua en $X_{t,p}$. Por Lema 61, g es τ -continua en X.

Finalmente, notamos que

$$...U_{n+1} \subset U_n \subset ... \subset U_2 \subset U_1$$

por lo que si elegimos $b_1, b_2, ..., b_n, ...$ en Q_0 de manera que $b_n \in U_n \setminus U_{n+1}$ para cada $n \in \mathbb{N}$, obtenemos una sucesión tal que

$$|g(b_1)| < |g(b_2)| < \dots < |g(b_n)| < \dots$$

lo que contradice el hecho que Q_0 es τ^* -compacto.

Teorema 65. $\mathcal{L}(I)$ consiste en todas las funciones $f: X \to \mathbb{K}$ tales que

- (1') f es τ^* -continua
- (2') Para cada $\delta > 0$ y $p \in \Gamma$, $\{x : |f(x)|\mathcal{N}_{I,p}(x) \geq \delta\}$ es τ^* -compacto.

Demostración. Se demostrará que (1') y (2') son equivalentes a (1) y (2) del Teorema 59, respectivamente.

Del Lema 61, es directo que (1) \iff (1'). Por otro lado, La equivalencia entre (2) y (2') es una consecuencia del lema anterior y del hecho que en cada $X_{t,p}$ las topologías τ y τ^* coinciden.

Capítulo 5

El Teorema de Radon-Nikodym

Bajo el mismo contexto del capítulo anterior, se mostrará una versión del famoso resultado que le da el nombre a este capítulo, en el marco de nuestra teoría. Consideraremos las mismas notaciones y definiciones del capítulo antedicho.

Lo primero será definir cuándo una función vectorial será integrable con respecto a una medida escalar.

5.1. Funciones vectoriales integrables

Sea $\mathcal{F}(X, E)$ un espacio vectorial de funciones E-valuadas definidas en X. Definimos

$$\Omega(\mathcal{F}(X,E)) = \{ U \subset X : \mathcal{X}_U \otimes f \in \mathcal{F}(X,E), \text{ para cada } f \in \mathcal{F}(X,E) \}$$

La colección $\Omega(\mathcal{F}(X,E))$ es un anillo de subconjuntos de X y $X \in \Omega(\mathcal{F}(X,E))$, por lo tanto genera una topología sobre X, que denotaremos por $\tau(\mathcal{F}(X,E))$.

Definición 66. Un espacio vectorial de funciones $\mathcal{F}(X, E)$ se llama espacio de Wolfheze si

- 1) cada $f \in \mathcal{F}(X, E)$ es $\tau(\mathcal{F}(X, E))$ -continua.
- 2) para cada $x \in X$, existe $f \in \mathcal{F}(X, E)$ tal que $f(x) \neq 0$.

Teorema 67. Sea $\mathcal{F}(X,E)$ un espacio de Wolfheze. La topología $\tau(\mathcal{F}(X,E))$, generada por el anillo $\Omega(\mathcal{F}(X,E))$, es la topología en X más débil tal que hace continua a cada $f \in \mathcal{F}(X, E)$.

Demostración. Es completamente análoga a la demostración del Teorema 15.

Ahora bien, sea (X, τ) un espacio topológico cero-dimensional y Ω el anillo de subconjuntos τ -clopen de X. Finalmente, consideraremos $\mu:\Omega\to\mathbb{K}$ una medida escalar.

Sea $\mathcal{F}(X) = \langle \{\mathcal{X}_U : U \in \Omega\} \rangle$. En el Ejemplo 57, vemos que $\mathcal{F}(X)$ es un espacio de Wolfheze y $\tau = \tau(\Omega(\mathcal{F}))$. Más aún, si definimos $I : \mathcal{F}(X) \to \mathbb{K}$ el operador lineal tal que $I(\mathcal{X}_U) = \mu(U)$, éste resulta ser un operador integral. Por Teorema 19, existe una única $\mathcal{N}_I: X \to [0, +\infty[$ τ -semicontinua superior, asociada a $\mathcal{F}(X)$ y a I, tal que para cada $f \in \mathcal{F}(X)$, $|f|\mathcal{N}_I = \mathcal{N}_f$. Además, $1 = \mathcal{X}_X \in \mathcal{F}(X)$, por lo que

$$\mathcal{N}_I = |\mathcal{X}_X| \mathcal{N}_I = \mathcal{N}_{\mathcal{X}_X} = \mathcal{N}_{\mu}$$

ya que
$$\mu_{\mathcal{X}_X}(U) = I(\mathcal{X}_U \mathcal{X}_X) = I(\mathcal{X}_U) = \mu(U).$$

Consideramos $\mathcal{F}(X, E) = \langle \{\mathcal{X}_U \otimes e : U \in \Omega, e \in E\} \rangle$ donde $\mathcal{X}_U \otimes e(x) = \begin{cases} e, & x \in U \\ 0, & x \notin U \end{cases}$.

Siguiendo un razonamiento análogo al del Ejemplo 57, vemos que $\mathcal{F}(X, E)$ es un espacio de Wolfheze.

Para $p \in \Gamma$ fija y $g: X \to E$, definimos

$$||g||_{\mu,p} = \sup_{x \in X} p(g(x)) \mathcal{N}_{\mu}(x)$$

lo que resulta ser una seminorma no-arquimedeana en $\mathcal{F}(X,E)$.

Diremos que g es μ -integrable si:

$$(\forall p \in \Gamma)(\forall \varepsilon > 0)(\exists h \in \mathcal{F}(X, E))(||g - h||_{\mu, p} \le \varepsilon).$$

Denotamos por $\mathcal{L}(\mu, E)$ al espacio vectorial de todas las funciones μ -integrables definidas en X con valores en E. La familia de seminormas $\{||\cdot||_{\mu,p}\}_{p\in\Gamma}$ genera una topología localmente convexa en $\mathcal{L}(\mu, E)$.

Con el fin de dar una caracterización de las funciones μ -integrables, tenemos el siguiente lema.

Lema 68. Sea $Y \subset X$ y Q un subconjunto $\tau(\mathcal{F}(X, E))$ -compacto de Y. Para cada función $\tau(\mathcal{F}(X, E))$ -continua $f: Y \to E$, cada $p \in \Gamma$ y cada $\delta > 0$ existe una función $g \in \mathcal{F}(X, E)$ tal que

- $||g||_{X,p} = \sup_{x \in X} p(g(x)) \le ||f||_{Q,p} = \sup_{x \in Q} p(f(x)),$
- $p(g) \le p(f)$ en Y y
- $||g f||_{Q,p} \le \delta.$

Demostración. Todos los términos topológicos en esta demostración son con respecto a $\tau(\mathcal{F}(X,E))$.

Sea $s = ||f||_{Q,p}$. Sin perder generalidad, podemos asumir que $\delta s^{-1} < 1$. El conjunto $Q' = \{x \in Q : p(f(x)) \ge \delta\}$ es compacto. Para cada $a \in Q'$ elegimos $g_a \in \mathcal{F}(X)$ con $g_a(a) = 1$ y $U_a \in \Omega(\mathcal{F}(X)) = \Omega$ tal que

$$\begin{cases} a \in U_a \subset g_a^{-1}(B_{\delta s^{-1}}(1)) = \{x : |g_a(x) - 1| < \delta s^{-1}\} \text{ y} \\ Y \cap U_a \subset \{x : p(f(x) - f(a)) < \delta\} \text{ (se puede ya que } f \text{ es continua)}. \end{cases}$$

Se tiene que $|g_a| = 1$ en U_a y |f| = |f(a)| en $Y \cap U_a$ (ya que $a \in Q'$). Por compacidad, existe un cubrimiento finito $U_{a(1)}, ..., U_{a(k)} \in \Omega$ de Q'. Definiendo

$$V(i) = U_{a(i)} \setminus \bigcup \{U_{a(j)} : j < i\}$$

obtenemos un cubrimiento disjunto $\{V(1), ..., V(k)\}$ para Q' de elementos de Ω . Para $x \in V(i)$, se cumple que $|g_{a(i)}(x)| = 1$ y p(f(x)) = p(f(a(i))). Ahora bien, consideramos la función

$$g: X \to E, \quad g = \sum_{i=1}^k g_{a(i)} \mathcal{X}_{V(i)} \otimes f(a(i)).$$

Claramente $g \in \mathcal{F}(X, E)$ y $||g||_{X,p} \leq ||f||_{Q,p}$. Sea $x \in Y$. Si $x \notin \bigcup V(i)$ trivialmente $p(g(x)) \leq p(f(x))$. Si $x \in V(i)$ entonces

$$p(g(x)) = |g_{a(i)}(x)|p(f(a(i))) = p(f(a(i))) = p(f(x)).$$

Por tanto, $p(g) \leq p(f)$ en Y. Ahora sea $x \in Q$. Si $x \in V(i)$, entonces

$$p(g(x) - f(x)) = p(g_{a(i)}(x)f(a(i)) - f(x))$$

$$= p(f(a(i))[g_{a(i)}(x) - 1] + [f(a(i)) - f(x)])$$

$$\leq \max\{|g_{a(i)}(x) - 1|p(f(a(i))), p(f(a(i)) - f(x))\}$$

$$\leq \max\{\delta s^{-1}||f||_{Q}, \delta\}$$

$$= \max\{\delta s^{-1}s, \delta\} = \delta.$$

Si $x \notin \cup V(i)$, entonces $x \notin Q'$ y $p(g(x) - f(x)) = p(f(x)) < \delta$. Por lo tanto,

$$||g - f||_{Q,p} \le \delta.$$

Teorema 69. Una función $f: X \to E$ es μ -integrable si y sólo si satisface las siguientes condiciones

(a) f es $\tau(\mathcal{F}(X,E))$ -continua en cada $X_t = \{x \in X : \mathcal{N}_{\mu}(x) \ge t\}, t > 0.$

(b) Para cada $\delta > 0$ y $p \in \Gamma$, existe un $\tau(\mathcal{F}(X, E))$ -compacto Q, contenido en algún X_t , tal que $p(f)\mathcal{N}_{\mu} \leq \delta$ fuera de Q.

Demostración. Nuevamente, la topología en X es $\tau(\mathcal{F}(X, E))$.

Sea $f \in \mathcal{L}(\mu, E)$ y $p \in \Gamma$. Existe una sucesión $\{g_n\}_n$ de elementos de $\mathcal{F}(X, E)$ tal que $\lim_{n \to \infty} ||f - g_n||_{\mu, p} = 0$. Ahora, si t > 0 y $x \in X_t$, entonces

$$p(g_n(x) - f(x)) = \frac{p(g_n(x) - f(x))\mathcal{N}_{\mu}(x)}{\mathcal{N}_{\mu}(x)} \le \frac{1}{t}||g_n - f||_{\mu, p}.$$

Así, $(g_n)_n$ converge uniformemente a f sobre X_t , y por tanto, f es continua en X_t .

Sea $\delta > 0$. Existe $g \in \mathcal{F}(X, E)$ tal que $||f - g||_{\mu, p} \leq \delta$. El conjunto

$$R = \{ x \in X : p(g(x)) \mathcal{N}_{\mu}(x) \ge \delta \}$$

es compacto en X ya que si $g = \sum_{i=1}^{n} \mathcal{X}_{U_i} \otimes e_i$ entonces

$$\sup_{x \in X} p(g(x)) = \max\{p(e_i) : 1 \le i \le n\} =: M$$

por lo que

$$R \subset \left\{ x \in X : \mathcal{N}_{\mu} \ge \frac{\delta}{M} \right\}.$$

Si elegimos t > 0 tal que $t||g||_{R,p} < \delta$, entonces $Q = R \cap X_t$ también es compacto. Ahora supongamos que $x \notin Q$. Si $x \notin R$, entonces $p(g(x))\mathcal{N}_{\mu}(x) < \delta$. Por otro lado, si $x \in Q \setminus R$, entonces $x \notin X_{t,p}$, lo que implica $\mathcal{N}_{\mu}(x) < t$. Así,

$$p(f(x))\mathcal{N}_{\mu}(x) \leq \max\{p(f(x) - g(x))\mathcal{N}_{\mu}(x), p(g(x))\mathcal{N}_{\mu}(x)\}$$

$$\leq \max\{\delta, t||g||_{Q,p}\} = \delta.$$

Recíprocamente, supongamos que f satisface las condiciones a) y b). Sea $\delta > 0$. Construiremos una $g \in \mathcal{F}(X, E)$ tal que $||f - g||_{\mu,p} \leq \delta$. Sean Q y t como en la condición b). Las aplicaciones f y \mathcal{N}_{μ} son acotadas en Q. Sea M > 0, con $M \geq ||f||_{Q,p}$, $M \geq ||\mathcal{N}_{\mu}||_{Q,p}$. Sea $s = \min\{t, \delta M^{-1}\}$. Notar que $Q \subset X_t \subset X_s$ y $f: X_s \to E$ es continua. Por el lema anterior, existe $g \in \mathcal{F}(X, E)$ tal que $||g||_{X,p} \leq ||f||_{Q,p}$, $p(g) \leq p(f)$ en X_s y $||g - f||_{Q,p} \leq s$.

Ahora bien, si $x \in Q$ se cumple que

$$p(f(x) - g(x))\mathcal{N}_{\mu}(x) \le sM \le \delta,$$

si $x \in X_s \setminus Q$ se tiene

$$p(f(x) - g(x))\mathcal{N}_{\mu}(x) \le p(f(x))\mathcal{N}_{\mu}(x) \le \delta$$

y si $x \notin X_s$, entonces

$$p(f(x) - g(x))\mathcal{N}_{\mu}(x) \le \max\{p(f(x))\mathcal{N}_{\mu}(x), p(g(x))\mathcal{N}_{\mu}(x)\}$$

$$\le \max\{\delta, ||f||_{Q,p}s\} = \delta.$$

Por lo tanto,

$$||f - g||_{\mu, p} \le \delta.$$

5.2. Medidas absolutamente continuas

Lema 70. Sea $\mu: \Omega \to \mathbb{K}$ una medida escalar. Sea $a \in X$ y $c \in]0,1[$. Para cada U vecindad de a existe una vecindad $W \in \Omega$ de a tal que $W \subset U$ y $|\mu(W)| \ge c\mathcal{N}_{\mu}(a)$.

Demostración. Sea U vecindad de a. Supongamos que $U \in \Omega$ y que $|\mu(U)| < c\mathcal{N}_{\mu}(a)$ (en caso contrario, el lema es evidente). Si para cada $V \in \Omega, V \subset U$ se cumple que $|\mu(V)| < c\mathcal{N}_{\mu}(a)$ entonces

$$\mathcal{N}_{\mu}(a) \le ||U||_{\mu} \le c \mathcal{N}_{\mu}(a)$$

lo que contradice el hecho que 0 < c < 1. Por lo tanto, existe un $W_0 \in \Omega$ tal que $W_0 \subset U$ y $|\mu(W_0)| \ge c\mathcal{N}_{\mu}(a)$. Si $a \in W_0$, entonces basta considerar $W = W_0$. Suponemos que $a \notin W_0$. Si hacemos $W = U \setminus W_0$, se tiene

$$|\mu(W)| = |\mu(U) - \mu(W_0)| = |\mu(W_0)| \ge c\mathcal{N}_{\mu}(a).$$

El Lema 70, muestra que las siguientes definiciones (especialmente (ii) y (iii)) tienen sentido:

Definición 71. Sea $\theta: \Omega \to E$ una función conjunto y sea $\mu: \Omega \to \mathbb{K}$ una medida escalar. Para $a \in X$, $e \in E$, $c \in]0,1[$, $r \in \mathbb{R}$ escribiremos:

(i)
$$\underset{U \to a}{LIM} \theta(U) = e \ si$$

$$(\forall p \in \Gamma)(\forall \varepsilon > 0)(\exists U \in \Omega, a \in U)(V \subset U, V \in \Omega \Rightarrow p(\theta(V) - e) < \varepsilon);$$

(ii)
$$LIM_{\mu,c} \theta(U) = e \ si$$

 $(\forall p \in \Gamma)(\forall \varepsilon > 0)(\exists U \in \Omega, a \in U)(V \subset U, V \in \Omega, |\mu(V)| \ge c\mathcal{N}_{\mu}(a) \Rightarrow p(\theta(V) - e) \le \varepsilon);$

(iii)
$$LIM_{\mu} \theta(U) = e \text{ si para todo } c \in]0,1[, LIM_{\mu,c} \theta(U) = e;$$
 $U \to a$

(iv) Para
$$p \in \Gamma$$
, $\overline{LIM}_{U \to a} p(\theta(U)) = r$ si

$$(\forall \varepsilon > 0)(\exists U \in \Omega, a \in U)(r - \varepsilon \le \sup\{p(\theta(V)) : V \in \Omega, V \subset U\} \le r + \varepsilon)$$

Lema 72. Sea $m: \Omega \to E$ una medida vectorial y sea $a \in X$. Se tiene

(a)
$$\mathcal{N}_{m,p}(a) = \overline{\underset{U \to a}{LIM}} p(m(U))$$

(b)
$$\forall p \in \Gamma, \mathcal{N}_{m,p}(a) = 0 \iff \underset{U \to a}{LIM} m(U) = 0$$

(c) Sea $\mu: \Omega \to \mathbb{K}$ una medida escalar y 0 < c < 1. Si $LIM_{\mu,c} m(U) = 0$ entonces $LIM_{U\to a} m(U) = 0$

Demostración.

(a) Ya que m es una medida, basta probar que

$$(\forall \varepsilon > 0)(\exists U \in \Omega, a \in U)(\mathcal{N}_{m,p}(a) - \varepsilon \leq ||U||_{m,p} \leq \mathcal{N}_{m,p}(a) + \varepsilon)$$

o equivalentemente

$$(\forall \varepsilon > 0) (\exists U \in \Omega, a \in U) (|||U||_{m,p} - \mathcal{N}_{m,p}(a)| \le \varepsilon)$$

lo que es directo de la definición de $\mathcal{N}_{m,p}$.

$$(b) \qquad \forall p \in \Gamma, \mathcal{N}_{m,p}(a) = 0 \iff (\forall \varepsilon > 0)(\forall p \in \Gamma)(\exists U \in \Omega, a \in U)(||U||_{m,p} \le \varepsilon)$$

$$\iff (\forall \varepsilon > 0)(\forall p \in \Gamma)(\exists U \in \Omega, a \in U)(\sup\{p(m(V)) : V \in \Omega, V \subset U\} \le \varepsilon)$$

$$\iff (\forall \varepsilon > 0)(\forall p \in \Gamma)(\exists U \in \Omega, a \in U)(V \in \Omega, V \subset U \Rightarrow p(m(V)) \le \varepsilon)$$

$$\iff LIM_{U \to a} m(U) = 0$$

(c) Sea $\varepsilon > 0$. Por definición, existe $U \in \Omega$ tal que $a \in U$ y para todo $V \in \Omega$ con $V \subset U$ y $|\mu(V)| \ge c\mathcal{N}_{\mu}(a)$, se tiene que $p(m(V)) \le \varepsilon$. Sea $W \in \Omega$ tal que $W \subset U$ y $|\mu(W)| < \mathcal{N}_{\mu}(a)$. Por Lema 70, podemos asumir que $|\mu(U)| \ge c\mathcal{N}_{\mu}(a)$. Se tiene $|\mu(U \setminus W)| = |\mu(U)| \ge c\mathcal{N}_{\mu}(a)$, por lo tanto

$$p(m(W)) = p(m(U) - m(U \setminus W)) \leq \max\{p(m(U)), p(m(U \setminus W))\} \leq \varepsilon$$

A continuación, definiremos una medida vectorial de suma importancia en los resultados que proceden.

Consideramos el operador lineal $T_{\mu}: \mathcal{F}(X, E) \to E$ definido por

$$T_{\mu}(\mathcal{X}_{U}\otimes e)=\mu(U)e.$$

(Para ver que T_{μ} está bien definido, tome dos representaciones de f, $\sum \mathcal{X}_{U_i} \otimes e_i$, y $\sum \mathcal{X}_{V_j} \otimes b_j$, con $U_k \cap U_l = \emptyset = V_k \cap V_l$ si $k \neq l$, y suponga que $\cup U_i = \cup V_j = X$. Note además que si $U_i \cap V_j \neq \emptyset$ entonces $e_i = b_j$, para cada i, j.)

El operador T_{μ} satisface

$$\forall p\in\Gamma,\quad p(T_{\mu}(f))\leq||f||_{\mu,p},\qquad (f\in\mathcal{F}(X,E)).$$
 En efecto, para $p\in\Gamma$:

$$p(T_{\mu}(f)) = p\left(T_{\mu}\left(\sum_{i=1}^{n} \mathcal{X}_{U_{i}} \otimes e_{i}\right)\right)$$

$$\leq \max\{p(\mu(U_{i})e_{i}) : 1 \leq i \leq n\}$$

$$= \max\{|\mu(U_{i})|p(e_{i}) : 1 \leq i \leq n\}$$

$$\leq \{||U_{i}||_{\mu}p(e_{i}) : 1 \leq i \leq n\}$$

$$= \max\left\{\sup_{x \in U_{i}} p(e_{i})\mathcal{N}_{\mu}(x) : 1 \leq i \leq n\right\}$$

$$= \sup_{x \in X} p(f(x))\mathcal{N}_{\mu}(x)$$

$$= ||f||_{\mu,p}$$

Ahora bien, $\mathcal{F}(X, E)$ es denso en $\mathcal{L}(\mu, E)$ (con respecto a la familia de seminormas $\{||\cdot||_{\mu,p}\}_{p\in\Gamma}\}$, por lo que T_{μ} puede ser extendido continuamente de manera única a $\mathcal{L}(\mu, E)$, satisfaciendo

$$\forall p \in \Gamma, \quad p(T_{\mu}(f)) \le ||f||_{\mu,p}, \qquad (f \in \mathcal{L}(\mu, E)).$$

Por otro lado, si fijamos $g \in \mathcal{L}(\mu, E)$, con $||g||_{X,p} < +\infty$ para cada $p \in \Gamma$, definimos

$$S_g: L(\mu) \to E, \qquad S_g(f) = T_{\mu}(f \otimes g)$$

y por el Teorema 56, S_g es un operador integral. En efecto, para $f \in L(\mu)$ y $p \in \Gamma$, se tiene

$$p(S_g(f)) = p(T_{\mu}(f \otimes g))$$

$$\leq ||f \otimes g||_{\mu,p}$$

$$= \sup_{x \in X} p(f(x)g(x))\mathcal{N}_{\mu}(x)$$

$$\leq ||g||_{X,p} \sup_{x \in X} |f(x)|\mathcal{N}_{\mu}(x)$$

$$= ||g||_{X,p}||f||_{\mu}.$$

Luego, por Ejemplo 57, existe una única medida vectorial $m_g: \Omega \to E$ asociado a S_g tal que $m_g(U) = S_g(\mathcal{X}_U) = T_\mu(\mathcal{X}_U \otimes g)$.

Denotaremos a m_g por $\mu \otimes g$. Notar que si g = e, entonces $\mu \otimes e(U) = \mu(U)e$.

Ahora, para $p \in \Gamma$, describiremos $||\cdot||_{\mu \otimes g,p}$ y $\mathcal{N}_{\mu \otimes g,p}$ en términos de $||\cdot||_{\mu}$ y \mathcal{N}_{μ} , respectivamente: Para $U \in \Omega$,

$$||U||_{\mu \otimes g,p} = \sup\{p(\mu \otimes g(V)) : V \subset U, V \in \Omega\}$$

$$= \sup\{p(S_g(\mathcal{X}_V)) : V \subset U, V \in \Omega\}$$

$$\leq \sup\{||g||_X||\mathcal{X}_V||_{\mu} : V \subset U, V \in \Omega\}$$

$$= ||g||_{X,p} \sup\{||\mathcal{X}_V||_{\mu} : V \subset U, V \in \Omega\}$$

$$= ||g||_{X,p} \sup\{||V||_{\mu} : V \subset U, V \in \Omega\}$$

$$= ||g||_{X,p}||U||_{\mu}.$$

Por otro lado, para $x \in X$

$$\mathcal{N}_{\mu \otimes g, p}(x) = \inf\{||W||_{\mu \otimes g, p} : x \in W, W \in \Omega\}$$

$$\leq \{||g||_{X} ||W||_{\mu} : x \in W, W \in \Omega\}$$

$$= ||g||_{X, p} \inf\{||W||_{\mu} : x \in W, W \in \Omega\}$$

$$= ||g||_{X, p} \mathcal{N}_{\mu}(x).$$

Lema 73. Sea $\mu: \Omega \to \mathbb{K}$ una medida escalar y $g \in \mathcal{L}(\mu, E)$. Se tiene

$$\underset{U \to a}{LIM} \left[\mu \otimes g(U) - \mu \otimes g(a)(U) \right] = 0.$$

Demostración. Sea $p \in \Gamma, \varepsilon > 0$ y $a \in X$. Notar que

$$\mu \otimes g(U) - \mu \otimes g(a)(U) = \mu \otimes [g - g(a)](U).$$

Sin perder generalidad podemos asumir que g(a) = 0 y $\mathcal{N}_{\mu}(a) \leq 1$. Ya que la función g es μ -integrable, por Teorema 69, existe Q compacto en X contenido en algún X_t tal que $p(g(x))\mathcal{N}_{\mu}(x) \leq \varepsilon$ para cada $x \notin Q$ y tal que g es continua en X_t . Ahora, si $a \notin Q$, entonces elegimos $U \in \Omega$ tal que $a \in U$ y $U \subset X \setminus Q$. Si $a \in Q$, como g es continua en a, podemos elegir $U \in \Omega$ tal que

$$x \in U \cap X_t \Longrightarrow p(g(x)) \le \varepsilon$$
.

En ambos casos se tiene

$$\forall x \in U, \quad p(g(x))\mathcal{N}_{\mu}(x) \leq \varepsilon.$$

Entonces, para $V \in \Omega$ con $V \subset U$,

$$p(\mu \otimes g(V)) = p(T_{\mu}(\mathcal{X}_{V} \otimes g))$$

$$\leq ||\mathcal{X}_{V} \otimes g||_{\mu,p}$$

$$= \sup_{x \in X} p(\mathcal{X}_{V} \otimes g(x)) \mathcal{N}_{\mu}(x)$$

$$= \sup_{x \in V} p(g(x)) \mathcal{N}_{\mu}(x)$$

$$\leq \varepsilon$$

por lo tanto $\underset{U\to a}{LIM} \left[\mu\otimes g(U)-\mu\otimes g(a)(U)\right]=0.$

Definición 74. Sea $m: \Omega \to E$ una medida vectorial $y \mu: \Omega \to \mathbb{K}$ una medida escalar. Diremos que m es absolutamente continua con respecto a μ si, para cada $a \in X$, existe $e_a \in E$ tal que

$$\forall p \in \Gamma, \quad \mathcal{N}_{m-\mu \otimes e_a, p}(a) = 0.$$

Se escribe, $m \ll \mu$.

Observación 75. Si $m \ll \mu$, para cada $U \in \Omega$, se tiene

$$||U||_{\mu} = 0 \Longrightarrow \forall p \in \Gamma, \ ||U||_{m,p} = 0.$$

Primero, notamos que

$$\mathcal{N}_{\mu}(a) = 0 \Rightarrow \forall p \in \Gamma, \mathcal{N}_{m,p}(a) = 0.$$

En efecto, sea $a \in X$ tal que $\mathcal{N}_{\mu}(a) = 0$. Sea $p \in \Gamma$. Por hipótesis, existe $e_a \in E$ tal que $\mathcal{N}_{m-\mu \otimes e_a,p}(a) = 0$. Además, por lo anterior,

$$\mathcal{N}_{\mu\otimes e_a,p}(a) \le ||e_a||_X \mathcal{N}_{\mu}(a) = p(e_a)\mathcal{N}_{\mu}(a) = 0.$$

Así, por Teorema 49,

$$\mathcal{N}_{m,p}(a) = \mathcal{N}_{m-\mu \otimes e_a + \frac{\mu}{\mu} \otimes e_a, p}(a) \le \max\{\mathcal{N}_{m-\mu \otimes e_a, p}(a), \mathcal{N}_{\mu \otimes e_a, p}(a)\} = 0.$$

Ahora bien, sea $U \in \Omega$ tal que $||U||_{\mu} = 0$. Para cada $x \in X$ se tiene $\mathcal{N}_{\mu}(x) = 0$, y por lo anterior, $\mathcal{N}_{m,p}(x) = 0$. Luego, $||U||_{m,p} = 0$.

5.3. El Teorema de Radon-Nikodym

A continuación, enunciamos el principal resultado de este trabajo.

Teorema 76. (Radon-Nikodym) Sea $m: \Omega \to E$ una medida vectorial $y \mu: \Omega \to \mathbb{K}$ una medida escalar. Las siguientes afirmaciones son equivalentes:

- (a) $m \ll \mu$.
- (b) Existe una función $g \in \mathcal{L}(\mu, E)$ tal que $m = \mu \otimes g$.

 $Demostración. (b) \Rightarrow (a)$

Directo de Lema 73 y Lema 72.

$$(a) \Rightarrow (b)$$

Por hipótesis, $\forall a \in X, \exists e_a \in E \text{ tal que } \forall p \in \Gamma, \mathcal{N}_{m-\mu \otimes e_a, p}(a) = 0.$

Primero, mostraremos que si $\mathcal{N}_{\mu}(a) > 0$, entonces el e_a correspondiente está únicamente determinado. Supongamos que existe $w_a \in E$ tal que para cualquier $p \in \Gamma$,

$$\mathcal{N}_{m-\mu\otimes e_a,p}(a)=0=\mathcal{N}_{m-\mu\otimes w_a,p}(a).$$

Entonces, para $\varepsilon > 0$, existe $U \in \Omega, a \in U$ tal que

$$\max\{||U||_{m-\mu\otimes e_a,p},||U||_{m-\mu\otimes w_a,p}\}\leq \varepsilon.$$

Notar que, en general, $p(e)\mathcal{N}_{\mu}(a) = \mathcal{N}_{\mu\otimes e,p}(a)$.

Así, para $\mathcal{N}_{\mu}(a) > 0$,

$$\begin{split} p(e_a - w_a) \mathcal{N}_{\mu}(a) &\leq p(e_a - w_a) ||U||_{\mu} \\ &= \sup_{V \in \Omega, V \subset U} |\mu(V)| p(e_a - w_a) \\ &= \sup_{V \in \Omega, V \subset U} p(\mu \otimes e_a(V) - \mu \otimes w_a(V)) \\ &= \sup_{V \in \Omega, V \subset U} p(\mu \otimes e_a(V) - m(V) + m(V) - \mu \otimes w_a(V)) \\ &= \sup_{V \in \Omega, V \subset U} \max \{ p(\mu \otimes e_a(V) - m(V)), p(m(V) - \mu \otimes w_a(V)) \} \\ &= \max_{V \in \Omega, V \subset U} \max \{ p(\mu \otimes e_a(V) - m(V)), p(m(V) - \mu \otimes w_a(V)) \} \\ &= \max_{V \in \Omega, V \subset U} \{ ||U||_{m - \mu \otimes e_a}, ||U||_{m - \mu \otimes w_a} \} < \varepsilon \end{split}$$

Luego, $p(e_a - w_a) = 0$. Por la arbitrariedad de p, podemos concluir que $e_a = w_a$.

Ahora, definimos la función

$$g: X \longrightarrow E, \qquad g(a) = \begin{cases} e_a, & \mathcal{N}_{\mu}(a) > 0 \\ 0, & \mathcal{N}_{\mu}(a) = 0. \end{cases}$$

Por lo anterior, g está bien definida. El siguiente paso es probar que g es μ -integrable. Por Teorema 69, basta mostrar que

- g es continua en cada X_t , t > 0.
- Para cada $\delta > 0$ y $p \in \Gamma$, existe un compacto Q, contenido en algún X_t , tal que $p(f)\mathcal{N}_{\mu} \leq \delta$ fuera de Q.

Sea $t>0, p\in\Gamma$ y $\varepsilon>0$. Consideramos $a\in X_t$. Como $\mathcal{N}_{m-\mu\otimes g(a),p}(a)=0$, por Lema 72,

$$\underset{U \to a}{LIM} \left[m(U) - \mu \otimes g(a)(U) \right] = 0.$$

Para este ε , existe $U \in \Omega$, $a \in U$ tal que

$$V \in \Omega, V \subset U \Rightarrow p(m(V) - \mu \otimes g(a)(V)) \le \frac{\varepsilon t}{2}.$$

Sea $b \in U \cap X_t$. Como $\mathcal{N}_{m-\mu \otimes g(b),p}(b) = 0$, podemos elegir $V_0 \in \Omega$, $V_0 \subset U$, $b \in V_0$ tal que

$$V \in \Omega, V \subset V_0 \Rightarrow p(m(V) - \mu \otimes g(b)(V)) \leq \frac{\varepsilon t}{2}.$$

Así,

$$p(g(a) - g(b))\frac{t}{2} \leq p(g(a) - g(b))\mathcal{N}_{\mu}(b)$$

$$\leq p(g(a) - g(b))||V_{0}||_{\mu}$$

$$= p(g(a) - g(b)) \sup_{V \in \Omega, V \subset V_{0}} |\mu(V)|$$

$$= \sup_{V \in \Omega, V \subset V_{0}} p(\mu \otimes g(a)(V) - \mu \otimes g(b)(V))$$

$$= \sup_{V \in \Omega, V \subset V_{0}} \max \left\{ \begin{array}{l} p(m(V) - \mu \otimes g(a)(V)), \\ p(m(V) - \mu \otimes g(b)(V)) \end{array} \right\}$$

$$\leq \frac{\varepsilon t}{2}$$

por lo que g es continua en X_t .

Por otro lado, resta probar que para cualquier $\delta > 0$ y $p \in \Gamma$, existe un compacto Q contenido en algún X_t tal que $p(g(x))\mathcal{N}_{\mu}(x) \leq \delta$ fuera de Q.

Definimos $Q = \{x \in X : \mathcal{N}_{m,p}(x) \geq \delta\}$. Q es compacto. Probaremos que éste es el compacto que necesitamos. Notar que para $x \in X$, el hecho que $\mathcal{N}_{m-\mu\otimes g(x),p}(x) = 0$ implica que $\mathcal{N}_{m,p}(x) = \mathcal{N}_{\mu\otimes g(x),p}(x)$. Si $x \notin Q$, entonces

$$p(g(x))\mathcal{N}_{\mu}(x) = \mathcal{N}_{\mu \otimes g(x),p}(x) = \mathcal{N}_{m,p}(x) < \delta.$$

Falta probar que Q está contenido en algún $X_t, t>0$. Cualquiera sea $a\in Q,$ nuevamente por Lema 72, existe $U_a\in\Omega, a\in U_a$ tal que

$$V \in \Omega, V \subset U_a \Rightarrow p(m(V) - \mu \otimes g(a)) \leq \frac{\delta}{2}.$$

Por la compacidad de Q y el hecho que

$$Q \subset \bigcup_{a \in Q} U_a,$$

se tiene que existen $U_{a_1},...U_{a_n} \in \Omega$ tales que

$$Q \subset \bigcup_{i=1}^{n} U_{a_i}.$$

Luego, si $V \in \Omega$, $V \subset U_{a_i}$, entonces

$$p(m(V)) = p(m(V) - \mu \otimes g(a_i)(V) + \mu \otimes g(a_i)(V))$$

$$\leq \max\{p(m(V) - \mu \otimes g(a_i)(V)), p(\mu \otimes g(a_i)(V))\}$$

$$\leq \max\left\{\frac{\delta}{2}, p(\mu \otimes g(a_i)(V))\right\}.$$

Eligiendo $M \ge \max\{p(g(a_i)): 1 \le i \le n\}$ y $t = \delta M^{-1}$ se tiene que $Q \subset X_t$. En efecto, si $a \in Q$, entonces $a \in U_{a_i}$ para algún i = 1, ..., n. Para cada $V \in \Omega$, $V \subset U_{a_i}$ se tiene

$$p(m(V)) \le \max \left\{ \frac{\delta}{2}, p(\mu \otimes g(a_i)(V)) \right\}$$
$$= \max \left\{ \frac{\delta}{2}, |\mu(V)| p(g(a_i)) \right\}$$
$$\le \max \left\{ \frac{\delta}{2}, |\mu(V)| \delta t^{-1} \right\}.$$

y así,

$$\delta \leq \mathcal{N}_{m,p}(a)$$

$$= \overline{LIM}_{U \to a} p(m(U))$$

$$\leq \max \left\{ \frac{\delta}{2}, \delta t^{-1} \overline{LIM}_{U \to a} |\mu(U)| \right\}$$

$$= \delta t^{-1} \overline{LIM}_{U \to a} |\mu(U)|$$

$$= \delta t^{-1} \mathcal{N}_{\mu}(a)$$

lo que implica que

$$\mathcal{N}_{\mu}(a) \geq t$$
.

En consecuencia, g es μ -integrable.

De esta forma, por Lema 73,

$$\underset{U \to a}{LIM} \left[\mu \otimes g(U) - \mu \otimes g(a)(U) \right] = 0.$$

lo que implica que cualquiera sea $p \in \Gamma$, $\mathcal{N}_{\mu \otimes g - \mu \otimes g(a), p}(a) = 0$. Luego, por como consideramos g,

$$\mathcal{N}_{m-\mu\otimes g,p}(a) \le \max\{\mathcal{N}_{m-\mu\otimes g(a),p}(a), \mathcal{N}_{\mu\otimes g-\mu\otimes g(a),p}(a)\} = 0.$$

En otras palabras, $\mathcal{N}_{m-\mu\otimes g,p}\equiv 0$. Por lo tanto $m=\mu\otimes g$.

Corolario 77. Si $m \ll \mu$ y $g \in \mathcal{L}(\mu, E)$ es la función dada por el Teorema anterior, entonces

(a)
$$\mathcal{N}_{m,p} = p(g)\mathcal{N}_{\mu}$$
.

(b)
$$f \in \mathcal{L}(m) \Longrightarrow f \otimes g \in \mathcal{L}(\mu, E)$$
.

Demostración.

(a) Sea $a \in X$.

$$\mathcal{N}_{m,p}(a) = \overline{LIM}_{U \to a} p(m(U))$$

$$= \overline{LIM}_{U \to a} p(g(a)\mu(U))$$

$$= p(g(a)) \overline{LIM}_{U \to a} |\mu(U)|$$

$$= p(g(a)) \mathcal{N}_{\mu}(a)$$

(b) Nota: Por $\mathcal{L}(m)$ entendemos al espacio de las funciones integrables (ver Definición 24) con respecto a la integral definida por la medida m, como en el Ejemplo 57.

Si $f \in \mathcal{L}(m)$, entonces para $\varepsilon > 0$ y $p \in \Gamma$, existe $h \in \mathcal{F}(X)$ tal que $||f - h||_{m,p} \le \varepsilon$. Se tiene

$$||f \otimes g - h| \otimes g||_{\mu,p} = \sup_{x \in X} p(f \otimes g(x) - h \otimes g(x)) \mathcal{N}_{\mu}(x)$$

$$= \sup_{x \in X} |f(x) - h(x)| p(g(x)) \mathcal{N}_{\mu}(x)$$

$$= \sup_{x \in X} |f(x) - h(x)| \mathcal{N}_{m,p}(x)$$

$$= ||f - h||_{m,p} < \varepsilon.$$

Por otro lado, existe $j \in \mathcal{F}(X, E)$ tal que

$$||g-j||_{\mu,p} \le \frac{\varepsilon}{||h||_{X,p}}.$$

Finalmente, $h \otimes j \in \mathcal{F}(X, E)$ y

$$\begin{split} ||f\otimes g - h\otimes j||_{\mu,p} &\leq \max\{||f\otimes g - h\otimes g||_{\mu,p}, ||h\otimes g - h\otimes j||_{\mu,p}\}\\ &\leq \max\{\varepsilon, ||h||_{X,p}||g - j||_{\mu,p}\}\\ &= \varepsilon. \end{split}$$

y por tanto $f \otimes g \in \mathcal{L}(\mu, E)$.

Corolario 78. Si $g \in C_b(X, E)$ y $m = \mu \otimes g$ entonces $\mathcal{L}(\mu) \subset \mathcal{L}(m)$.

Demostración. Para $f \in \mathcal{L}(\mu)$ y $\varepsilon > 0$ existe $h \in \mathcal{F}(X)$ tal que

$$||f - h||_{\mu} \le \varepsilon.$$

Se tiene

$$||f - h||_{m} = ||f - h||_{\mu \otimes g}$$

$$= \sup_{x \in X} |f(x) - h(x)| \mathcal{N}_{\mu \otimes g}(x)$$

$$\leq ||g||_{X} \sup_{x \in X} |f(x) - h(x)| \mathcal{N}_{\mu}(x)$$

$$= ||g||_{X} ||f - h||_{\mu} \leq \varepsilon$$

Observación 79. Notar que a lo largo de este último capítulo dos espacios de Wolfheze interactuaron: $\mathcal{F}(X)$ y $\mathcal{F}(X,E)$. El segundo queda determinado por el primero y por el espacio E. Para el caso particular en que E sea un espacio normado, no hay mayor diferencia entre ambos desarrollos, a excepción de considerar una norma en vez de una familia de seminormas. Si se considera $E = \mathbb{K}$, entonces ambos espacios de funciones coinciden, por lo que el presente estudio se simplifica sustancialmente.

Bibliografía

- [1] Aguayo, J. N., The Radon-Nikodym Theorem For Non-Arquimedean Vector Measures, Proyecciones Revista de Matemática, Vol. 20, pp. 263-279, 2001.
- [2] Aguayo, J. N. and Gilsdorf, T. E., Non-archimedean Vector Measures and Integral Operators, Lecture Notes, Marcel Dekker, Inc., Vol 222, 2001.
- [3] Katsaras, A. K., Duals Of Non-Archimedean Vector-Valued Functions Spaces, Bull. Greek Math. Soc., 22, 1981, 25-43.
- [4] Katsaras, A. K., The Strict Topology In Non-Archimedean Vector-Valued Function Spaces, Indag. Math., 46 (1984), 189-201.
- [5] Monna, A. F. and Springer, T. A., Integration Non-archimedienne, Indag. Math., 25, 634-653 (1963).
- [6] Schikhof, W. H., A Radon-Nikodym Theorem for non-arquimedean Integrals and Absolutely Continuous Measures On Groups, Indag. Math., 33, No. 1, 1971.
- [7] van Rooij, A. C. M., Non-archimedean Functional Analysis, New York, Marcel Dekker, 1978.
- [8] van Rooij, A. C. M. and Schikhof, W. H., Non-Archimedean Integration Theory, Indag. Math., 31, 190-199 (1969)