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CONCEPCIÓN-CHILE

2022

Comisión evaluadora:
Mark Ashbaugh (University of Missouri, United States)

Rafael Benguria(Pontificia Universidad Catolica de Chile, Chile)
Almut Burchard (University of Toronto, Canada)

Dominique Spehner (UdeC, Chile)
Rajesh Mahadevan (UdeC, Chile)

2



Dedicatorias

A la memoria de mi abuelo Ciro Olivares y mi abuela Oriela Azolas muertos en mis años
de permanencia en el doctorado.

3



Agradecimientos

Agradezco a CONICYT por otorgarme la beca para estudios de Doctorado nacional
CONICYT-PCHA/Doctorado Nacional/2020-21161103. Agradezco a todos los que han
colaborado en la realización de esta tesis, en especial, a Rajesh Mahadevan, por su in-
valuable apoyo en el desarrollo de esta. Por darme la libertad de investigar lo que mi
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Chapter 1

Introduction

1.1 Description of the problems along with some his-

torical background

The classical isoperimetric inequality says the following: “among all regions with a given
area, the circle has the smallest perimeter,” or its equivalent form: “among all regions
with a given perimeter, the circle has the largest area.”

Isoperimetric inequalities restricted to classes of polygons apparently date from Zenodorus
(2nd century BC). The isoperimetric inequality in the class of n-sided polygons says the
following: “A regular n-gon has greater area than all other n-gons with the same perime-
ter” (see [6]). In one of the simplest case, we find already in Euclid (see Proposition 35,
First Book of the Elements [28]) the proof that the rectangle of maximum of the area
among all rectangles of given perimeter is a square.
Although these kinds of questions have been of interest since antiquity and intuitive an-
swers to some of these questions were proposed, one can say for sure that rigorous answers
to these questions were forthcoming only since the development of modern calculus. The
pioneering contributions of the Bernoulli brothers, Euler, and Lagrange during the 18th
century, followed by those of Weierstrass during the 19th century gave rise to the devel-
opment of the area of Calculus of Variations which addresses such questions. In the 20th
century it reached greater heights with the developments of more efficient tools of analysis
with notable contributions by Hilbert, Noether, Tonelli, de Giorgi, and Almgren, among
many others. It is often the case that, to solve a particular shape optimization problem,
one has to go beyond shapes and use a mathematical framework where classical shapes
form a part. The eventual answer in the relaxed setup may not be a shape but in certain
problems it may turn out that a classical shape is a (or the) solution.

Lord Rayleigh, in his treatise, “The Theory of Sound” (see [48], 1894, pp. 339-340)
colorfully phrased the following conjecture “If the area of a membrane be given, there
must evidently be some form of boundary for which the pitch (of the principal tone) is
the gravest possible, and this form can be no other than the circle.” The conjecture was
proved independently by Faber [22] and Krahn [35], [36] in the 1920s. The result in any
dimension says that the ball minimizes the first eigenvalue of the Dirichlet Laplacian and
is now referred to as the Faber-Krahn inequality (which we refer to as FKI for short).
Since then many minimization or maximization problems for the principal eigenvalue of
standard elliptic operators with respect to the shape of the domain (with constraints
on the volume, perimeter etc.) have been studied. These results, usually, go under the
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name of Faber-Krahn inequalities or in general, isoperimetric inequalities. This thesis is
dedicated to the study of a few such problems. In order to put the results of the thesis
in context, we mention some preceding works on such inequalities. The discussion below
is by no means exhaustive.
Pólya and Szegő ([46], 1951) conjectured that among all N -gons of fixed area, the regular
N -gon of the same area minimizes the first eigenvalue of the Dirichlet Laplacian. Even
up until now this conjecture has only been established among the classes of triangles and
quadrilaterals (see [46], [29]). For other N -gons (N ≥ 5) this still remains a challenging
open problem.
Apart from the Laplacian, FKIs have been obtained for other elliptic operators, for both
locally and nonlocally defined operators. Among locally defined elliptic operators, the
FKI for the p−Laplacian which was first studied by Bhattacharya ([5], 1999) has been
revisited in recent years in a few papers [41, 18]. The sharp lower and upper bounds for
the Dirichlet Laplacian for a triangle have been studied by Siudeja [56]. Besides this,
Laugesen and Siudeja have establised in [37] that, among all triangles of given diameter,
the equilateral triangle minimizes the sum of the first n eigenvalues of the Dirichlet
Laplacian. Whereas, in the nonlocal setting, the FKI for the fractional p-Laplacian has
been studied by Brasco et al. ([10], 2014) in the class of bounded open sets and by
Olivares-Contador ([44], 2017) for the class of triangles and quadrilaterals for Dirichlet
boundary conditions (where symmetrization techniques have been used, as in this thesis).
At the same time, FKIs for the Riesz potential operator have also been studied by
Rozenblum et al. ([51], 2016) and by Kalmenov et al. ([31], 2017) in the class of open
bounded domains in Euclidean space. Analogous questions in other geometric settings
have also been studied by Ruzhansky et al. ([54], 2016). Another functional of interest
in geometric problems is the Cheeger constant of a domain which appears in Cheeger’s
pioneering work ([17], 1970). The Cheeger constant for a domain is the infimum of the
quotient of the perimeter of a subset divided by its area, among all subsets of the domain
and it also can be interpreted as the first Dirichlet eigenvalue of the 1−Laplacian (see
[33], 2008). Isoperimetric estimates for the Cheeger constant were studied in Kawohl
et al. ([32], 2003). In the work of D. Bucur et al. ([11], 2016) the following FKI was
proved: “the regular N−gon minimizes the Cheeger constant among all N -gons with a
given area”. In the nonlocal setting, the fractional Cheeger problem has been studied
by Brasco et al. in ([10], 2014) where, among other results, a fractional analogue of the
corresponding result established in [32] was proved.

In this thesis we obtain some isoperimetric inequalities for some nonlocal shape func-
tionals in the class of triangular and quadrilateral domains. The main tool that we use
to get these isoperimetric inequalities is Steiner symmetrization.

1.2 Synopsis of the chapters

Synopsis of Chapter 2
This chapter contains the technical preliminaries required for studying the problems

stated above and for their proofs. In particular, we include the definition and proper-
ties of symmetric-decreasing rearrangement and Steiner symmetrization of sets and func-
tions (Section 2.1). In that section we will especially recall Riesz’s inequality for both
symmetric-decreasing rearrangement and Steiner symmetrization. In Section 2.3, we give,
the necessary background on the Riesz potential operator and the eigenvalue functionals
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which will be studied in Chapter 3. Section 2.2 provides an introduction to the function-
als which will be studied in Chapter 4. In Section 2.4, an outline of the proofs of some
previously known Faber- Krahn inequalities, both local and nonlocal, will be given based
on Riesz’s inequality. These outlines will allow us to visualize the technique that will be
used later in proving the main results. Section 2.5 gives a brief treatment of Hausdorff
convergence for sets including some convergence results used later in Chapters 3 and 4.

Synopsis of Chapter 3
Chapter 3 contains inequalities of Faber-Krahn type for the first (largest) eigenvalue

of the Riesz potential operator. It is shown that the principal eigenvalue of the Riesz
potential operator in the class of triangular domains of given area is maximum when the
triangle is equilateral. Similarly, it is proved that the maximum value of this functional
in the class of quadrilateral domains of given area is attained when the quadrilateral is a
square. It is also established that the equilateral triangle and the square are, respectively,
the unique maximizers.

The precise mathematical statements are to be found below. Given d > 1, Ω ⊆ Rd

a bounded domain (simply connected and open) and 0 < α < d, the Riesz potential
operator is a compact self-adjoint operator defined on L2(Ω) by

(Iαu)(x) = C(d, α)

∫
Ω

u(y)

|x− y|d−α
dy (1.2.1)

where C(d, α) = π−
d
2 2−α Γ((d−α)/2)

Γ(α/2)
is a constant given in terms of the Gamma function.

The principal (largest) eigenvalue of Iα admits the characterization

λ1(Ω) = max


∫

Ω

∫
Ω

C(d, α)
u(x)u(y)

|x− y|d−α
dxdy∫

Ω
u2(x) dx

: u ∈ L2(Ω) \ {0}

 . (1.2.2)

The main theorem of Chapter 3 is the following.

Theorem 1.2.1. The maximum of λ1(Ω) among all triangles of given area is obtained
when Ω is an equilateral triangle and only when Ω is an equilateral triangle. Similarly, the
maximum of λ1(Ω) among all quadrilaterals of given area is obtained when Ω is a square
and only when Ω is a square.

We also briefly treat the corresponding isoperimetric inequalities for the Schatten p-
norms of the Riesz potential operator for integer values of p with p > max

(
d
α
, 2
)
. Indeed,

in Section 2.3, it is shown, under this hypothesis, that the singular values of the operator
form a p-summable sequence so that, by Definition 2.3.8, the operator belongs to the
Schatten p-class. Note that the Riesz operator, for p > d

α
, although not in the trace class,

could be Hilbert-Schmidt if p = 2 > d
α

. Moreover, being a positive compact self-adjoint
operator the maximal eigenvalue is the operator norm as an operator on L2 whereas the
Schatten norms are other norms of the operator containing different information on the
operator.

Theorem 1.2.2. Let p > max
(

2
α
, 2
)

be a natural number. Then, the maximum of ‖Iα,Ω‖p
among all triangles of given area is obtained when Ω is an equilateral triangle. Similarly,
the maximum of ‖Iα,Ω‖p among all quadrilaterals of given area is obtained when Ω is a
square.
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An introduction to the Riesz potential operator, which includes a discussion of eigenvalue
functionals of interest in the thesis, is given in Section 2.3. We start Section 3.1 by
giving two preliminary results which are used in the proof of the main result and are
of interest in themselves. These are; firstly, the continuity of the first eigenvalue of the
Riesz operator and of the Schatten norm with respect to the convergence in the Hausdorff
complementary metric of a sequence of uniformly bounded convex open sets (namely,
Proposition 3.1.4 and Corollary 4.2.3) and; secondly, a discussion of the equality case in
Riesz’s inequality for Steiner symmetrization (see Proposition 2.1.7). A proof of the latter
result in dimension one appears in Lieb [40]. The equality case for this inequality with
respect to the symmetric-decreasing rearrangement, in any dimension, is treated in Lieb
[39]. However, a discussion of the analogous result with respect to Steiner symmetrization,
for any dimension, is not easy to find.

Synopsis of Chapter 4
In Chapter 4, the functionals under consideration are the nonlocal s-perimeter of a

domain, and the corresponding Cheeger constant. It is shown that the minimum of these
functionals in the class of triangular domains of given area is attained for equilateral
triangles and, in the case of quadrilateral domains of given area, is attained for a square.
One is able to show that equality in the isoperimetric inequality for the non−local
s−perimeter in the class of triangles holds only for an equilateral triangle and likewise, is
a square, in the case of quadrilaterals but similar results could not be established in the
case of the nonlocal Cheeger constant.

More precisely, for 0 < s < 1, for any Borel set E ⊂ Rd the nonlocal s-perimeter Ps(E)
is, by definition,

Ps(E) =

∫
Rd

∫
Rd

|χE(x)− χE(y)|
|x− y|d+s

dxdy. (1.2.3)

The following scale-invariant nonlocal isoperimetric inequality

Ps(E)

|E|1− sd
≥ Ps(B)

|B|1− sd
(1.2.4)

where B is any d−dimensional ball, holds with equality occurring if only if E is a ball
(see Frank et al. [23] or Brasco et al. [10]).

For any Ω ⊆ Rd, a bounded open set, the nonlocal s-Cheeger constant is defined by

hs(Ω) = inf
E⊂Ω

Ps(E)

|E|
(1.2.5)

over all measurable subsets E of Ω. From (1.2.4) the following Faber-Krahn inequality
for the Cheeger constant can be deduced (see Brasco et al. [10])

|Ω|
s
dhs(Ω) ≥ |B|

s
dhs(B) . (1.2.6)

We obtain the following analogues of the isoperimetric inequalities (1.2.4) and (1.2.6)
while restricting the class of domains to be triangles or quadrilaterals.

Theorem 1.2.3. (a nonlocal isoperimetric inequality in the class of triangles and quadri-
laterals) Let 0 < s < 1. The minimum of Ps(Ω) among all triangles (open) of given area
is obtained when Ω is an equilateral triangle and only when Ω is an equilateral triangle.
Similarly, the minimum of Ps(Ω) among all quadrilaterals (open) of given area is obtained
when Ω is a square and only when Ω is a square.
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Theorem 1.2.4. (isoperimetric inequality for the nonlocal s-Cheeger constant for trian-
gles and quadrilaterals) Let 0 < s < 1. The minimum of hs(Ω) among all triangles (open)
of given area is obtained when Ω is an equilateral triangle. Similarly, the minimum of
hs(Ω) among all quadrilaterals (open) of given area is obtained when Ω is a square.

Theorems 1.2.3 and 1.2.4 are proved in a similar way to Theorem 1.2.1 but this is done
using, instead of the Riesz inequality for Steiner symmetrizations, the nonlocal Pólya-
Szegő inequality.
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Chapter 2

Preliminaries

2.1 Symmetric-decreasing rearrangement and

Steiner symmetrization of sets and functions

In this subsection we recall, mainly, the notion of Steiner symmetrization and some of its
properties. The definitions given below follow Lieb and Loss [40] or Brascamp, Lieb, and
Luttinger [9]. We also refer to the same texts and Gruber [26] for the main properties
(see [12, 3, 21, 29] for complementary information).

Proposition 2.1.1. (layer-cake representation) Let ν be a measure on the Borel sets of
R+ such that φ(t) := ν([0, t)) is finite for every t > 0. Let (Ω,Σ, µ) be a sigma-finite
measure space and f any nonnegative measurable function on Ω. Then∫

Ω

φ(f(x))µ(dx) =

∫ ∞
0

µ({x ∈ Ω : f(x) > t})ν(dt). (2.1.1)

In particular, if φ(t) = tp where p > 0, then we have

‖f‖pLp(X,dµ) = p

∫ ∞
0

tp−1µ({x ∈ Ω : f(x) > t})dt, (2.1.2)

and if µ is the Dirac measure at x ∈ Rn and φ(t) = t, (2.1.1) takes the form

f(x) =

∫ ∞
0

χ{y∈Ω:f(y)>t}(x)dt =

∫ ∞
0

χ{y∈Ω:f(y)≥t}(x)dt . (2.1.3)

Proof: See Theorem 1.13 of [40]. �

The definition of the symmetric-decreasing rearrangement used here is based on the layer
cake representation of a function f(·) in terms of its “slices” {x ∈ Ω : f(x) > t}.

Definition 2.1.2. (Symmetric-decreasing rearrangement) For any Borel measur-
able subset Ω ⊂ Rd with finite Lebesgue measure we denote by Ω∗ the open ball centered at
the origin whose measure is that of Ω. For any nonnegative Borel measurable function f
on Rd vanishing at infinity (in the sense that the level sets {f > t} all have finite measures
for any t > 0) we define the symmetric-decreasing rearrangement f ∗ of f using the layer
cake representation, by symmetrizing its level sets, that is

f ∗(x) =

∫ ∞
0

χ{y∈R:f(y)>t}∗(x)dt. (2.1.4)

f ∗ so defined is a Borel measurable function.
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Remark 2.1.3. The following are the main properties of :

1. f ∗ is radially symmetric and non-increasing, i.e., f ∗(x) = f ∗(y) if |x| = |y| and
f ∗(x) ≥ f ∗(y) if |x| ≤ |y|.

2. f and f ∗ are equimeasurable, i.e., |{x : f(x) > t}| = |{x : f ∗(x) > t}|.

Steiner symmetrization: By definition, the Steiner symmetrization of a function, in
one dimension, is the same as the symmetric-decreasing rearrangement given above. The
Steiner symmetrization of a function defined on a domain in Rd (d > 1) with respect to
a hyperplane is given in the following definition.

Definition 2.1.4. Let f be a nonnegative, Borel measurable function on Rd which van-
ishes at infinity, and let H be any hyperplane ((d− 1)-dimensional plane). We set up an
orthogonal coordinate system on Rd in such a way that, if (x′, xd) = (x1, x2, . . . , xd−1, xd)
stand for the coordinates of a generic point x, then H is the plane xd = 0.

A nonnegative, Borel measurable function Sf on Rd is called the Steiner symmetrization
with respect to H of f , if Sf(x1, x2, . . . , xd−1, ·) is the symmetric-decreasing rearrangement
of f(x1, x2, . . . , xd−1, ·) with respect to the xd variable, for each fixed x1, . . . , xd−1.

It can be seen that this naturally leads to the following definition for the Steiner sym-
metrization of a bounded measurable set Ω with respect to the hyperplane H.

Definition 2.1.5. (Steiner symmetrization of a set) For any bounded Borel measur-
able set Ω ⊂ Rd the Steiner symmetrization of Ω with respect to H, to be denoted by SΩ,
is given by

SΩ =
⋃
b∈H

Ω∩Lb 6=∅

{
b+ t ed : |t| ≤ 1

2
|Ω ∩ Lb|

}
(2.1.5)

where |Ω ∩ Lb| is the one-dimensional Lebesgue measure of Ω ∩ Lb with Lb being the line
with direction ed passing through the point b for any b ∈ H.

We recall the following properties of the Steiner symmetrization of functions.

Proposition 2.1.6. 1. The definitions of SA and Sf are consistent, that is,

χSA = SχA and S{x : f(x) > t} = {x : Sf(x) > t}.

for all Borel measurable sets A with finite Lebesgue measure and for all non-negative
Borel measurable functions f which vanish at infinity.

2. The super-level sets are equimeasurable, that is,

|{x : f(x) > t}| = |S{x : f(x) > t}|.

In particular, for any measurable set A ⊂ Rd with finite Lebesgue measure we have
V (A) = V (SA).

3. Let f be a nonnegative Borel measurable function with f ∈ L2(Rd). Then,

‖f‖2 = ‖Sf‖2.
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4. Let f : Rd −→ R be a non-negative Borel measurable function which vanishes at
infinity and let Φ : R+ → R+ be continuous and monotonically increasing with
Φ(0) = 0. Then, ∫

Rd
Φ(f(x))dx =

∫
Rd

Φ(Sf(x))dx.

Proof: For (1) see pages 183-184 of [3]. By part (1) of the Proposition 2.1.6

|{x : f(x) > t})| = |{x : Sf(x) > t}| = |S{x : f(x) > t}|.

The equality V (A) = V (SA) can be seen by decomposing the volume integral into one-
dimensional sections perpendicular to the hyperplane H and observing that the sections
have the same measure (length) before and after the rearrangement. As to (4), it is
easy to see that the hypotheses on Φ guarantee the existence of a measure ν such that
Φ(t) = ν([0, t)) for all t > 0. Then, by Proposition 2.1.1, we get∫

Rd
Φ(f(x)dx =

∫ ∞
0

|{x : f(x) > t})|ν(dt)

and ∫
Rd

Φ(Sf(x))dx =

∫ ∞
0

|{x : Sf(x) > t}|ν(dt).

Hence ∫
Rd

Φ(f(x))dx =

∫
Rd

Φ(Sf(x))dx.

Then, (3) is just a special case of (4) for the choice Φ(t) = t2. �
We now recall Riesz’s inequality for the Steiner symmetrization in one dimension. This

inequality for symmetric-decreasing rearrangement goes back to F. Riesz (1930, [49]). We
will give the proof of this inequality from Lieb and Loss [40, Lemma 3.6] (adding some
extra details) but is originally from Rogers [50] and Brascamp-Lieb-Luttinger [9]. The
equality case was studied by A. Burchard [14].

Proposition 2.1.7. (Riesz’s inequality in one-dimension) Let f, g, and h be non-
negative Borel measurable functions that vanish at infinity on R, and let f ∗, g∗ , and h∗

be their respective symmetric-decreasing rearrangements.

Then, for I(f, g, h) :=

∫
R

∫
R
f(x)g(x− y)h(y) dxdy, we have

I(f, g, h) ≤ I(f ∗, g∗, h∗). (2.1.6)

Proof: Step 1: Using Fubini’s theorem and the layer-cake decomposition on f, g, and
h, we have

I(f, g, h) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫
R

∫
R
χ{f>s}(x)χ{g>r}(x− y)χ{h>t}(y)dxdydsdrdt

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

I(χ{f>s}, χ{g>r}, χ{h>t})dsdrdt. (2.1.7)

By the same argument, we obtain

I(f ∗, g∗, h∗) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

I(χS{f>s}, χS{g>r}, χS{h>t})dsdrdt. (2.1.8)
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Since f, g, and h are nonnegative functions that vanish at infinity, their respective level
sets have finite measure. Thus, from (2.1.16) and (2.1.8), it can be seen that it is enough
to prove (2.1.6) for characteristic functions of measurable sets of finite measure.

Step 2: Let O1, O2, and O3 be sets of finite measure. By outer regularity of the Lebesgue
measure, for each k = 1, 2, 3, there exists a sequence of open sets {Ok

r}r∈N (having finite
measure for every r ∈ N) such that Ok ⊂ Ok

r ⊂ Ok
r−1for all r ∈ N and limr→∞|Ok

r | = |Ok|.
Obviously, then we also have limr→∞|(Ok

r )
∗| = |(Ok)∗|. This means that χOkr → χOk and

χ(Okr )∗ → χ(Ok)∗ in L1(R) and so, for a subsequence which we denote by the same index,
χOkr → χOk and χ(Okr )∗ → χ(Ok)∗ almost everywhere. The dominated convergence theorem
shows that

lim
r→∞

I(χO1
r
, χO2

r
, χO3

r
) = I(χO1 , χO2 , χO3) and

lim
r→∞

I(χ(O1
r)∗ , χ(O2

r)∗ , χ(O3
r)∗) = I(χ(O1)∗ , (χ(O2)∗ , χ(O3)∗) .

So, we can further deduce that it is enough to prove (2.1.6) for characteristic functions of
open sets O1, O2, O3 having finite measure.

Step 3: Now, we recall that every open subset of the real line is the disjoint union of
countably many open intervals. For k ∈ {1, 2, 3}, denote these intervals by Ik1 , I

k
2 , . . . such

that Ok = ∪∞n=1I
k
n, arranged in such a way that |Ikn+1| ≤ |Ikn|. If we set

F k
m =

m⋃
n=1

Ikn with k ∈ {1, 2, 3} (2.1.9)

we get

limm→∞|F k
m| =

∑∞
l=1|Ikl | = |Oj| for every k ∈ {1, 2, 3}.

Using the monotone convergence theorem, we see that

lim
m→∞

I(χF 1
m
, χF 2

m
, χF 3

m
) = I(χO1 , χO2 , χO3) and

lim
m→∞

I(χ(F 1
m)∗ , χ(F 2

m)∗ , χ(F 3
m)∗) = I(χ(O1)∗ , χ(O2)∗ , χ(O3)∗).

The above equations further reduce the problem of showing (2.1.6) to that of establishing
(2.1.6) for characteristic functions of sets O1, O2, O3 each of which is a finite union of
disjoint open intervals of finite length.

Step 4: Thus, we can write

I(χO1 , χO2 , χO3) =
J∑
j=1

M∑
m=1

N∑
n=1

∫ ∫
fj(x− aj)gm(x− y − bm)hn(y − cn)dxdy

where fj, gm, and hn are characteristic functions of intervals centered at the origin and
the aj, bm, and cn are real numbers. We set

Ijmn(t) =

∫ ∫
fj(x− taj)gm(x− y − tbm)hn(y − tcn)dxdy, (2.1.10)

and

It(χO1 , χO2 , χO3) =
J∑
j=1

M∑
m=1

N∑
n=1

Ijmn(t) ,
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so that I(χO1 , χO2 , χO3) = I1(χO1 , χO2 , χO3). We observe that Ijmn(t) is symmetric and
decreasing with respect to t. Indeed, by introducing the change of variables, w = x− taj,
z = y − taj + tbm, we obtain

Ijmn(t) =

∫ ∫
fj(w)gm(w − z)hn(z + t(aj − bm − cn))dwdz

=

∫
ujm(z)hn(z + t(aj − bm − cn))dz .

Then, ujm(z) =
∫
fj(w)gm(w− z)dw is of the form |(−r, r)∩ (−s+ z, s+ z)| since fj and

gm are characteristic functions of symmetric intervals about the origin and so, ujm is a
symmetric non-increasing function in z. Now, Ijmn(t) =

∫
ujm(z)hn(z+ t(aj−bm−cn))dz

is the integral of a symmetric non-increasing function ujm on shifts of a symmetric interval
and therefore, is seen to be symmetric and decreasing with respecto to t.

Now, going back to (2.1.10), notice that, as t → 0, the supporting intervals of the
functions fj(x − taj), gm(x − y − tbm) and hn(y − tcn) move toward the origin and so
when the supporting intervals of any two of the fjs or gms or hns touch each other, the
couple may be replaced by the characteristic function of a unified interval. At this stage
we reinitialise the sets O1, O2, and O3 by using the current positions of the intervals and
observe that I(χO1 , χO2 , χO3) for the reinitiailised sets O1, O2, and O3 is larger than it
was at the beginning of Step 4. We repeat the process of Step 4 with the current values
of O1, O2, and O3.

Step 5: After a finite number of repetitions of Step 4, we obtain the desired inequality

I(χO1 , χO2 , χO3) ≤ I(χ(O1)∗ , χ(O2)∗ , χ(O3)∗). �

Corollary 2.1.8. (Riesz’s inequality for Steiner symmetrization in higher di-
mensions) Let f , h, and g be nonnegative measurable functions vanishing at infinity
on Rd and V a plane passing through the origin of Rd. Then, taking for the definition,

I(f, g, h) :=

∫
R

∫
R
f(x)g(x− y)h(y) dxdy, we have

I(f, g, h) ≤ I(Sf,Sg,Sh). (2.1.11)

where Sf is the Steiner symmetrization of f with respect to V (see Definition 2.1.4).

Proof: For any fixed z′ = z1, . . . , zd−1, f ∗(z′, ·), g∗(z′, ·), and h∗(z′, ·) are, respectively,
the one-dimensional symmetric-decreasing rearrangement of f(z′, ·), g(z′, ·), and h(z′, ·).
So, for any x′, y′ in Rd−1, we apply Riesz’s inequality for one-dimensional symmetric-
decreasing rearrangement for the functions f(x′, ·), g(x′ − y′, ·), and h(y′, ·) to obtain∫

R

∫
R
f(x′, xd)g(x′ − y′, xd − yd)h(y′, yd)dxddyd

≤
∫
R

∫
R
f ∗(x′, xd)g

∗(x′ − y′, xd − yd)h∗(y′, yd)dxddyd .

Then, after integrating the inequality with respect to x′, y′, we obtain the desired inequal-
ity. �

Note: An analogous result for the symmetric-decreasing rearrangement of a function in
any dimension is the following Riesz’s inequality

I(f, g, h) ≤ I(f ∗, g∗, h∗). (2.1.12)
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where f ∗ is the symmetric-decreasing rearrangement of f (see Definition 2.1.2). For a
detailed treatment of this we refer to Burchard [13] and Lieb and Loss [40].

A more general rearrrangement inequality published in the work of Brascamp, Lieb,
and Luttinger [9] asserts the following.

Theorem 2.1.9. Let f1, f2, . . . , fm be non-negative functions on Rd which vanish at in-
finity. Let k ≤ m and let B = ((bij)) be a k ×m matrix. If we set

I(f1, f2, . . . , fm) =

∫
Rd

∫
Rd
· · ·
∫
Rd

m∏
j=1

fj

(
k∑
i=1

bijxi

)
dx1dx2 . . . dxk

then we have
I(f1, f2, . . . , fm) ≤ I(f ∗1 , f

∗
2 , . . . , f

∗
m) . (2.1.13)

The following passage is dedicated to a discussion of the equality case of the Riesz in-
equality in one dimension. A proof is sketched in Lieb and Loss [40] leaving some of
the work to be done by the reader. This proof is detailed in my master’s thesis [45]
(in Spanish). We present here a different proof given in Carlen and Maggi [15] which is
based on the Brunn-Minkowski inequality. Before studying this proof, let us recall the
Brunn-Minkowski inequality and the definition of a Lebesgue point of a measurable set
and some relevant facts about the latter.

Definition 2.1.10. We shall say that a point x is a Lebesgue point of a measurable set
A in R, if

lim
ε→0+

|A ∩B(x, ε)|
|B(x, ε)|

= 1.

We will denote the set of Lebesgue points of A as DA. Clearly, by its definition, the
interior of a set A is contained in DA and DA is contained in the closure of A. Also note
that if x is a Lebesgue point of A, then x + y is a Lebesgue point of A + y and −x is a
a Lebesgue point of −A. Finally, it is true that x is a Lebesgue point of C ∩D if x is a
Lebesgue point of C and x is a Lebesgue point of D.

Theorem 2.1.11. (Lebesgue’s density theorem) Let A ⊆ R such that m(A) > 0. Almost
every point of A is a Lebesgue point of A.

Proof: See appendix D in van Rooij and Schikhof [58]. �

The following lemma has its inspiration in Lemma 1 in A. Burchard [13].

Lemma 2.1.12. Let A and B be measurable sets in R, χA and χB their characteristic
functions. Together with the above assumptions, suppose that A and B have no isolated
points. Then,

A+B = supp(χA ∗ χB)

where (χA ∗ χB)(x) =

∫
R
χA(x− y)χB(y)dy.
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Proof: It is clear that

(χA ∗ χB)(x) = |(−A+ x) ∩B|

and that, if χA ∗ χB(x) > 0 then x ∈ A+B. Therefore,

supp(χA ∗ χB) = {x : χA ∗ χB(x) > 0} ⊂ A+B . (2.1.14)

Conversely, if x ∈ DA + DB then x = a + b with a ∈ DA and b ∈ DB. This means that
b = x− a is a Lebesgue point of B ∩ (x−A). Therefore, |(x−A) ∩B| > 0 which means
x ∈ supp(χA ∗ χB). We have shown that

DA +DB ⊂ supp(χA ∗ χB) .

By the assumption that A and B have no isolated points and since DA and A differ only
by a set of measure zero and similarly, for DB and B, it follows that DA and A have the
same closures and so do DB and B. Therefore, since the support of a function is a closed
set, this implies that

DA +DB = A+B ⊂ supp(χA ∗ χB) . (2.1.15)

So, we obtain the desired conclusion from (2.1.14) and (2.1.15). �

The Brunn-Minkowski inequality in one dimension (see [27]) states that

|A+B| ≥ |A|+ |B|,

with A and B two nonempty measurable sets in R. There is equality if and only if either
A consists of a single point or B consists of a single point, or A and B are of the form
A = I \NA and B = J \NB where NA and NB are sets of measure zero, and I and J are
closed intervals.

Proposition 2.1.13. (Lieb’s theorem on cases of equality in the Riesz rearrangement
inequality). Let f , g, and h be non-negative and non-zero integrable functions that vanish
at infinity on R where g is symmetric and strictly decreasing. Then there is equality in
(2.1.6) if and only if f(x) = f ∗(x− a) and h(x) = h∗(x− a) for some a ∈ R.

Proof: Let Fr = {f > r}, Gs = {g ≥ s} and Ht = {h > t}. Since we may write

I(f, g, h) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

I(χFr , χGs , χHt)dsdrdt

and

I(f ∗, g∗, h∗) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

I(χF ∗r , χG∗s , χH∗t )dsdrdt ,

under the hypothesis that g = g∗, equality in Riesz’s inequality implies that

I(χFr , χGs , χHt) = I(χF ∗r , χGs , χH∗t ) a.e. r, s, t. (2.1.16)

Our aim is to show that, for almost all r, Fr is an interval and they are all symmetric
with respect to some a and similarly, for almost all t, Ht is an interval and they are all
symmetric intervals about the same a.
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Since g is symmetric and strictly decreasing about intervals for every l with 0 ≤ l there
exists s such that [−l, l] = {g ≥ s}. For example s may taken to be s = sup{h : {g ≥ h} ⊂
[−l, l]}. So, for any given r and t, assuming without loss of generality that |Fr| ≤ |Ht| we
can find s such that

(Fr)
∗ +Gs = (Ht)

∗ . (2.1.17)

That is, by Lemma 2.1.12, (Ht)
∗ and supp(χF ∗r ? χGs(x)) coincide except for a null set

and so,

I(χF ∗r , χGs , χH∗t ) =

∫
R
(χF ∗r ? χGs)(x) χH∗t (x)dx

=

∫
R
(χF ∗r ? χGs(x) dx

= |(Fr)∗||Gs| = |Fr||Gs| (2.1.18)

If it happens that Fr is not an interval and since Gs is an interval, then by the equality
condition for Brunn Minkowski inequality, necesarrily one must have

|Fr +Gs| > |Fr|+ |Gs| = |(Fr)∗|+ |Gs| = |(Fr)∗ +Gs| = |(Ht)
∗| = |Ht| . (2.1.19)

Therefore, {x /∈ Ht, x ∈ supp(χFr ? χGs)(x)} is of positive measure and so,

0 <

∫
R
(χFr ? χGs)(x) χ(Ht)c(x)dx =

∫
R
χFr ? χGs(x) dx−

∫
R
(χF ∗r ? χGs)(x) χHt(x)dx

= |Fr||Gs| −
∫
R
(χFr ? χGs)(x) χHt(x)dx . (2.1.20)

So, by using (2.1.18) in (2.1.20) we get

I(χFr , χGs , χHt) < I(χF ∗r , χGs , χH∗t )

and by the continuity of the integrals on either side with respect to r, s, and t, the
inequality has to hold on an open set of values for r, s, and t contradicting (2.1.16). So,
Fr and Ht are intervals (up to sets of measure zero). We shall now prove that, Fr := A
and Ht := B are centered at the same point. For this purpose, let us write (2.1.16) as∫

R

∫
R
χA(x)χ(−l,l)(x− y)χB(y)dxdy =

∫
R

∫
R
χA∗(x)χ(−l,l)(x− y)χB∗(y)dxdy, (2.1.21)

for l > 0. Let’s consider that A has center a and B has center b. Suppose that a 6= b.
Without loss of generality, we assume that b > a. Using the above, the equation (2.1.21)
is equivalent to∫

B∗
|A∗ ∩ [(−l, l) + y]|dy =

∫
B∗
|A∗ ∩ [(−l, l) + y + b− a]|dy. (2.1.22)

From step 4 of the proof of the Proposition 2.1.7 we know that |A∗ ∩ [(−l, l) + y]| is a
non-increasing function of y (this function is also a continuous function), in particular

this function is strictly decreasing in y ∈
(
|A|
2
− l, |A|

2
+ l
)

and hence injective. Using the

above and (2.1.22) we have

|A∗ ∩ [(−l, l) + y]| = |A∗ ∩ [(−l, l) + y + b− a]|. (2.1.23)
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Therefore, by the injectivity in
(
|A|
2
− l, |A|

2
+ l
)

we get a = b.

Fixing r0 and varying t (and vice versa) shows that the center will not depend on r or t.
So almost all intervals {h > t} have the same center (the center of {f > r0}). This means
h = h∗ except for a translation.
In the same way, fixing t and varying r we conclude as before that f = f ∗ except for a
translation. �

We end this subsection by mentioning the following properties of the Steiner symmetriza-
tion of sets. Let us first fix some notions. A convex body is a compact convex set with
nonempty interior. By Kd we denote the set of all convex bodies in Rd. For a convex
body A in Rd, the inradius r(A) is the supremum of the radii of open balls contained in
A and the circumradius R(A) is the infimum of the radii of open balls containing A.

Proposition 2.1.14. Let A,B ∈ Kd. Then,

1. SA ⊆ SB for A ⊆ B.

2. r(A) ≤ r(SA).

3. R(SA) ≤ R(A).

4. S(SA) ≤ S(A) where S(A) denotes the surface area (perimeter) of A.

Proof: We refer to Gruber [26, Proposition 9.1] for a proof. �

2.2 The fractional perimeter, the fractional Cheeger

constant, and fractional order spaces

Our aim here is to provide the definitions and some main properties of the nonlocal
perimeter and nonlocal Cheeger constant of sets.

Perimeter functionals: We first recall that a Borel subset Ω of Rd is said to be of finite
perimeter if

P (Ω) := sup

{∫
Ω

divv dx : v ∈ C1
c (Ω;Rd), ‖v‖∞ ≤ 1

}
<∞.

For 0 < s < 1, for any Borel set E ⊂ Rd the nonlocal s-perimeter Ps(E) is, by definition,

Ps(E) =

∫
Rd

∫
Rd

|χE(x)− χE(y)|
|x− y|d+s

dxdy . (2.2.1)

The right hand side is just the Gagliardo semi-norm [χE]W s,1 of χE. In general, for

1 ≤ p <∞ the fractional order space W̃ s,p
0 (Ω) is taken to be the closure of C∞0 (Ω) in the

fractional order Sobolev space W s,p(Rd) equipped with the norm(∫
Rd

∫
Rd

|u(x)− u(y)|p

|x− y|d+ps
dxdy +

∫
Rd
|u|p(x) dx

)1/p

.
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Example 2.2.1. For 0 < s < 1, a direct computation gives the nonlocal perimeter of an
interval (−a, a) with a > 0

Ps((−a, a)) = 2

∫ a

−a

(∫ −a
−∞

dx

|x− y|1+s
+

∫ +∞

a

dx

|x− y|1+s

)
dy

= 4

∫ a

−a

∫ +∞

a

1

|x− y|1+s
dxdy

=
4(2a)1−s

s(1− s)
.

Example 2.2.2. For 0 < s, using spherical coordinates one can explicitly calculate the
nonlocal perimeter of a ball B(0, R),

Ps(B(0, R)) = Ps(B(x,R)) = 2

∫
B(x,R)

∫
B(x,R)C

1

|x− y|d+s
dxdy =

2ωd−1ωdR
d−s

s
.

We refer to Mazya et al. [43] and Bourgain et al. [8], respectively, for the following
asymptotic behavior as s→ 0+ and s→ 1− of the fractional perimeter:

lim
s→0+

sPs(Ω) = C(d)|Ω| and lim
s→1−

(1− s)Ps(Ω) = C ′(d)P (Ω), (2.2.2)

where C(d) and C ′(d) are constants.
So, the fractional perimeter is intermediate between the perimeter and the Lebesgue
measure. An interpolation result between the s-perimeter Ps(·) and the classical perimeter
P (·) is given below.

Proposition 2.2.3. Let s ∈ (0, 1), for every finite perimeter set E ⊂ Rd we have

Ps(E) ≤ 21−s

(1− s)s
P (E)s|E|1−s (2.2.3)

Proof: This a special case of Proposition 4.2 [10] given as Corollary 4.4 therein. �

Note: The above Proposition 2.2.3 says, in particular that, if a set E has finite perimeter
P (E) then its fractional perimeter Ps(E) is also finite.

Cheeger constants: The Cheeger constant of a set Ω ⊆ Rd has the following definition

h1(Ω) = inf
A⊆Ω

P (A)

|A|
. (2.2.4)

The Cheeger constant, which appears in a well-known work of Cheeger [17], is an impor-
tant quantity and appears in many different contexts. For a recent overview of this theme
we refer to Leonardi [38]. Here, we are interested in some questions involving a nonlocal
version of the Cheeger constant.

For any Ω ⊆ Rd, a bounded open set, the nonlocal s-Cheeger constant is defined by

hs(Ω) = inf
E⊂Ω

Ps(E)

|E|
, (2.2.5)

over all measurable subsets E of Ω. The existence of a measurable set EΩ ⊂ Ω achieving
the infimum in (2.2.5) has been shown in Brasco et al. [10, Proposition 5.3]. A minimizer
for hs(Ω) is said to be an s−Cheeger set of Ω.
The following properties are easy to prove starting from the definition.
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Proposition 2.2.4. Let Ω ⊂ Rd be an open and bounded set.

1. (homothety law) Ps(kΩ) = kd−sPs(Ω) and hs(kΩ) = k−shs(Ω) for k > 0.

2. (translation invariance) We have Ps(Ω +x) = Ps(Ω) and hs(Ω +x) = hs(Ω) for any
x ∈ Rd.

3. (rotation invariance) We have Ps(RΩ) = Ps(Ω) and hs(RΩ) = hs(Ω) for any isom-
etry R.

4. (domain monotonicity) hs(A) ≥ hs(B) for bounded open sets A,B such that A ⊆ B.

Note: Note that the perimeter functional has, in general, no monotonicity properties
with respect to domain inclusions.

Definition 2.2.5. It is said that Ω is s−calibrable if it is an s−Cheeger set of itself, that
is,

hs(Ω) =
Ps(Ω)

|Ω|
.

Example 2.2.6. Every ball B := B(0, R) of Rd is s−calibrable. This is a direct conse-
quence of the isoperimetric inequality (1.2.4) which is proved in Brasco et al. [10], which
gives for every E ⊂ B

Ps(E)

|E|
≥ Ps(B)

|B|

(
|B|
|E|

) s
d

≥ Ps(B)

|B|
,

and so

hs(B) =
Ps(B)

|B|
.

Using the Example 2.2.2 we have hs(B) = 2ωd−1R
−s

s
.

As compared to the local Cheeger constant, several issues around the nonlocality of
s-Cheeger constants are not yet well understood. For example, while in the local setting
for any convex set the Cheeger set is known to be unique [16], it is not known if this is true
in the nonlocal setting. These are not, however, the questions that we will be interested
in, in this thesis, but, rather, we are interested in some isoperimetric inequalities involving
these quantities.

2.3 Riesz operators

In this subsection we give a brief introduction to the Riesz potential operator and discuss
some spectral functionals which are of interest to us. The main references for this section
are Stein [57], Vladimirov [59], and articles by Ruzhansky et al. [51, 53, 54].

Let Ω ⊆ Rd be a bounded domain (simply connected, open) and d > 1. Let 0 < α < d.
The Riesz potential operator on L2(Ω) is defined by

(Iα,Ωu)(x) = C(d, α)

∫
Ω

u(y)

|x− y|d−α
dy (2.3.1)

with C(d, α) = π−
d
2 2−α Γ((d−α)/2)

Γ(α/2)
. If 2α < d, for u ∈ L2(Ω), the Riesz potential Iα(u) is

well defined almost everywhere.
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Note: On Rd, the Riesz potential operator Iα,Rd is the inverse of the fractional Laplacian
operator (−∆)s, with α = 2s, which may be defined for smooth functions as follows:

(−∆)su(x) := a(d, s) lim
δ→0+

∫
{y∈Rn:δ≤|x−y|}

(u(x)− u(y))

|x− y|n+2s
dy

where a(d, s) is a suitably defined constant.

Proposition 2.3.1. Let Ω ⊆ Rd be a bounded domain, d > 1. For 0 < α < d, the Riesz
potential operator Iα,Ω is a bounded linear map from L2(Ω) to L2(Ω).

Proof: The proof given here is extracted from Section 15.4 of Vladimirov [59]. Let R be
large enough such that Ω ⊆ B(0, R). Then, using the Cauchy-Schwarz inequality followed
by Tonelli’s theorem, we obtain the following estimate

‖Iα,Ωu‖2
L2(Ω) =

∫
Ω

|Iα,Ωu(x)|2dx

=

∫
Ω

∣∣∣∣∫
Ω

C(d, α)u(y)

|x− y|d−α
dy

∣∣∣∣2 dx
= (C(d, α))2

∫
Ω

∣∣∣∣∫
Ω

(
1

|x− y|(d−α)/2

)(
u(y)

|x− y|(d−α)/2

)
dy

∣∣∣∣2 dx
≤ (C(d, α))2

∫
Ω

(∫
Ω

1

|x− y′|d−α
dy′
)(∫

Ω

|u(y)|2

|x− y|d−α
dy

)
dx

≤ (C(d, α))2 max
x∈B(0,R)

(∫
B(0,R)

1

|x− y′|d−α
dy′
)

max
y∈B(0,R)

(∫
B(0,R)

1

|x− y|d−α
dx

)∫
Ω

|u(y)|2dy

≤ (C(d, α))2N2

∫
Ω

|u(y)|2dy <∞

where it is enough to take N =
∫
B(0,2R)

1
|x|d−αdx (being finite if α > 0). This shows that

Iα,Ω is a bounded operator on L2(Ω). �
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Proposition 2.3.2. For 0 < α, β and α + β < d, the Riesz potential operator satisfies
the semigroup property

IαIβ = Iα+β , (2.3.2)

with Iα := Iα,Rd.

Proof: See Stein [57, Chapter 5, Section 1]. �

Proposition 2.3.3. Let Ω ⊆ Rd be a bounded domain where d > 1. For 0 < α < d, the
Riesz potential operator Iα,Ω is a nonnegative operator.

Proof: Since the kernel of the operator Iα is symmetric, being a bounded symmetric
operator it is self-adjoint.

The non-negaitivity can be deduced using the semigroup property (2.3.2) argument from
Proposition 2.1 of [51]. Consider T : L2(Rd) −→ L2(Rd) defined by

T (u)(x) = C(d, α/2)

∫
Rd

χΩ(y)u(y)

|x− y|d−α2
dy, (2.3.3)

and its adjoint is given by

T ∗(u)(y) = χΩ(y) C(d, α/2)

∫
Rd

u(x)

|x− y|d−α2
dx. (2.3.4)

Then, we note that T ∗T : L2(Rd)→ L2(Rd) is given by

C(d, α)χΩ(x)

∫
Rd

χΩ(y)u(y)

|x− y|d−α
dy,

by using the semi-group property (2.3.2). We shall denote T ∗T by Ĩα,d which is, clearly,
a non-negative operator. Finally, we note that under the direct sum decomposition
L2(Rd) = L2(Ω)

⊕
L2(Rd \ Ω), it’s clear that Ĩα,d ∼= Iα,Ω

⊕
0. Therefore, the compo-

nent Iα,Ω is a non-negative operator. �

We recall a general result on the compactness of an integral operator on L2 space which
will give us the compactness of the Riesz operator. We refer the reader to Cwikel [19]
for details of this result while we limit ourselves to the description of the result in what
follows. For this we first recall the definition of the weak Lp space.

Definition 2.3.4. Let (X,µ) be a σ-finite measure space. For 0 < p < ∞, the space of
weak Lp functions on X, denoted by Lp,∞(X,µ) (or weak-Lp(X,µ)) is the set of equivalence
classes of µ-almost everywhere equal functions for which

‖f‖Lp,∞(X) := sup({αpµf (α) : α > 0})
1
p

is finite, where µf (α) = µ ({|f | ≥ α}) is the µ measure of the super-level set {|f | ≥ α}.

Note: For any 0 < p < ∞ we have the continuous inclusion Lp(X,µ) ⊂ Lp,∞(X,µ)
which follows from Chebyshev’s inequality

αpµu(α) =

∫
Rd
αpχ{|u|>α}dµ ≤

∫
Rd
|u(x)|pχ{|u|>α}dµ ≤

∫
Rd
|u(x)|pdµ .
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Example 2.3.5. For 0 < p <∞, it is easy to check that u(x) := 1

|x|
d
p

belong to Lp,∞(Rd)

but not does not belong to Lp(Rd). This shows that the inclusion Lp(X,µ) ⊂ Lp,∞(X,µ)
is, in general, strict.

Proposition 2.3.6. Let 2 < p < ∞ and let p′ be the conjugate exponent satisfying
1
p

+ 1
p′

= 1. Given g ∈ Lp(Rd) and f ∈ weak-Lp
′
(Rd) let us define, for any u ∈ L2(Rd),

Bf,gu(x) :=

∫
Rd
f(x− y)g(y)u(y)dy .

Then, Bf,g is a compact operator on L2(Rd). In particular its singular values sk (the
eigenvalues of ((Bf,g)

∗Bf,g)
1/2) satisfy:

sup
k≥1

k
1
p sk(Bf,g) ≤ Cp‖f‖Lp′,∞‖g‖Lp . (2.3.5)

Proof: See the estimate (1) of Cwikel [19]. �

Proposition 2.3.7. Let Ω ⊆ Rd be a bounded domain, d > 1. For 0 < α < d, the Riesz
potential operator Iα,Ω is a compact operator. The eigenvalues of Iα,Ω satisfy the estimates

λj(Ω) ≤ Cj−α/d|Ω|
α
2d . (2.3.6)

Proof: We follow [51, Proposition 2.1] here. We apply Proposition 2.3.6, while choosing

f = 1

|.|d−
α
2

which is in weak L
2d

2d−α (Rd) and g = χΩ which is in L
2d
α (Rd), to deduce that T

defined by (2.3.3) is a compact operator. Therefore the operator T ∗T is compact, but this

is the operator Ĩα,d as we have seen during the proof of Proposition 2.3.7 and consequently,
the summand Iα,Ω is a compact operator.

The estimate (2.3.5) then yields

j
α
2d sj(T ) ≤ C|Ω|

α
2d . (2.3.7)

Since the eigenvalues of Iα,Ω equal the squares of the singular numbers of T , we get

λj(Iα,Ω) = sj(T )2 ≤ Kj−
α
d |Ω|

α
d . (2.3.8)

�
We recall the following definition of operators of Schatten class from [53] and refer the
reader to the details therein for more information.

Definition 2.3.8. Let 1 ≤ p <∞. A compact operator T : H → H on a Hilbert space H
belongs to the Schatten class Sp(H) if

‖T‖p =

( ∞∑
k=1

spk

) 1
p

<∞

where sk are the singular number of T . ‖T‖p is called the Schatten-von Neumann norm of
T . When T is self-adjoint and belongs to Sp(H) for p = 2, it is called a Hilbert-Schmidt
operator and when true for p = 1 it is said to be of trace-class. If T is a self-adjoint
operator in Sp(H) and p is a positive integer, notice that ‖T‖pp is just TrT p.
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Corollary 2.3.9. The operator Iα,Ω belongs to the Schatten class Sp(L
2(Ω)) for p > d

α
.

Proof: This follows immediately from the estimate (2.3.6) and the definition of
Sp(L

2(Ω)). �

It will also be useful to keep in mind the following result (see Goffeng [25, Theorem 2.4])
which allows to give an alternate description of the Schatten p-norm for integer values of
p(> 2). Given, 1 ≤ p, q <∞, take Lp,q to be defined as consisting of the class of functions
k(x, y) on Ω× Ω such that

‖k‖Lp,q =

(∫
Ω

(∫
Ω

|k(x, y)|pdx
) q

p

dy

) 1
q

<∞.

The Hermitian conjugate of the function k is defined by k∗(x, y) := k(y, x).

Theorem 2.3.10. Suppose that Kj : L2(Ω) → L2(Ω) are operators with integral kernels
kj for j = 1, · · · ,m such that ‖kj‖Lp′,p, ‖k∗j‖Lp′,p <∞ for certain p > 2 where p′ denotes
the exponent conjugate of p. Then, for m ≥ p, the operator K1K2 . . . Km is a trace class
operator, and we have the trace formula

Tr(K1K2 · · ·Km) =

∫
Ωm

m∏
j=1

kj(xj, xj+1)dx1dx2 · · · dxm

where we identify xm+1 with x1.

As an immediate corollary we have.

Corollary 2.3.11. Let p > max

(
d

α
, 2

)
be a natural number. Then, we have

‖Iα,Ω‖pp =
∞∑
k=1

spk = Tr(Ipα,Ω) = (C(d, α))p
∫

Ωp

p∏
k=1

|xk − xk+1|α−ddx1 . . . dxp, (2.3.9)

where xp+1 is identified with x1.

Proof: The hypothesis on p guarantees that | · |−(d−α) is locally in Lp
′

allowing us to
apply Theorem 2.3.10 with m = p and obtain the desired conclusion. �
The spectral functionals of interest in the thesis are, the first eigenvalue λ1(Ω) of the Riesz
operator and the Schatten norm ‖Iα,Ω‖p of the Riesz operator (for p in N). We gather
below some of their relevant properties which will be used in Chapters 3 and 4. The first
(largest) eigenvalue of the Riesz operator is characterized as follows:

λ1(Ω) = max


∫

Ω

∫
Ω

C(d, α)
u(x)u(y)

|x− y|d−α
dxdy∫

Ω
u2(x) dx

: u ∈ L2(Ω) \ {0}

 . (2.3.10)

It can be shown that the maximizer u1 for (1.2.2) exists, and is, in fact, continuous and
satisfies the following Euler-Lagrange equation in the weak form∫

Ω

∫
Ω

C(d, α)
u1(x)φ(y)

|x− y|d−α
dxdy=λ1(Ω)

∫
Ω

u1(x)φ(x)dx for all φ ∈ L2(Ω) , (2.3.11)
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the strong formulation being

C(d, α)

∫
Ω

u1(y)

|x− y|d−α
dy = λ1(Ω)u1(x) in L2(Ω) . (2.3.12)

Moreover, the first eigenvalue is simple and the eigenfunction is of constant sign as
stated in Lemma 3.1 of [54] and referred to as Jentzsch’s theorem.

Proposition 2.3.12. Let Ω ⊆ Rd be a bounded domain, d > 1. For 0 < α < d, the first
eigenvalue λ1 (the largest) of the Riesz potential operator Iα,Ω is positive and simple; the
corresponding eigenfunction u1 can be chosen positive.

Proof: We reproduce the following proof from Lemma 3.1 of [54]. It will use the fact
that I2

α,Ω, being the square of Iα,Ω, is also a compact, self-adjoint, and positive linear
operator, and by the variational principle we have that

λ2
1 = sup

f∈L2(Ω),f 6=0

〈I2
α,Ωf, f〉
‖f‖2

. (2.3.13)

Let λ1 be the first eigenvalue of Iα,Ω and u1 an eigenfunction corresponding to λ1, that
is, Iα,Ωu1 = λ1u1. We keep in mind that I2

α,Ωu1 = λ2
1u1. We assume, without loss of

generality, that the L2 norm of u1 is 1.
First, we shall prove that u1 cannot change sign in the domain Ω, which is equivalent to,

|u1(x)u1(y)| = u1(x)u1(y) for all x ∈ Ω and y ∈ Ω . (2.3.14)

We can proceed by assuming that (2.3.14) is false, so there are x0 and y0 ∈ Ω such that

|u1(x0)u1(y0)| > u1(x0)u1(y0). (2.3.15)

From the continuity of u1, there are open neighborhoods U(x0, r) ⊂ Ω and U(y0, r) ⊂ Ω
such that

|u1(x)u1(y)| > u1(x)u1(y) for all x ∈ U(x0, r) and y ∈ U(y0, r) .

Therefore,

〈I2
α,Ω|u1|, |u1|〉 = 〈Iα,Ω|u1|, Iα,Ω|u1|〉 = C(d, α)2

∫
Ω

∫
Ω

∫
Ω

|u1|(y)

|y − z|d−α
|u1|(x)

|x− z|d−α
dydxdz

> C(d, α)2

∫
Ω

∫
Ω

∫
Ω

u1(y)

|y − z|d−α
u1(x)

|x− z|d−α
dydxdz

= 〈Iα,Ωu1, Iα,Ωu1〉 = λ2
1 . (2.3.16)

which contradicts the variational principle (2.3.13). So, u1 is of the same sign in Ω and
moreover, there cannot be any x0 in Ω such that u(x0) = 0. Indeed, it follows from the
relation

u1(x0) =
1

λ1

π−
d
2 2−α

Γ((d− α)/2)

Γ(α/2)

∫
Ω

u(y)

|x0 − y|d−α
dy

that if u1(x0) = 0 then it is zero identically in the whole of Ω which is not possible.
Finally, we show that λ1 is simple. Let’s suppose that u1 and f1 are two eigenfunctions

corresponding to λ1 which are linearly independent, then u1 + cf1 is also an eigenfunction
for λ1 for an arbitrary real number c. By what has been proved, without loss of generality
u1 + cf1 > 0 in Ω, that is, c > −u1

f1
. This is a contradiction since c is an arbitrary real

number. �
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Proposition 2.3.13. Let Ω ⊂ Rd be an open and bounded set. Then, the domain func-
tionals λ1(·) (the first eigenvalue of the Riesz operator) and ‖Iα,·‖p (the Schatten norm of
the Riesz operator) satisfy the following properties

1. (translation invariance) F (Ω) = F (Ω + x) for all x ∈ Rd.

2. (invariance under orthonormal transformations) F (Ω) = F (T (Ω)) for every or-
thonormal transformation T .

3. (homothety law) F (kΩ) = kαF (Ω) for any k > 0.

4. (domain monotony) If A ⊂ B are open sets, then F (A) ≤ F (B).

Proof: The properties for λ1 are easily established starting from the variational for-
mulation of λ1. In the case of the Schatten norm it is more convenient to start from the
expression (2.3.9). We sketch the proof of properties 1 and 3 for the functional λ1(·). Let
z ∈ Rd, for this note that u 7→ w, given by w(x) := u(x + z), is an isomorphism from
L2(Ω) to L2(Ω + z) and under this isomorphism, we have∫

Ω+z

∫
Ω+z

w(x)w(y)
|x−y|d−αdxdy∫

Ω+z
|w(x)|2dx

=

∫
Ω+z

∫
Ω+z

u(x+z)u(y+z)
|x−y|d−α dxdy∫

Ω+z
|u (x+ z)|2 dx

=

∫
Ω

∫
Ω

u(t)u(r)
|t−r|d−αdtdr∫

Ω
|u(t)|2dt

from which property 1 follows by taking the maximum. Now we show property 3, for this

note that u 7→ w, given by w(x) := u
(x
k

)
, is an isomorphism from L2(Ω) to L2(kΩ) and

under this isomorphism, we have∫
kΩ

∫
kΩ

w(x)w(y)
|x−y|d−αdxdy∫

kΩ
|w|2(x)dx

=

∫
kΩ

∫
kΩ

u(xk )u( yk)
|x−y|d−α dxdy∫

kΩ

∣∣u (x
k

)∣∣2 dx
= kα

∫
Ω

∫
Ω

u(z)u(r)
|z−r|d−αdzdr∫

Ω
|u(z)|2dz

from which property 3 follows by taking the maximum. Properties 2 and 4 can be proved
analogously. �

2.4 Isoperimetric inequalities

In this section we recall some isoperimetric inequalities, both local and nonlocal, already
known in the literature along with short sketches of their proofs. A few of the most basic
isoperimetric inequalities are the following:

P (A∗) ≤ P (A) and P (SA) ≤ P (A) for any Borel measurable set in Rd of finite perimeter .

Closely related to these isoperimetric inequalities are the Pólya-Szegő and Riesz inequal-
ities.

28



Theorem 2.4.1. (local Pólya-Szegő inequality) Let u be a non-negative function
belonging to H1

0 (Rn). Then∫
Rn
|∇u∗(x)|2dx ≤

∫
Rn
|∇u(x)|2dx .

Proof: The following proof is from Lieb and Loss [40]. Let û be the Fourier transform
of u. Then, we have∫
Rn
|∇u(x)|2dx =

∫
Rn
|∇̂u(x)|2dx =

∫
Rn

4π2|ξ||û(ξ)|2dξ

= lim
t→0

1

t

∫
Rn

(1− e−4π2|ξ|2t)|û(ξ)|2dξ

= lim
t→0

(
1

t

∫
Rn
|û|2 − 1

t

∫
Rn
û(ξ)(Gt ∗ u)ˆ(ξ)dξ

)
= lim

t→0

(
1

t

∫
Rn
|u|2 − 1

t

∫
Rn

∫
Rn
Gt(x− y)u(x)u(y)dxdy

)
≥ lim

t→0

(
1

t

∫
Rn
|u∗|2 − 1

t

∫
Rn

∫
Rn
u∗(x)Gt(x− y)u∗(y)dxdy

)

where Gt(x − y) = 1
(4πt)n/2

e
−|x−y|2

4t is the heat kernel. The inequality in the last line is a

consequence of the Riesz inequality (2.1.12). �

Isoperimetric inequality for the fractional perimeter: The following scale-invariant
nonlocal isoperimetric inequality

Ps(E)

|E|1− sd
≥ Ps(B)

|B|1− sd
(2.4.1)

where B is any d−dimensional ball, holds with equality ocurring if only if E is a ball.
This result follows directly from the fractional Sobolev inequality Theorem 4.1 proved in
Frank and Seiringer [24] which they proved using a fractional Pólya-Szegő inequality on
Lp. If we restrict ourselves to sets of finite perimeter in Rd, then the above result also
can be obtained following Proposition 4.2 and Corollary 4.4 of Brasco et al. [10]. The
nonlocal isoperimetric inequality may be viewed as saying that the symmetric-decreasing
rearrangement diminishes the fractional perimeter. As regards the Steiner symmetrization
we may state the following and it, basically, follows directly from Corollary 4.1.2 (which
is proved in Chapter 4 of this thesis) for the choice of the function χE in W s,1(Rd).

Ps(SE) ≤ Ps(E) for every Borel set E of finite perimeter (2.4.2)

where SE is Steiner symmetrization with respect a hyperplane.
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Theorem 2.4.2. (nonlocal Pólya-Szegő inequality under symmetric-decreasing

rearrangement) Let d ≥ 1, 0 < s < 1, 2s < d and u ∈ W̃ s,2
0 (Ω). Then,∫

Rd

∫
Rd

|u∗(x)− u∗(y)|2

|x− y|d+2s
dxdy ≤

∫
Rd

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dxdy .

The equality holds iff u is proportional to a translate of a symmetric-decreasing function.

Proof: See [1] and [24] (where also the equality case is discussed). �

Remark 2.4.3. In [44] the nonlocal Pólya-Szegő inequality for Steiner symmetrization is
stated without proof. A proof of this can be found in my master’s thesis [45] (in Spanish).
In Chapter 4, we give an English translation of the same for the sake of completeness.

(Rayleigh-Faber-Krahn inequalities): We briefly recall the following Faber-Krahn
inequalities.

Theorem 2.4.4. (FKI for the Dirichlet Laplacian) Let Ω be an open set of finite
volume in Rd and let

λ1(Ω) = inf

{∫
Ω

|∇u(x)|2dx : u ∈ H1
0 (Ω), ‖u‖L2(Ω) = 1

}
(2.4.3)

be the first eigenvalue of the Laplacian eigenvalue problem on Ω with Dirichlet boundary
conditions {

−∆u = λu in Ω

u = 0 on ∂Ω.
(2.4.4)

Then, we have
λ1(Ω) ≥ λ1(Ω∗)

where Ω∗ is the ball having the same volume as Ω.

Proof: Let φ1 be a minimizer for λ1(Ω) in (2.4.3) so that

λ1(Ω) =

∫
Rn
|∇φ1(x)|2dx . (2.4.5)

Applying the Pólya-Szegő inequality (Theorem 2.4.1) together with the observation that
the L2−norm is unchanged under symmetric-decreasing rearrangement, that is, it holds
that ‖φ1‖2 = ‖φ∗1‖2 = 1, we get

λ1(Ω) =

∫
Ω

|∇φ1(x)|2dx ≥
∫

Ω∗
|∇φ∗1(x)|2dx ≥ λ1(Ω∗) . (2.4.6)

�

Theorem 2.4.5. (FKI for the Riesz potential operator) Let Ω be an open set of
finite volume in Rd. Abusing notation, let λ1(Ω) be the first eigenvalue of the Riesz
potential operator given as in (1.2.2). Then, we have

λ1(Ω∗) ≥ λ1(Ω).

Where Ω∗ is the symmetric rearrangement of Ω.
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Proof: This is given following Lemma 3.2 of [51]. Let φ1 be a maximizer of λ1(Ω).
Then, using Riesz’s inequality for the symmetric-decreasing rearrangement (2.1.12) to-
gether with the observation that the L2−norm is unchanged under symmetric-decreasing
rearrangement, we have

λ1(Ω) = C(d, α)

∫
Ω

∫
Ω

φ1(x)φ1(y)

|x− y|d−α
dxdy ≤ C(d, α)

∫
Ω∗

∫
Ω∗

φ∗1(x)φ∗1(y)

|x− y|d−α
dxdy ≤ λ1(Ω∗) .

(2.4.7)

�

Theorem 2.4.6. For Ω ⊂ Rd which is open and bounded, let λs1(Ω) be the principal
Dirichlet eigenvalue for the fractional Laplacian defined as below

λs1(Ω) = inf
u∈W̃ s,2

0 (Ω)

{
[u]2W s,2(Ω) :=

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy : ‖u‖L2(Ω) = 1

}
(2.4.8)

over the fractional order Sobolev space W̃ s,2
0 (Ω). Then, we have

λs1(Ω) ≥ λs1(Ω∗). (2.4.9)

Moreover, if equality holds in (2.4.9) then Ω is a ball.

Proof: The inequality and the equality case, can be deduced using Theorem 2.4.2. �
The following is an isoperimetric inequality for the Schatten norms of Riesz potential

proved in Rozenblum et al. [51].

Theorem 2.4.7. For any integer p with p0 := d
α
< p <∞ , we get

‖Iα,Ω‖p ≤ ‖Iα,Ω∗‖p .

Proof: By the trace formula for the Schatten norm of Iα,Ω given in Corollary 2.3.11, we
get

∞∑
j=1

λj(Ω)p = Tr(Ipα,Ω) = (C(d, α))p
∫

Ωp

p∏
k=1

|xk−xk+1|α−ddx1 . . . dxp, xp+1 ≡ x1. (2.4.10)

By Brascamp-Lieb-Luttinger inequality (2.1.13) for symmetric-decreasing rearrangement,
we get ∫

Ω

. . .

∫
Ω

|y1 − y2|α−d|y2 − y3|α−d . . . |yp − y1|α−ddy1 . . . dyp

≤
∫

Ω∗
. . .

∫
Ω∗
|y1−y2|α−d|y2 − y3|α−d . . . |yp − y1|α−ddy1 . . . dyp.

By the above inequality and (2.4.10), we get

∞∑
j=1

λpj(Ω) ≤
∞∑
j=1

λpj(Ω
∗) . �
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2.5 Hausdorff convergence of sets

Definition 2.5.1. The Minkowski addition of two sets X, Y ⊂ Rd is defined by

X ⊕ Y :=
⋃
y∈Y

(X + y). (2.5.1)

The Minkowski difference of two sets X, Y ⊂ Rd is defined by

X 	 Y :=
⋂
y∈Y

(X − y). (2.5.2)

If Y = −Y , then

X 	 Y =
⋂
y∈Y

(X + y). (2.5.3)

Note: If K is a convex body the set K 	 B(0, ε) is called the inner parallel body of K
at distance ε (see pages 93 and 148 of [55]).

Definition 2.5.2. Let K and C be two nonempty compact sets in Rd. Then their Haus-
dorff distance is defined as

dH(K,C) = inf{ε ≥ 0 ; K ⊆ C ⊕B(0, ε) and C ⊆ K ⊕B(0, ε)} .

Let O1, O2 be two open subsets of a compact set B. Then the so-called complementary
Hausdorff distance is defined by:

dH(O1, O2) = dH(B\O1, B\O2). (2.5.4)

Remark 2.5.3. dH(Kn, K) −→ 0 when n→∞ if and only if for every ε > 0 there is nε
such that Kn ⊆ K ⊕B(0, ε) and K ⊆ Kn ⊕B(0, ε) for every n ≥ nε.

The following compactness result with respect to Hausdorff convergence shall be useful.

Theorem 2.5.4. Let B be a fixed compact set in Rd and {Ωn} a sequence of open sets in
B. Then, there is an open set Ω ⊂ B and a subsequence {Ωnk} of {Ωn} which converges
with respect to the Hausdorff distance to Ω.

Proof: See Theorem 2.3.15 of Henrot [29]. �

Remark 2.5.5. Let {Pk} a sequence of polygons of n sides, contained in a closed ball
B, then by Theorem 2.5.4 we have there is a set P such that a subsequence of {Pk}
converges with respect to the Hausdorff distance to P . By the Heine-Borel theorem, up
to a subsequence, the vertices of Pk converge to some number m of distinct points. So,
in fact, these point should be the vertices of P , a polygon of m sides with m ≤ n. In
particular, it follows that if {4n} is a sequence of triangular domains with fixed area say
A that converges with respect to the Hausdorff distance to a domain 4, then we have
limn−→∞Area(4n) = Area(4) = A. If 4 is an interval, then we have Area(4) = 0 < A.
Therefore 4 is a triangle. �

Finally, we end this section by stating a lower semicontinuity result for the perimeter
with respect to the convergence, in the complementary Hausdorff distance, for which we
refer to Henrot and Pierre [30, Section 2.3] for the details. Given a family of convex open
sets {Ωn}, all contained in a fixed ball, that converges with respect to the complementary
Hausdorff distance to an open convex set Ω we have

P (Ω) ≤ lim
n→∞

P (Ωn) . (2.5.5)
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Chapter 3

Isoperimetric inequalities for the
Riesz potential operator in the class
of triangles and quadrilaterals

The main results of this chapter are the isoperimetric inequalities for the first eigenvalue
and the Schatten norm of the Riesz potential operator while restricting the class of do-
mains to be triangles or quadrilaterals. Some of the existing results have been reviewed
briefly in the Introduction and recalled in Chapter 2.4. We recall that, given d > 1,
0 < α < d and a bounded open domain Ω ⊆ Rd, the Riesz operator Iα,Ω : L2(Ω)→ L2(Ω)
has been defined in Chapter 2.3 by

(Iαu)(x) = C(d, α)

∫
Ω

u(y)

|x− y|d−α
dy

where C(d, α) = π−
d
2 2−α Γ((d−α)/2)

Γ(α/2)
. This was seen to be a compact, self-adjoint, and

positive operator whose maximal eigenvalue is given by

λ1(Ω) = max

{∫
Ω

∫
Ω

C(d, α)
u(x)u(y)

|x− y|d−α
dxdy : u ∈ L2(Ω), ‖u‖L2(Ω) = 1

}
.

The maximizer in the above exists and is an eigenfunction which satisfies the following
Euler-Lagrange equation

C(d, α)

∫
Ω

u(y)

|x− y|d−α
dy =λ1(Ω)u(x) in L2(Ω) (3.0.1)

having the weak formulation∫
Ω

∫
Ω

C(d, α)
u(x)φ(y)

|x− y|d−α
dxdy=λ1(Ω)

∫
Ω

u(x)φ(x)dx for all φ ∈ L2(Ω) . (3.0.2)

Moreover, the first eigenvalue is simple and the eigenfunction is of constant sign. The main
aims of this chapter are to prove Theorems 1.2.1 and 1.2.2. We also prove two secondary
results which are used in the proof of the main results. The first is the continuity of the
functionals λ1(Ω) and ‖Iα,Ω‖p of the Riesz operator with respect to the convergence in
the Hausdorff complementary metric of a family of uniformly bounded convex open sets
(Proposition 3.1.4 and Corollary 4.2.3). The second is a discussion of the equality case in
Riesz’s inequality for the Steiner symmetrization in higher dimensions, a result which is
not thoroughly treated in the literature.
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3.1 Continuity of the shape functionals for the Riesz

potential operator

Before we can prove the continuity results Proposition 3.1.4 and Corollary 4.2.3 for the
spectral functionals for the Riesz operator we need the following observations on convex
bodies.
The first proposition shows formally that the inner parallel body of a set X at distance ε
is contained in the complement, within any bigger set Z, of the fattening of Z \X by ε.

Proposition 3.1.1. Let X,Z ⊂ Rd with X ⊂ Z and let ε > 0. Then

X 	B(0, ε) ⊆ Z\((Z\X)⊕B(0, ε)) . (3.1.1)

Proof: From (2.5.2) it follows that (X 	B(0, ε))c = Xc ⊕B(0, ε) from which

Z ∩ (X 	B(0, ε))c = Z ∩ (Xc ⊕B(0, ε)). (3.1.2)

On the other hand, we have trivially

Z ∩ ((Z ∩Xc)⊕B(0, ε)) ⊆ Z ∩ (Xc ⊕B(0, ε)).

So, after taking the complement with respect to Z in the previous relation and then, using
(3.1.2), we get

Z\(Z ∩ (X 	B(0, ε))c) ⊆ Z\(Z ∩ ((Z ∩Xc)⊕B(0, ε))).

From this, in view of the hypothesis that X ⊆ Z, we get

X 	B(0, ε) ⊆ Z\((Z ∩Xc)⊕B(0, ε)). �

Proposition 3.1.2. Let X be an open convex set of Rd. Then, the following holds:

X 	B(0, ε) = X 	B(0, ε) .

Proof: On the one hand, it is clear that X 	B(0, ε) ⊆ X 	B(0, ε).
On the other hand, for any x ∈ X 	 B(0, ε), it follows from the definition (2.5.2) that

B(x, ε) ⊆ X. Since for an open convex set it is true that Ẋ = X (see Theorem 2.28 of
[47]) we get B(x, ε) ⊆ X, and so, x ∈ X 	B(0, ε). This proves the inclusion which is less
obvious. �

The main ingredient in the proof of Proposition 3.1.4 is the following Lemma.

Lemma 3.1.3. Let K be a convex body in Rd, with B(0, r) ⊂ K ⊂ B(0, R) for some
numbers r > 0 and R > 0. If 0 < ε < r2

4R
, then(

1− 4
Rε

r2

)
K ⊂ K 	B(0, ε) ⊂ K . (3.1.3)

Proof: See Lemma 2.3.6, page 93 of [55]. �
The following abstract continuity property for a shape functional can be deduced, es-

sentially following Proposition 1.3 [44] or Proposition 2.9 [42].
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Proposition 3.1.4. Let F be a functional over the classes of nonempty convex open
subsets in Rd which satisfies the following conditions

1. (invariance under translations) F (B+x) = F (B) for any x ∈ Rd and B open convex
subset of Rn.

2. (domain monotonicity) F (B) ≤ F (A) whenever A ⊆ B (or, F (A) ≤ F (B) whenever
A ⊆ B).

3. (homothety law) There exist α ∈ R, such that F (kA) = kαF (A) for all k > 0 and
for every bounded open set A.

Let B be a fixed compact set in Rd and Ωn be a family of nonempty convex open subsets
of B which converges, for the complementary Hausdorff distance, to a nonempty convex
open set Ω. Then, F (Ω) = limn→∞ F (Ωn).

Proof: Since F is invariant under translation we can assume that 0 ∈ Ω. Since Ω is
an open set, there is an open ball such that B(0, r) ⊆ Ω. We assume, without loss of
generality, that B is the closure of the ball B(0, R) for some R large enough. Step 1:
Since, dH(Ωn,Ω)→ 0, by the definition of the complementary Hausdorff distance, for any
ε > 0 there exist nε such that

B\Ω ⊂ (B\Ωn)⊕B(0, ε) for all n ≥ nε (3.1.4)

and

B\Ωn ⊂ (B\Ω)⊕B(0, ε) for all n ≥ nε . (3.1.5)

Further, by taking the relative complement in (3.1.5) with respect to B and thereafter
applying Proposition 3.1.1 with the choices X = Ω and Z = B, we obtain

Ω	B(0, ε) ⊆ Ωn for all n ≥ nε. (3.1.6)

Therefore, by Proposition 3.1.2, we also have

Ω	B(0, ε) ⊆ Ωn for all n ≥ nε (3.1.7)

From the above, by choosing 0 < ε < r, we get

B(0, r − ε) = B(0, r)	B(0, ε) ⊆ Ω	B(0, ε) ⊆ Ωn for all n ≥ nε.

So, if 0 < ε < r
2
, then we shall also have

B(0, r/2) ⊆ Ωn for all n ≥ nε . (3.1.8)

Step 2: Let us now fix 0 < ε < r2

16R
. For this choice, we also have 0 < ε < r2

4R
and so,

applying Lemma 3.1.3 with the compact set Ω in mind, we get(
1− 16

Rε

r2

)
Ω ⊂

(
1− 16

Rε

r2

)
Ω ⊂ Ω	B(0, ε) . (3.1.9)

So, using (3.1.7), it follows that(
1− 16

Rε

r2

)
Ω ⊂ Ωn for all n ≥ nε . (3.1.10)
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Then, by using the domain monotonicity and homothety properties of F , we can obtain
the inequality (

1− 16
Rε

r2

)α
F (Ω) ≤ F (Ωn) .

After taking the liminf, as n→∞, we obtain(
1− 16

Rε

r2

)α
F (Ω) ≤ lim

n→∞
F (Ωn). (3.1.11)

If we now take the limit as ε→ 0 in (3.1.11) we get

F (Ω) ≤ lim
n→∞

F (Ωn). (3.1.12)

Step 3: Arguing similarly as in Step 1, but starting from (3.1.4), we can also obtain
the inclusion

Ωn 	B(0, ε) ⊆ Ω for all n ≥ nε .

In view of (4.2.2) and since we have chosen 0 < ε < r2

16R
, by applying Lemma 3.1.3 with

the compact set Ωn in mind we obtain(
1− 16

Rε

r2

)
Ωn ⊂

(
1− 16

Rε

r2

)
Ωn ⊂ Ωn 	B(0, ε) .

So, continuing similarly as in Step 2, we conclude that

lim
n→∞

F (Ωn) ≤ F (Ω) . (3.1.13)

The desired result follows from (3.1.12) and (3.1.13). �

Corollary 3.1.5. The first eigenvalue λ1(·) and the Schatten norm ‖Iα,·‖p of the Riesz
potential operator satisfy the hypotheses of Proposition 3.1.4 and, so we have that λ1 and
‖Iα,·‖p are continuous with respect to the convergence, in the complementary Hausdorff
distance, of a family of uniformly bounded nonempty convex open sets.

3.2 Case of equality in Riesz’s inequality for Steiner

symmetrization

We require the following lemma.

Lemma 3.2.1. Let A ⊆ R be a Lebesgue measurable set with |A| > 0. If A = A + x for
some x ∈ R− {0}, then |A| =∞.

Proof: Since |A| > 0, necessarily there exists an n ∈ Z for which B := A ∩ [n, n + 1]
has positive measure. Notice that B + x ⊆ A + x = A and then, using induction, we
also obtain B + mx ⊆ A for every m ∈ Z. Now, we assume, without loss of generality,
that x > 0 and then choose M ∈ N such that Mx > 1. Then it follows that the
intervals [sMx + n, sMx + n + 1] are disjoint for distinct s ∈ Z. Since, B + sMx ⊂
[sMx+ n, sMx+ n+ 1], we obtain that the sets B + sMx are disjoint for distinct s ∈ Z.
Therefore, necessarily it follows that |A| = ∞, since A contains infinitely many disjoint
copies of B. �
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Proposition 3.2.2. In addition to the hypotheses of Corollary 2.1.8, suppose that g
is symmetric with respect to the hyperplane H and strictly decreasing in the orthogonal
direction (moving away) and that both f and h are non-zero measurable functions, then
there is equality in (2.1.11) if and only if there exists w ∈ Rd of the form (0, 0, . . . , 0, k)
for some k ∈ R, such that f(x) = Sf(x−w) and h(x) = Sh(x−w) for almost all x ∈ Rd.

Proof: The equality case in the d-dimensional case, for d ≥ 2, is discussed below. The
proof, unlike the proof of the equality case in Riesz’s inequality under the symmetric-
decreasing rearrangement or Schwarz symmetrization sketched in Theorem 3.9 of Lieb
and Loss [40], does not require induction on the dimension. We exploit, directly, the
one-dimensional result. Since we have chosen an orthogonal coordinate system wherein
H is the plane {(x′, 0) : x′ = (x1, x2, . . . , xd−1) ∈ Rd−1}, the hypotheses on g gives us
g(z′, ·) = Sg(z′, ·) and so the equality I(f, g, h) = I(Sf, g,Sh) written as∫

Rd−1×Rd−1

∫
R×R

f(x′, xd)g(x′ − y′, xd − yd)h(y′, yd)dxddyddx
′dy′

=

∫
Rd−1×Rd−1

∫
R×R
Sf(x′, xd)g(x′ − y′, xd − yd)Sh(y′, yd)dxddyddx

′dy′,

with (x′, y′) ∈ Rd−1 × Rd−1. For any fixed (x′, y′) ∈ Rd−1 × Rd−1, by definition, Sf(x′, ·)
and Sh(y′, ·) are the one-dimensional symmetric-decreasing rearrangements of f(x′, ·) and
h(y′, ·) respectively. So, for any x′, y′ ∈ Rd−1, Riesz’s inequality applied to the functions
f(x′, ·), g(x′ − y′, ·) and h(y′, ·) viewed as functions of the final variable gives us∫

R×R
f(x′, xd)g(x′ − y′, xd − yd)h(y′, yd)dxddyd

≤
∫
R×R
Sf(x′, xd)g(x′ − y′, xd − yd)Sh(y′, yd)dxddyd .

From the above it follows that∫
R×R

f(x′, xd)g(x′ − y′, xd − yd)h(y′, yd)dxddyd

=

∫
R×R
Sf(x′, xd)g(x′ − y′, xd − yd)Sh(y′, yd)dxddyd a.e. x′, y′ . (3.2.1)

Let S be the set of (x′, y′) for which equality holds in (3.2.1), so that (Rd−1 × Rd−1) \ S
has measure 0. Also, let

M = {x′ ∈ Rd−1 : f(x′, ·) is non-zero} , N = {y′ ∈ Rd−1 : h(y′, ·) is non-zero} .

Note that, by our hypothesis, both M and N are of positive measure. Also, for any
(x′, y′) ∈ M × N , by the definition of M and N , both f(x′, ·) and h(y′, ·) are non-zero
functions. Therefore, for any (x′, y′) ∈ S

⋂
(M × N), since we have equality for Riesz’s

inequality in one dimension, we deduce that there exists k ∈ R which, a priori, is a
function k(x′, y′) of (x′, y′) such that

f(x′, xd) = Sf(x′, xd − k) a.e. xd and (3.2.2)

h(y′, yd) = Sh(y′, yd − k) a.e. yd . (3.2.3)

Now, S
⋂

(M × N) is of full measure in (M × N) and so, for almost all y′ ∈ N the
section (S

⋂
(M ×N))y′ which is the section of S

⋂
(M × N) at y′ is of full measure in
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M . Consider any y′0 in N for which (S
⋂

(M ×N))y′0
has the same measure as M . Now,

for any x′, z′ ∈ (S
⋂

(M ×N))y′0
, we observe that

f(x′, xd) = Sf(x′, xd − kx′,y′0) a.e. xd , h(y′0, yd) = Sh(y′0, yd − kx′,y′0) a.e. yd

f(z′, xd) = Sf(z′, xd − kz′,y′0) a.e. xd , h(y′0, yd) = Sh(y′0, yd − kz′,y′0) a.e. yd

from which we obtain

h(y′0, yd) = h(y′0, yd + kz′,y′0 − kx′,y′0) a.e. yd (3.2.4)

Since y′0 belongs to N we see that {yd : h(y′0, yd) 6= 0} is of positive measure. Also, since
h(y′0, ·) vanishes at infinity, it is possible to fix a t with 0 < t <∞ such that the measure
of A = {yd : h(y′0, yd) > t} is finite and positive. Also notice that, by (3.2.4), we have
A = A + kx′,y′0 − kz′,y′0 . Therefore, using Lemma 3.2.1, we have kz′,y′0 = kx′,y′0 . Let us
denote this common value by k(y′0). This implies that f(x′, ·) is symmetric-decreasing
about xd = k(y′0) independently of x′ in (S

⋂
(M ×N))y′0

. That is, f(x′, ·) is symmetric-

decreasing about xd = k(y′0) for almost every x′ in M . Since, f(x′, ·) is independent of y′0
we can also conclude that k(y′0) does not really depend on y′0 since a non-zero function
vanishing at infinity cannot be symmetric-decreasing with respect to two distinct points.
Therefore, for almost every x′ in M , f(x′, ·) is symmetric-decreasing about xd = k where
k now is independent of x′, y′.

Similarly, we could start with any x′0 ∈ M such that the section (S
⋂

(M ×N))x′0
which is the section of S

⋂
(M×N) at x′0 is of full measure in N . Then, arguing as above,

after reversing the roles of f and h and using the point x′0 in M , we also conclude that, for
almost all w′ ∈ M , h(w′, ·) is Steiner symmetric about yd = k also, using (3.2.2)-(3.2.3),
since k turns out to be independent of x′ and y′. �

3.3 Proof of the main theorems

The maximization problem of Theorem 1.2.1 for maximizing the Riesz eigenvalue λ1(·) in
the class of triangles or quadrilaterals of given area may be formulated as

max{λ1(P ) : P ∈ PN , area(P ) = a} (3.3.1)

where PN is the class of nonempty open convex polygons with N edges. It is possible to
show using the compactness of the class of uniformly bounded open convex sets for the
complementary Hausdorff distance (see Theorem 2.3.15 of [29]) and Corollary 3.1.5 the
existence of an open set Ω for which the maximum is attained in (3.3.1). As mentioned
in the introduction, even for the eigenvalues of the Laplacian with Dirichlet boundary
condition the corresponding FKI is still open for polygons with 5 or more sides. Our aim
is to show the existence of solutions of (3.3.1) in the class of triangles and quadrilaterals
and to characterize them, that is, prove a FKI.

Proof of Theorem 1.2.1 Let 41 be an arbitrary triangle of area a. We successively
define triangles 4n+1 by taking the Steiner symmetrization of 4n with respect to the
perpendicular bisector of a side with respect to which there is no symmetry. Then, by
part 2 of the Proposition of 2.1.6, each of the triangles has area a and also the triangles
are uniformly bounded since, by part 3 of the proposition by Proposition 2.1.14, the
circumradius decreases after successive Steiner symmetrizations. Then, it can be shown
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Figure 3.1: Sequence of triangles

that the sequence 4n converges with respect to the complementary Hausdorff distance
to an equilateral triangle 4 (see page 158 of [46], 20.7 Theorem, pages 153-154 of [4] or
Theorem 3.3.3 [29]).

Let fn be an eigenfunction for λ1(4n), that is, a function for which the maximum
is attained in (1.2.2) which we can take to be continuous, non-negative and having unit
L2 norm. By property 1 of Proposition 2.3.13 the eigenvalue λ1(4n) is invariant under
translations, and so in this expression we may always assume that the coordinate system
has its origin at the circumcenter of the triangle. Furthermore, for the ease of considering
Steiner symmetrization of functions with respect to the chosen line of Steiner symmteri-
zation of ∆n, by the rotation invariance of the eigenvalue, we may assume that this line
is oriented along the x1-axis. Let Sfn be the corresponding Steiner symmetrization of f̃n
(the extension of fn by zero outside 4n) which is a Borel measurable function vanishing
at infinity. We note that Sfn has to be supported on the closure of 4n+1. By property 2
in Proposition 2.1.6, we note that Sfn also has norm 1 in the L2 norm. Notice that the
Riesz potential |x|−(2−α), is Steiner symmetric with respect to the x1 axis. Since α < 2, it
is also a strictly decreasing function away from the x1-axis in the x2-direction. Therefore,
we can apply Corollary 2.1.8 to the function f̃n (taken twice) and with the function in
the middle taken as the Riesz potential to obtain

λ1(4n) =

∫
4n

∫
4n
C(2, α)

fn(x)fn(y)

|x− y|2−α
dxdy

≤
∫
4n+1

∫
4n+1

C(2, α)
Sfn(x)Sfn(y)

|x− y|2−α
dxdy
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≤ max
w∈L2(4n+1)

∫
4n+1

∫
4n+1

C(2, α)
w(x)w(y)

|x− y|2−α
dxdy

= λ1(4n+1) (3.3.2)

for each n. Therefore,
λ1(41) ≤ λ1(4n) for all n .

We then use the continuity property of the Riesz eigenvalue for the complementary Haus-
dorff convergence (Corollary 4.2.3) and get

λ1(41) ≤ lim
n→∞

λ1(4n) = λ1(4).

This shows that λ1 has its maximum value for an equilateral triangle of given area.
The proof, in the case of quadrilaterals, that the maximum is attained for a square uses

a similar argument as in the case of triangles. To start with, apply Steiner symmetrization
with respect to an axis l1 which is perpendicular to a diagonal of the quadrilateral (not
necessarily convex, see one of the figures below for the non-convex case), for which the
other two vertices aren’t on the same side of this diagonal. The resulting object is a convex
quadrilateral which is symmetric with respect to this axis. Next, we Steiner symmetrize
with respect to a perpendicular axis l2 and thereby get a rhombus. This is to be followed
by a Steiner symmetrization with respect to an axis l3 perpendicular to one of the sides
to produce a rectangle. The rectangle is then Steiner symmetrized with respect to an axis
perpendicular to a diagonal to get, again, a rhombus. By repeating the procedures for
the rhombus and rectangle we end up with an infinite sequence of rhombi and rectangles
which converge, ultimately, in the complementary Hausdorff distance, to a square (refer
to pages 158-159 of [46] or 20.8 Theorem, pages 154-155 of [4]).

Now we will address the proof of the uniqueness. We consider the case of triangular
domains. Suppose that ∆ is any triangle for which the maximum is attained in (3.3.1).
If we suppose that ∆ is not an equilateral triangle, then there is at least one side m of ∆
such that ∆ is not symmetric with respect to the perpendicular bisector to m. Let S∆
the Steiner symmetrization of ∆ respect to the perpendicular bisector of m. Let f be
the first normalized eigenfunction associated to λ1(∆) and Sf its Steiner symmetrization
respect to the perpendicular bisector of m. Using the property 3 of the Proposition 2.1.6
and Corollary 2.1.8 and we obtain

λ1(S∆) ≥
∫
S∆

∫
S∆

C(2, α)
Sf(x)Sf(y)

|x− y|2−α
dxdy

≥
∫

∆

∫
∆

C(2, α)
f(x)f(y)

|x− y|2−α
dxdy

= λ1(∆) . (3.3.3)

Now, the fact that ∆ maximizes λ1 leads to the observation that λ1(S∆) = λ1(∆) and
so, we get the equality case in Riesz’s inequality. Then, by Proposition 3.2.2 it follows
that f is a translate of Sf . Furthermore, Sf is a maximizer for λ1(S∆). As mentioned
in the Proposition 2.3.12, the first eigenfunction for the Riesz operator f,Sf are strictly
positive on ∆ and S∆ respectively, and so

∆ = {x : f(x) > 0} = {x : Sf(x− y) > 0}
= S∆ + y.
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Figure 3.2: Sequence of quadrilaterals

Figure 3.3: Symmetrization of a nonconvex quadrilateral

Thus, ∆ is Steiner symmetric with respect to the perpendicular bisector of m contrary
to our supposition. So, we conclude that the equilateral triangle is the only minimizer.
The uniqueness in the quadrilateral case is similarly proved by contradiction. �

Remark 3.3.1. Given an arbitrary pentagon, it is not possible to guarantee the existence
of a line with respect to which the Steiner symmetrization results in a pentagon; in general,
the number of sides will be increased. For example, the pentagon in the following figure
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becomes a hexagon. Note that the interval AB gives two sides after applying a Steiner
symmetrization with respect to l. This situation has been an obstacle in making progress
on such isoperimetric problems for n > 4.

Figure 3.4: The Steiner symmetrization of a pentagon has, in general, at least six edges.

We now briefly consider possible 3−dimensional analogs of our planar results for tri-
angles and quadrilaterals. These results apply to tetrahedra and certain prisms and are
outlined in the following Theorem. We begin with tetrahedra, the 3−dimensional ana-
logue of triangles. A reference to Steiner symmetrization in 3 dimension is p. 5 of [46].

Definition 3.3.2. Let E1 and E2 be two parallel planes (visualize the first one being under
the second), R a polygonal region in E1, and L a line that intersects E1 and E2, but not
R. For each point P of R, let PP′ be a segment parallel to L and joining the point P with
its other extreme P ′ in E2. The union of all segments PP′ is called a prism.
The polygonal region R is called the lower base, or simply the base of the prism. The
part of the prism that is at E2 is called the top base. The edges of the faces of the prism
that do not lie in the planes E1 and E2 are called the lateral edges of the prism. If L
is perpendicular to E1 and E2, then the prism is called a right prism; otherwise it is an
oblique prism.

Theorem 3.3.3. The maximum of λ1(Ω) among all tetrahedra of given volume V is
obtained when Ω is a regular tetrahedron and only when Ω is a regular tetrahedron. Sim-
ilarly, the maximum of λ1(Ω) among all prisms (right or oblique) of given volume V and
a quadrilateral base is obtained when Ω is a cube and only when Ω is a cube.

Proof: Let T be an arbitrary tetrahedron of a given volume V . First we Steiner
symmetrize T with respect to a plane perpendicular to one of its edges. Next we Steiner
symmetrize our new tetrahedron with respect to a plane perpendicular to the edge that
lies in the former plane of symmetrization (this is the one edge of the tetrahedron that isn’t
the edge with which we started and that doesn’t meet it). The tetrahedron so obtained has
two planes of symmetry perpendicular to each other. By repeating these above two steps
alternately we end up with an infinite sequence of tetrahedra which converge, ultimately,
in the complementary Hausdorff distance, to a regular tetrahedron TR with the given
volume V (see [46], p. 159). By the same arguments given in the previous proof we have
that

λ1(TR) ≥ λ1(T ). (3.3.4)
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Now we will address the proof of the uniqueness of the case of tetrahedral domains.
Suppose that T0 is any tetrahedron for which the maximum is attained in

max{λ1(T ) : T is a tetrahedron, volume(P ) = a} (3.3.5)

If we suppose that T0 is not a regular tetrahedron, then there is at least one edge m of
T0 such that T0 is not symmetric with respect to the perpendicular bisector plane to m.
Let ST0 the Steiner symmetrization of T0 respect to the perpendicular bisector plane of
m. Let f be the first normalized eigenfunction associated to λ1(T0) and Sf its Steiner
symmetrization respect to the perpendicular bisector plane of m. Using property 3 of
Proposition 2.1.6 and Corollary 2.1.8 and we obtain

λ1(ST0) ≥
∫
ST0

∫
ST0

C(3, α)
Sf(x)Sf(y)

|x− y|2−α
dxdy

≥
∫
T0

∫
T0

C(3, α)
f(x)f(y)

|x− y|2−α
dxdy

= λ1(T0) . (3.3.6)

Now, the fact that T0 maximizes λ1 leads to the observation that λ1(ST0) = λ1(T0) and
so, we get the equality case in Riesz’s inequality. Then, by Proposition 3.2.2 it follows
that f is a translate of Sf . Furthermore, Sf is a maximizer for λ1(ST0). As mentioned
in the Proposition 2.3.12, the first eigenfunction for the Riesz operator f,Sf are strictly
positive on T0 and ST0 respectively, and so

T0 = {x : f(x) > 0} = {x : Sf(x− y) > 0}
= ST0 + y.

Thus, T0 is Steiner symmetric with respect to the perpendicular bisector plane of m
contrary to our supposition. So, we conclude that the regular tetrahedron is the only
maximizer.
The proof, in the case of prisms, uses a similar argument as in the case of tetrahedra. Let
P be an arbitrary prism of a given volume V . First we Steiner symmetrize P with respect
to a plane perpendicular to one of its lateral edges and change it into a right prism. We
then take a sequence of Steiner symmetrizations with respect to planes orthogonal to the
base of the right prism so that the bases converge to a square (it is enough to choose the
same sequence of lines as in the successive Steiner symmetrizations of the quadrilateral
and the perpendicular to the base to form these planes). This leads to a a right prism
with square base (see [46], p. 159). The above process is repeated taking one of the lateral
faces now as the base to get another right prism and so on until the right prisms converge
to a cube.

The uniqueness in the case of prisms is proved similarly by contradiction. �

Proof of Theorem 1.2.2: We now briefly sketch the proof of corresponding isoperimet-
ric inequalities for Schatten norms of the Riesz potential. In all our discussions to follow,
p is taken to be a positive integer. Other conditions will be included as needed. The proof
goes along similar lines as that of Theorem 1.2.1, in the case of triangles we start with
the same construction of a sequence of triangles ∆n starting from an arbitrary triangle.
By the Brascamp-Lieb-Luttinger inequality for Steiner symmetrization (Theorem 2.1.9),
we get
∞∑
j=1

λpj(4n) = (C(2, α))p
∫
4n
. . .

∫
4n
|y1 − y2|α−2|y2 − y3|α−2 . . . |yp − y1|α−2dy1 . . . dyp
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≤ (C(2, α))p
∫
4n+1

. . .

∫
4n+1

|y1 − y2|α−2|y2 − y3|α−2 . . . |yp − y1|α−2dy1 . . . dyp =
∞∑
j=1

λpj(4n+1).

We then use the continuity property of Schatten norms of the Riesz potential for the
complementary Hausdorff convergence and get

∞∑
j=1

λpj(41) ≤ lim
n→∞

∞∑
j=1

λpj(4n) =
∞∑
j=1

λpj(4).

The quadrilateral case is similarly proved.

Now we will address the proof of the uniqueness. We consider the case of triangular
domains. Suppose that ∆ is any triangle for which the maximum is attained in ‖Iα,Ω‖p
where Ω has fixed area. If we suppose that ∆ is not an equilateral triangle, then there is
at least one side m of ∆ such that ∆ is not symmetric with respect to the perpendicular
bisector to m. Let S∆ the Steiner symmetrization of ∆ respect to the perpendicular
bisector of m. We have,

∞∑
j=1

λpj(∆) ≤
∞∑
j=1

λpj(S∆).

Now, the fact that ∆ maximizes ‖Iα,Ω‖p leads to the observation that ‖Iα,∆‖p = ‖Iα,S∆‖p
and so, we get∫

∆

. . .

∫
∆

|y1 − y2|α−2|y2 − y3|α−2 . . . |yp − y1|α−2dy1 . . . dyp

=

∫
S∆

. . .

∫
S∆

|y1 − y2|α−2|y2 − y3|α−2 . . . |yp − y1|α−2dy1 . . . dyp (3.3.7)

On the other hand, for almost all yp−2 and y1, there are no translates of |yp−1 − yp−2|α−2

and |yp − y1|α−2 which are both Steiner symmetric. Therefore, by Theorem 3.2.2, we
conclude that∫

∆

∫
∆

|yp−2 − yp−1|α−2|yp−1 − yp|α−2|yp − y1|α−2dyp−1dyp

<

∫
S∆

∫
S∆

|yp−2 − yp−1|α−2|yp−1 − yp|α−2|yp − y1|α−2dyp−1dyp,

for almost every (y1, y2, . . . , yp−2).
Integrating over the remaining variables we get∫

∆

. . .

∫
∆

|y1 − y2|α−2|y2 − y3|α−2 . . . |yp − y1|α−2dy1 . . . dyp

<

∫
S∆

. . .

∫
S∆

|y1 − y2|α−2|y2 − y3|α−2 . . . |yp − y1|α−2dy1 . . . dyp

The above is contrary to (3.3.7). So, we conclude that the equilateral triangle is the only
maximizer.

The uniqueness in the quadrilateral case is similarly proved by contradiction. �

Theorem 3.3.4. Let p be an integer such that p > max
(
d
α
, 2
)
. The maximum of ‖Iα,Ω‖p

among all tetrahedra of given volume is obtained when Ω is a regular tetrahedron. Simi-
larly, the maximum of ‖Iα,Ω‖p among all prisms (right or oblique) of given volume and a
quadrilateral base is obtained when Ω is a cube.

Proof: The proof of this theorem is analogous to the proof of Theorem 3.3.3. �
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Chapter 4

An isoperimetric inequality for the
fractional Cheeger constant and
nonlocal perimeter for triangles and
quadrilaterals

In this chapter we will prove Theorems 1.2.3 and 1.2.4. The proof uses a nonlocal Pólya-
Szegő inequality under Steiner symmetrization and continuity results for the respective
functionals, for the convergence of a family of uniformly bounded nonempty convex open
sets, in the complementary Hausdorff distance. This inequality was also used in a previous
work on isoperimetric inequalities for the first eigenvalue of the fractional p-Laplacian with
Dirichlet boundary conditions [44]. Since, in the literature, it is difficult to find anything
beyond a statement of the nonlocal Pólya-Szegő inequality under Steiner symmetrization
its proof was detailed in the master’s thesis of Olivares[44] in Spanish. Here, we reproduce
the proof for the sake of completeness (only for bounded functions). The proof is an
adaptation of the proof of Lemma A.2 of [24] to the case of Steiner symmetrization. The
preliminary results include the continuity of the fractional perimeter and the continuity
of the fractional Cheeger constant with respect to the convergence, in the complementary
Hausdorff distance, of a family of uniformly bounded nonempty convex open sets.

4.1 Nonlocal Pólya-Szegő inequality

Following the same ideas given in Lemma A.2. of [24], for Steiner symmetrization instead
of symmetric-decreasing rearrangement, we get the following lemma:
For J a nonnegative, convex function on Rd with J(0) = 0 and k a nonnegative measurable
function on Rd , we let

E[u] :=
∫
Rd
∫
Rd J(u(x)− u(y))k(x− y)dxdy.

Lemma 4.1.1. Let J be a nonnegative, convex function on R, J(0) = 0 and k ∈ L1(Rd) be
a nonnegative strictly decreasing function. Then for a bounded function u with E[u] <∞
and |{u > τ}| <∞ finite for all τ > 0 we have

E[u] ≥ E[Su],
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where Su is the Steiner symmetrization of u with respect a hyperplane H. If J(t) = |t|,
then equality holds if and only if the level sets {u > τ} are symmetric respect to H (up to
a translation) for a.e. τ > 0.

Proof: Let’s write first J = J+ + J− with

J+(t) =

{
J(t) if t ≥ 0

0 if t < 0

and

J−(t) =

{
J(t) if t < 0

0 if t ≥ 0.

We can define via the above

E+[u] :=

∫
Rd

∫
Rd
J+(u(x)− u(y))k(x− y)dxdy. (4.1.1)

Similarly, we define E−. Following the above definition we can write E[u] = E+[u]+E−[u].
Then, it is enough to prove the theorem for the case E+, because the case E− follows
similarly (k being symmetric respect to the center), which then will allow us to obtain
the conlcusion for E.
Since J is convex so is J+. From the above J+ it is locally Lipschitz, so J+ is differentiable

almost everywhere on [0,∞) and J+(t) =

∫ t

0

J ′+(τ)dτ , with J ′+ the right derivative of J+.

This allows us to write∫ ∞
0

J ′+(u(x)− τ)χ{τ :u(y)≤τ}(τ)dτ =

∫ u(x)

u(y)

J ′+(u(x)− τ)χ{τ :u(y)≤τ}(τ)dτ

=

∫ u(x)

u(y)

J ′+(u(x)− τ)dτ

= −
∫ 0

u(x)−u(y)

J ′+(w)dw

= J+(u(x)− u(y)). (4.1.2)

Let

e+
τ [u] :=

∫
Rd

∫
Rd
J ′+(u(x)− τ)k(x− y)χ{τ :u(y)≤τ}(τ)dxdy.

Using Tonelli’s Theorem, we get∫ ∞
0

e+
τ [u]dτ =

∫ ∞
0

∫
Rd

∫
Rd
J ′+(u(x)− τ)k(x− y)χ{τ :u(y)≤τ}(τ)dxdydτ

=

∫
Rd

∫
Rd
k(x− y)

∫ ∞
0

J ′+(u(x)− τ)χ{τ :u(y)≤τ}(τ)dτdxdy

=

∫
Rd

∫
Rd
J+(u(x)− u(y))k(x− y)dxdy

= E+[u]. (4.1.3)
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We claim that
∫
Rd J

′
+(u(x) − τ)dx < ∞ for every τ ∈ R+. Indeed, since u is bounded

there is M ∈ R+ such that u(x) ≤ M for every x ∈ Rd. From the above, together with
the fact that J ′+ is an increasing function and u is a function vanishing at infinity, we can
get ∫

Rd
J ′+(u(x)− τ)dx =

∫
{z:u(z)≥τ}

J ′+(u(x)− τ)dx

≤ J ′+(M − τ)

∫
{z:u(z)≥τ}

dx <∞.

Writing χ{u≤τ} = 1 − χ{u>τ} and using that the Lebesgue integral is invariant under
translation, we obtain that

e+
τ [u] =

∫
Rd

∫
Rd
J ′+(u(x)− τ)k(x− y)χ{u≤τ}(y)dxdy

=

∫
Rd

∫
Rd
J ′+(u(x)− τ)k(x− y)(1− χ{u>τ})(y)dxdy

= ‖k‖1

∫
Rd
J ′+(u(x)− τ)dx−

∫
Rd

∫
Rd
J ′+(u(x)− τ)k(x− y)χ{u>τ}dxdy.(4.1.4)

By part 3 of Proposition 2.1.6 we have∫
Rd
J ′+(u(x)− τ)dx =

∫
Rd
J ′+(Su(x)− τ)dx. (4.1.5)

Applying Corollary 2.1.8 to the second term of (4.1.4) together with the relation (4.1.5)
we get

e+
τ [Su] ≤ e+

τ [u]. (4.1.6)

By (4.1.6) and the above we have that

E+[Su] ≤ E+[u],

now we will consider the case of equality. Now, let k be strictly decreasing and suppose
that E+[Su] = E+[u] for a bounded function u. It follows from the representation (4.1.3)
that we have e+

τ [Su] = e+
τ [u] for τ > 0 a.e. For equality to hold in (4.1.6), for any τ > 0

a.e. by Proposition 3.2.2 necessarily there exists an aτ ∈ Rn such that

χ{u>τ}(x
′, xd) = χ{u>τ}(x

′, xd − aτ ) and J ′+(u(x′, xd)− τ) = J ′+(Su(x′, xd − aτ )− τ).

for almost everywhere (x′, xd). From this we conclude that S{u > τ}+ (0, aτ ) = {u > τ}
for a.e. τ > 0. �

The nonlocal Pólya-Szegő inequality (Theorem 2.4.2) can be rewritten by as follows∫
Rd

(−4)su∗(x)u∗(x)dx ≤
∫
Rd

(−4)su(x)u(x)dx (4.1.7)

Recall the definition of fractional Laplacian and its relation to the Riesz potential operator

(−∆)su(x) = 2

∫
Rd

(u(x)− u(y))

|x− y|n+2s
dy := I−2su(x). (4.1.8)
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Using the above we can rewrite the inequality (4.1.9)∫
Rd
I−2su

∗(x)u∗(x)dx ≤
∫
Rd
I−2su(x)u(x)dx (4.1.9)

The following nonlocal Pólya-Szegő inequality under Steiner symmetrization is a conse-
quence of Lemma 4.1.1. This inequality can be interpreted as the energy generated by
the fractional p−Laplacian operator for p = 1 (see [10]).
The proof of Proposition 4.1.2 is given in Theorem A.1 of [24] for the symmetric-decreasing
rearrangement. We sketch the proof of the adaptation to the case of Steiner symmetriza-
tion given in [45] for the sake of completeness.

Proposition 4.1.2. (nonlocal Pólya-Szegő inequality). Let d ≥ 1, 0 < s < 1 and u ∈
W̃ s,1

0 (Ω) which is bounded. Then,∫
Rd

∫
Rd

|Su(x)− Su(y)|
|x− y|d+s

dxdy ≤
∫
Rd

∫
Rd

|u(x)− u(y)|
|x− y|d+s

dxdy, (4.1.10)

where Su is the Steiner symmetrization of u with respect to a given hyperplane H. The
equality holds iff the level sets {u > τ} are symmetric with respect to H (up to a transla-
tion) for a.e. τ > 0.

Proof: Since Su(x) is nonnegative and ||u(x)| − |u(y)|| ≤ |u(x) − u(y)|, it suffices to
prove the theorem for nonnegative functions. Using the definition of the Gamma function
and a change of variables we obtain

1

Γ(n+ps
2

)

∫ ∞
0

α
n+ps

2
−1e−α|x−y|

2

dα =
1

|x− y|n+ps
. (4.1.11)

Using (4.1.11) and Tonelli’s theorem for nonnegative integrands we have∫
Rn

∫
Rn

|u(x)− u(y)|
|x− y|n+s

dxdy = C

∫
Rn

∫
Rn

∫ ∞
0

α
n+s

2
−1e−α|x−y|

2 |u(x)− u(y)|dαdxdy

= C

∫ ∞
0

Iα[u]α
n+s

2
−1dα,

with

Iα[u] :=

∫
Rn

∫
Rn
|u(x)− u(y)|e−α|x−y|2dxdy amd C =

1

Γ(n+s
2

)
.

The function J(t) = |t| is convex and nonnegative with J(0) = 0. The function k(x) =
e−α|x|

2
is symmetric with respect to H (up to a translation) which belongs to L1(Rn).

Therefore, applying Lemma 4.1.1 to the functional Iα we obtain the desired result. �

4.2 (Semi-)Continuity results for the shape function-

als

We prove the continuity of the fractional perimeter with respect to the convergence in the
Hausdorff complementary metric of a sequence of uniformly bounded convex open sets
(for open sets in general we also prove a lower semicontinuity property) and the continuity
of the fractional Cheeger constant with respect to the convergence in this metric.
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Proposition 4.2.1. (lower semicontinuity of Ps) Let B be a fixed compact set in Rd and
Ωn be a family of nonempty open subsets of B which converges, for the complementary
Hausdorff distance, to a nonempty open set Ω. Furthermore, if Ωn are sets of finite
perimeter (classical perimeter) in Rd, with

sup
n∈N

P (Ωn) <∞,

then

lim
n→∞

Ps(Ωn) ≥ Ps(Ω). (4.2.1)

Proof: By the compactness theorem for a family of sets with a uniformly bounded
perimeter, there exists a subsequence {Ωnk} such that χΩnk

−→ χΩ in L1(B) as k −→∞.
So, we can extract a further subsequence such that χΩnk

−→ χΩ almost everywhere and,
consequently, χΩcnk

−→ χΩc almost everywhere. By Fatou’s lemma in the expression

(2.2.1) for the fractional perimeter, we get the lower semicontinuity of Ps

Ps(Ω) = 2

∫
Rd

∫
Rd

χΩ(x)χΩC (y)

|x− y|d+s
dxdy

= 2

∫
Rd

∫
Rd

limnk→∞(χΩnk
(x)χΩCnk

(y))

|x− y|d+s
dxdy

≤ lim
nk→∞

Ps(Ωnk) . �

Proposition 4.2.2. Let B be a fixed compact set in Rd and Ωn be a family of nonempty
convex open subsets of B which converges, for the complementary Hausdorff distance, to
a nonempty convex open Ω. Then, Ps(Ω) = limn→+∞ Ps(Ωn).

Proof: Arguing similarly as in Step 1 of the proof of Proposition 3.1.4 shows that
there is an open ball B(0, r/2) such that

B(0, r/2) ⊆ Ωn for all n ≥ nε . (4.2.2)

On the other hand,

Ps(Ωn) = 2

∫
Rd

∫
Rd

χΩCn
(x)χΩn(y)

|x− y|d+s
dxdy.

(4.2.3)

It is not difficult to prove that χΩCn
(x)χΩn(y) ≤ χB(0,r/2)C (x)χB(y) and∫

Rd

∫
Rd

χB(x)χB(0,r/2)C (y)

|x− y|d+s
dxdy <∞. (4.2.4)

On the other hand, using the monotonicity of perimeters for convex bodies, we have
P (Ωn) ≤ P (Ω) for all n ∈ N (see [7], §7).
By the compactness theorem for a family of sets with a uniformly bounded perimeter (see
Theorem 6.3 in Chapter 5 of [20]), there exists a subsequence {Ωnk} such that χΩnk

−→ χΩ

in L1(B) as k −→ ∞. So, we can extract a further subsequence such that χΩnk
−→ χΩ

almost everywhere and, consequently, χΩcnk
−→ χΩc almost everywhere. Using the above

and the dominated convergence theorem, we get Ps(Ω) = limn→+∞ Ps(Ωn). �
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Corollary 4.2.3. The functional hs(·) satisfies the hypotheses of Proposition 3.1.4, so we
have that hs is continuous with respect to the convergence, in the complementary Hausdorff
distance, of a family of uniformly bounded nonempty convex open sets.

Theorem 4.2.4. Among all nonempty convex open sets in a ball B ⊆ Rd, with the same
nonlocal perimter Ps then exists at least one with maximum volume.

Proof: Let C be the class of all nonempty convex open sets in a ball B ⊆ Rd with
perimter Ps equal to l. Now let Ωn be a maximizing sequence for V := supΩ∈C |Ω| < ∞.
Then, there exists a convex open Ω ⊂ B and a subsequence in B that we name again
Ωn such that dH(Ωn,Ω) −→ 0 as n −→ ∞ and limn→∞ |Ωn| = V . From Propostion
4.2.2 we get Ps(Ω) = limn→+∞ Ps(Ωn) = l. From the continuity property of the volume
with respect to the convergence, in the complementary Hausdorff distance, we have
limn→∞ |Ωn| = |Ω|. Therefore V = |Ω|. �

4.3 Proofs of the main theorems

Proof of Theorem 1.2.3 Let 41 be an arbitrary open triangle of area a. We, consider
the sequence of open triangles4n defined by the successive Steiner symmetrizations in the
proof of Theorem 1.2.1. By Proposition 2.2.4(3), Ps(4n) is invariant under translations,
and so in this expression we may always assume that the coordinate system has its origin
at the circumcenter of the triangle. Furthermore, for the ease of considering Steiner
symmetrization of functions with respect to the chosen line of Steiner symmetrization of
4n, by the rotation invariance of the Ps, we may assume that this line is oriented along
the x1-axis. Since 4n has finite perimeter P (4n), we can use the Proposition 2.2.3 to
conclude that Ps(4n) is finite, so χ4n ∈ W

s,1
0 (4n)). We can apply Proposition 4.1.2 to

the function χ4n , obtaining

Ps(4n) =

∫
R2

∫
R2

|χ4n(x)− χ4n(y)|
|x− y|2+s

dxdy

≥
∫
R2

∫
R2

|χS4n(x)− χS4n(y)|
|x− y|2+s

dxdy

= Ps(4n+1)

for each n. Therefore,
Ps(41) ≥ Ps(4n) for all n .

Using Propositions 4.2.2 or 4.2.1, we have

Ps(41) ≥ lim
n→∞

Ps(4n) ≥ Ps(4).

This shows that Ps attains its minimum value for an equilateral triangle. The proof, in the
case of quadrilaterals, that the minimum is attained for a square uses a similar argument
as in the case of triangles. The construction of the sequence of quadrilaterals is the same
as in the proof of Theorem 1.2.1.

We now turn to the question of uniqueness in the case of triangular domains. Suppose
that ∆ is an open triangle of given area for which the minimum is attained. If ∆ is not
already an equilateral triangle, then there is at least one axis m (perpendicular to one
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of its sides) such that ∆ is not Steiner symmetric with respect to m. Let S∆ be the
Steiner symmetrization of ∆ respect to m. Without loss of generality, m passes through
the origin.

Ps(4) =

∫
Rd

∫
Rd

|χ4(x)− χ4(y)|
|x− y|d+s

dxdy

≥
∫
Rd

∫
Rd

|χS4(x)− χS4(y)|
|x− y|d+s

dxdy

= Ps(S4)

Now, since we assumed that ∆ minimizes Ps this leads to Ps(S∆) = Ps(∆) and so, we
get the equality case in the nonlocal Pólya-Szegő inequality (Proposition 4.1.2). Then,
by Proposition 4.1.2 it follows that

S{χ4 > τ}+ aτ = {χ4 > τ}, (4.3.1)

for every τ > 0 a.e. Equation (4.3.1) is satisfied in particular for 0 < τ < 1 a.e. Taking
one of those τ , let’s call it τ ′, we have so

S 4+aτ ′ = 4. (4.3.2)

Thus, ∆ is Steiner symmetric with respect to m, contrary to our supposition. So, we
conclude that the equilateral triangle is the only minimizer.
The quadrilateral case for Ps is proved similarly to the triangular case. �

Theorem 4.3.1. The minimum of Ps(Ω) among all tetrahedra of given volume is obtained
when Ω is a regular tetrahedron and only when Ω is a regular tetrahedron. Similarly, the
minimum of Ps(Ω) among all prisms (right or oblique) of given volume and a quadrilateral
base is obtained when Ω is a cube and only when Ω is a cube.

Proof: The proof of this theorem is analogous to the proof of Theorem 3.3.3. �

Proof of Theorem 1.2.4 Let E4n be an s−Cheeger set of4n, that is, hs(4n) =
Ps(E4n )

|E4n |
.

Then we have

hs(4n) =

∫
R2

∫
R2

|χE4n (x)− χE4n (y)|
|x− y|2+s

dxdy

|E4n|

≥

∫
R2

∫
R2

|χSE4n (x)− χSE4n (y)|
|x− y|2+s

dxdy

|SE4n|

=
Ps(SE4n)

|SE4n|
≥ hs(SE4n) = hs(4n+1) (4.3.3)

for each n. Therefore,
hs(41) ≥ hs(4n) for all n .

We then use the continuity property of hs for the complementary Hausdorff convergence
(Corollary 4.2.3) and get

hs(41) ≥ lim
n→∞

hs(4n) = hs(4). (4.3.4)

This shows that hs attains its minimum value for an equilateral triangle. The proof of
the quadrilateral case is obtained in the same way as in the previous theorem. �
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Remark 4.3.2. The case of equality for the case of triangles and quadrilaterals the tech-
niques given above, is not fully settled. Suppose that ∆ is an open triangle of given area for
which the minimum is attained. If ∆ is not already an equilateral triangle, then there is at
least one axis m (perpendicular to one of its sides) such that ∆ is not Steiner symmetric
with respect to m. Let S∆ the Steiner symmetrization of ∆ respect to the perpendicular
bisector of m. Let E∆ be s−Cheeger sets of ∆. Following the same steps as in the proof
of (4.3.3), we get

hs(∆) =
Ps(E4)

|E4|
=

∫
R2

∫
R2

|χE∆
(x)− χE∆

(y)|
|x− y|2+s

dxdy

|E∆|

≥

∫
R2

∫
R2

|χSE∆
(x)− χSE∆

(y)|
|x− y|2+s

dxdy

|SE4|

=
Ps(ES4)

|ES4|
≥ hs(S4) (4.3.5)

Now, the fact that ∆ minimizes hs leads to the observation that hs(S∆) = hs(∆) and so

Ps(E∆)

|E∆|
=
Ps(SE4)

|SE4|
. (4.3.6)

Considering |E4| = |SE4|, and so, we get the equality case in the nonlocal Pólya-Szegő
inequality. Therefore

E4 = SE4 + aτ ′ (4.3.7)

Though we cannot prove it, we suspect that 4 = S 4+aτ ′.

Theorem 4.3.3. The minimum of hs(Ω) among all tetrahedra of given volume is obtained
when Ω is a regular tetrahedron. Similarly, the minimum of hs(Ω) among all prisms (right
or oblique) of given volume and a quadrilateral base is obtained when Ω is a cube.

Proof: The proof of this theorem is analogous to the proof of Theorem 3.3.3. �
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