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Introduction

Fractional calculus is the part of mathematical analysis that studies derivatives
and integrals of any arbitrary order, real or complex. We usually refer to it when
we want to describe evolution problems with memory. The �rst known historical
record where a fractional derivative is mentioned, can be found in a letter written
to Guillaume de l'Hôpital (1661−1704) by Gottfried Wilhelm Leibniz (1646−1716)
in 1695. Long after, the 19th and 20th centuries would be the witnesses of just how
important is this branch of mathematics.

Researchers from various areas has been motivated by the increasing use of frac-
tional calculus in the mathematical modeling of processes in health sciences, natural
sciences, economy and engineering (see, e.g. [11], [12], [42] and [48]). This calculus
is more reliable in predicting the evolution of some phenomena or processes, such as
particle motion, conservation of mass, propagation of acoustic waves and anomalous
di�usion in complex media. In this thesis we are particularly interested in the later.

The non-local nature of a fractional derivative when its order is non-integer,
introduces memory into the system. Unlike a derivative of integer order at a point,
a derivative of non-integer order depends on all values of the function, even those
far away from the point. Numerous experiments in some media have demonstrated
that the mean squared displacement (MSD) of a particle is directly proportional to
a power of time. The exponent of such power is the order of the derivative in time
for the corresponding evolution equation. For instance, an order between zero and
one may model an anomalous di�usion process (see, e.g. [18], [49]).

On the other hand, the di�usion term classically represented by the Laplacian
operator can be replaced by a pseudo-di�erential operator, which is an extension of
the concept of di�erential operator acting on the spatial variable. The Laplacian
operator has been studied for long time due to the Gaussian laws governing some
processes of heat conduction, but currently others singular integral operators can be
used as a natural extension to non-Gaussian laws. The theory of pseudo-di�erential
operators arose in the mid 1960s, with Lars Valter Hörmander (1931−2012) being
the foremost contributor to it.

Following this path, in this thesis we have investigated the Cauchy problem

∂αt (u− u0)(t, x) + Ψβ(x,−i∇)u(t, x) = f(t, x, u), t > 0, x ∈ Rd,

u(t, x)|t=0 = u0(x), x ∈ Rd,
(1)

as a generalization of non-Gaussian di�usions that include memory, considering a
non-regular class of solutions u and a probabilistic interpretation of the operator
−Ψβ(x,−i∇).
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Rd is the d-dimensional Euclidean space, ∂αt denotes the Riemann�Liouville frac-
tional derivative of order α ∈ (0, 1) in the time variable t and Ψβ(x,−i∇) stands for a
singular integral operator of constant order β ∈ (0, 2). The notation ∂αt (u−u0)(t, x)
is understood as ∂αt u(t, x)− ∂αt (1)× u0(x) and the function u0 stands for the initial
data in a certain Lebesgue space. The function f is proportional to |u(t, x)|γ−1u(t, x),
γ > 1.

Our time derivative is also called the Caputo fractional derivative, for instance,
in the sense of [35, Section 2.4] with 0 < α < 1. However, other authors may require
smoothness conditions on the function to de�ne the Caputo derivative (see, e.g. [55,
Sub-section 2.4.1]). The symbol associated with the operator Ψβ(x,−i∇) is of the
type Lévy-Khintchine and the corresponding stochastic process is called a localised
Feller-Courrège process. Therefore, it makes sense to use the notation Ψβ(x,−i∇)
for the associated generator (see, e.g. [38, Chapter 6, Appendices C and D]).

Problems like (1) can describe, for instance, a stable jump-di�usion process which
comes from stochastic control theory with coe�cients depending on the position (see,
e.g. [37, Section 3]). In this case, the value β is called the index of stability of the
random process in the sense of a stable distribution (see, e.g. [62, De�nition 1.1.1 and
Theorem 1.1.2]). Stable distributions appear in the analysis of Markov processes,
specially those with a high sensitivity dependence between random variables, such
as telecommunications, �nance, epidemiology or di�usion. In a suitable setting,

the Green function of the Cauchy problem
∂u

∂t
+ Ψβ(x,−i∇)u = 0 is non-Gaussian

and it is considered as the transition probability density of the corresponding stable
non-Gaussian process [39, Chapter 7].

Similar to the case of Gaussian processes, which have been widely studied (see,
e.g. [2], [21], [24], [27], [28]), the general objective of this thesis is to investigate the
existence of solutions to (1), their qualitative properties, asymptotic behaviour and
blow-up phenomena, developing methods of non-linear analysis in Banach spaces.

For results on the existence of solutions, we have studied the operator Ψβ(x,−i∇)
with variable coe�cients and with constant coe�cients separately. This is why the
case with variable coe�cients only admits local solutions. In both cases, we apply
the representation of solutions with sub-Markovian semigroups and Mittag-Le�er
functions, as well as principles of �xed-point and strong solutions in the sense of
Jan Prüss (1951−2018). Our methods also illustrate the importance of de�ning
appropriate spaces of functions in evolutions of non-linear di�usions, beyond the
classical sense.

In Chapter 1, we give the standard de�nitions and notations which are used in
this thesis, as well as the necessary theory on fractional calculus, Mittag-Le�er func-
tions, multipliers and Volterra equations. In the theory of Mittag-Le�er functions,
we also prove a result on Gronwall's inequalities including singularities. This result
is stated in Lemma 1.2.1.

In Chapter 2, we investigate solutions to (1) for the case when Ψβ(x,−i∇) has
variable coe�cients. In order to adapt the theory of sub-Markovian semigroups
and Dirichlet operators as a tool for locally solving the problem (1), the analytic
properties of the corresponding symbol associated are examined. A representation
for the solutions is given by exploiting the Fourier analysis, strongly continuous
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semigroups and Volterra equations. The main results that summarize our method
for variable coe�cients are stated in Theorems 2.3.7 and 2.4.2.

Chapter 3 deals with the solvability of (1) when the operator Ψβ(x,−i∇) has
constant coe�cients. We start studying the two fundamental solutions associated
with the evolutionary problem, whose estimates for the Lp-norm are found to obtain
three main results concerning mild and global solutions. The existence and unique-
ness of a mild solution is based on the conditions required in some parameters, one
of which is the order of stability of the stochastic process. The existence and unique-
ness of a global solution is found for the case of small initial conditions and another
for non-negative initial conditions. In addition, the chapter includes the asymptotic
behaviour of global solutions as a linear combination of the fundamental solutions
with Lp-decay. The main results of this chapter are stated in Theorems 3.2.1, 3.3.1,
3.4.1 and 3.5.1.

In the last chapter, we show that the non-linearity of (1) leads to the blow-up
of positive solutions in a �nite time. For instance, when the operator Ψβ(x,−i∇)
becomes the negative Laplacian (−∆), all positive solutions to the Cauchy problem

∂t u(t, x) + (−∆)u(t, x) = u(t, x)γ, t > 0, x ∈ Rd,

u(t, x)|t=0 = u0(x) ≥ 0, x ∈ Rd,

blow-up in a �nite time under some considerations on the parameter γ. This fact was
investigated by Fujita (1928−) in 1966 ([22]) and since then, many other researchers
have explored blow-up phenomena (see, e.g. [36], [41], [51], [67]). Following the
analysis of this phenomenon, Chapter 4 is devoted to the question of the existence
of Fujita-type critical exponents. The main result of this chapter is Theorem 4.0.1.
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Chapter 1

Preliminaries

In this chapter we give the basic notations and de�nitions which we need throughout
this thesis. As usual, N, R and C denote the set of natural numbers, real numbers
and complex numbers, respectively. The dimension of the euclidean space is d ∈ N.
For a real number a we denote by [a] the maximal integer not exceeding it.

Let N0 be the set N ∪ {0}. A multi-index δ = (δ1, · · · , δd) is an element of Nd
0

whose order is |δ| = δ1 + · · · + δd. The di�erential operator of order δ is given by

∂δ =
∂|δ|

∂xδ11 · · · ∂xδdd
and we understand ∂δf = f whenever |δ| = 0. For a vector

x ∈ Rd, we de�ne xδ = xδ11 · · ·xδdd and |x|δ = |x1|δ1 · · · |xd|δd . The usual norms are

∥x∥d = |x1| + · · · + |xd| and the standard Euclidean norm ∥x∥ =
√
x21 + · · ·+ x2d.

We recall that all norms are equivalent in Rd.
The positive half-line is given by R+ = [0,∞). The convolution with a scalar-

valued function, on R+ or R, is denoted by ∗ and the usual convolution with respect
to the spatial variable is denoted by ⋆. The Euler Gamma function is Γ(z) :=�∞
0
sz−1e−sds and the Beta function is de�ned by B(z, y) :=

� 1

0
sz−1(1 − s)y−1ds,

Rez,Rey > 0. The relation between them is B(z, y) = Γ(z)Γ(y)
Γ(z+y)

([6, Chapter 1]).

If (Ω,Σ, µ) is an arbitrary measure space and 1 ≤ p ≤ ∞, we denote by
Lp(Ω,Σ, µ) the Lebesgue space (of equivalence classes) of measurable functions
f : Ω → R such that

∥f∥p :=
(�

Ω

|f(x)|pµ(dx)
) 1

p

<∞, 1 ≤ p <∞,

and
∥f∥∞ := ess sup

x∈Ω
|f(x)| <∞.

For any 1 ≤ p ≤ ∞ the normed space (Lp(Ω,Σ, µ), ∥·∥p) is Banach ([60, Theorem
3.11]) and for p = 2 is Hilbert. On this last case, we denote by ⟨·, ·⟩2 the usual inner
product.

If (X, ∥·∥X) is an arbitrary Banach space and 1 ≤ p ≤ ∞, we denote by
Lp(Ω,Σ, µ;X) the Bochner space (of equivalence classes) of Bochner-measurable
functions f : Ω → X such that ∥f∥X lies in Lp(Ω,Σ, µ). These spaces of Bochner
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are Banach endowed with the norm

∥f∥p :=
(�

Ω

∥f(x)∥pXµ(dx)
) 1

p

, 1 ≤ p <∞,

and for L∞(Ω,Σ, µ;X) the norm is given by

∥f∥∞ := ess sup
x∈Ω

∥f(x)∥X .

We say that f is integrable, in the sense of Lebesgue or Bochner, whenever ∥f∥X
belongs to L1(Ω,Σ, µ). When Σ is the Lebesgue σ-algebra and µ is the Lebesgue
measure, we write Lp(Ω) or Lp(Ω;X) for the corresponding Lebesgue or Bochner
space, respectively. For a locally compact space K, its Borel σ-algebra will be
denoted by B(K).

If J ⊂ R is non-empty, C(J ;X) is the space of continuous functions f : J → X
and Lp(J ;X) is the Bochner space, 1 ≤ p ≤ ∞. For f ∈ C([a, b];X), its Riemann
integral in the usual way coincides with the Bochner integral ([29, Lemma 2.3.24,
De�nition 2.3.25]).

By C∞(Rd) we denote the set of real-valued functions on Rd which are arbitrarily
di�erentiable. As usual, C∞

0 (Rd) ⊂ C∞(Rd) is the set of the test functions and it
is a dense subspace of Lp(Rd) for all 1 ≤ p < ∞. The space of bounded continuous
functions real-valued on Rd is denoted by Cb(Rd). A function f : Rd → R vanishes
at in�nity if for any ϵ > 0 there exists a compact set K ⊂ Rd such that

|f(x)| < ϵ, x ∈ Rd \K.

The set of these functions is denoted by C∞(Rd) and C∞
0 (Rd) is dense in it with the

usual norm ∥·∥∞ ([60, Theorem 3.17], [59, Ejercicio 6.1]). Clearly, C∞(Rd) ⊂ Cb(Rd).
We understand the above notions regarding non-negative measures, however,

sometimes we will need to use signed measures on a measurable space (Ω,Σ), that
is, a set function µ : Σ → (−∞,∞] (or [−∞,∞)), such that µ(∅) = 0 and µ is
countably additive. By Jordan's decomposition theorem it is known that µ = µ1−µ2,
where µ1 and µ2 are mutually singular, non-negative and unique. In this case, we
de�ne ∥µ∥ := µ1(Ω) + µ2(Ω) = |µ|(Ω) as the total variation of µ. The set of signed
measures on Ω is denoted byM(Ω) and it is a linear space with the usual operations.
Whenever ∥µ∥ <∞ we say that µ is bounded.

If K is a locally compact space, we de�ne Mb(K) as the set of bounded signed
measures on K. If (µn)n∈N is a sequence in Mb(K) and µ ∈ Mb(K), we say that
(µn)n∈N converges in norm to µ if and only if

lim
n→∞

∥µn − µ∥ = 0

and we say that (µn)n∈N converges weakly to µ if for all function f ∈ Cb(K) we have

lim
n→∞

�
K

fµn =

�
K

fµ.

It is easy to see that norm convergence implies weak convergence. Besides, (Mb(K); ∥·∥)
is a normed linear space ([60, Sections 6.5 and 6.6]).
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1.1. FRACTIONAL INTEGRALS AND DERIVATIVES

In what follows we use the notations f ≍ g and f ≲ g in D, which means that
there exists constants C,C1, C2 > 0 such that C1g ≤ f ≤ C2g and f ≤ Cg in D,
respectively. Such constants may change line by line. We say that f(x) and g(x)

are asymptotically equivalent as x→ ∞, if the quotient
f(x)

g(x)
tends to unity. In this

case, our notation is f(x) ∼ g(x) (x→ ∞) (see [14]).
As a linear operator A on a Banach space X we understand a linear mapping

whose domain D(A) is a linear subspace of X and its range Ran(A) is contained in
X. We say that A : D(A) → X is continuous (or bounded) if ∥A(v)∥X ≤ C∥v∥X for
all v ∈ D(A), that is, the continuity of A is satis�ed when D(A) carries the topology
induced by X. The family of continuous linear operators T : X → X is denoted by
B(X) and ∥T∥B(X) = sup

v∈X\{0}

∥Tv∥X
∥v∥X

is the usual operator norm, sometimes shortly

denoted by ∥T∥ if no ambiguity arises.
We say that A is invertible if there is a bounded operator A−1 such that A−1 :

X → D(A), AA−1 = IX and A−1A = ID(A), where IX and ID(A) is the identity
on X and D(A), respectively. The resolvent of A is the set ρ(A) = {λ ∈ C :
(A− λ) is invertible}. If λ ∈ ρ(A), then the resolvent operator of A at λ is written
as RA(λ) = (A− λ)−1. The spectrum of A, denoted by σ(A), is the set of all points
λ ∈ C for which (A− λ) is not invertible (see, e.g. [26, Chapter 1]).

We complete this review, giving some notions related to sub-Markovian semi-
groups on C∞(Rd) and on Lp(Rd), 1 ≤ p < ∞, which are taken from [29, Chapter
4]. For a real or complex Banach space (X, ∥·∥X), a family of bounded linear op-
erators (Tt)t≥0 on X is a semigroup of operators, if T0 = IX and Ts+t = Ts ◦ Tt
holds for all s, t ≥ 0. We say that the semigroup (Tt)t≥0 is strongly continuous if
limt→0∥Ttx − x∥X = 0 for all x ∈ X, and the semigroup is called a contraction
semigroup if ∥Tt∥ < 1 for all t ≥ 0.

If (Tt)t≥0 is a strongly continuous contraction semigroup on
(
C∞(Rd), ∥·∥∞

)
which is positivity preserving, i.e., Ttf ≥ 0 whenever f ≥ 0, then it is called a
Feller semigroup ([29, De�nition 4.1.4]). If (Tt)t≥0 is de�ned on

(
Lp(Rd), ∥·∥p

)
,

1 ≤ p < ∞, such that 0 ≤ Ttf ≤ 1 almost everywhere whenever 0 ≤ f ≤ 1 almost
everywhere, then it is called a sub-Markovian semigroup ([29, De�nition 4.1.6]). The
semigroup (Tt)t≥0 is symmetric if for all f, g belonging to C∞(Rd) ∩ L2(Rd) or to

Lp(Rd) ∩ L2(Rd), respectively, we have that ⟨Ttf, g⟩2 = ⟨f, Ttg⟩2.

1.1 Fractional integrals and derivatives

Depending on what we need to model and the conditions we have at our disposal,
many types of fractional derivatives have emerged, including Riemann�Liouville,
Caputo, Caputo-Fabrizio, Marchaud, Grünwald�Letnikov, among others. There are
also several fractional integrals, such as Riemann�Liouville, Hadamard and Atan-
gana�Baleanu. Unfortunately, in the literature there are di�erent notations and
de�nitions for some of them. In this thesis, we employ the Riemann-Liouville frac-
tional integral and derivative. We refer to [61, Chapter 2] for the following notions.
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1.2. MITTAG-LEFFLER FUNCTIONS

De�nition 1.1.1. Let f ∈ L1([0, T ]). The Riemann�Liouville integral of order
ϑ > 0 is de�ned as

Jϑf(t) :=

� t

0

(t− s)ϑ−1

Γ(ϑ)
f(s)ds, t > 0.

Since f ∈ L1([0, T ]), this integral exists almost everywhere and it has the semi-
group property

Jϑ1Jϑ2 = Jϑ1+ϑ2 , ϑ1, ϑ2 > 0.

Further, we set J0f := f .
It is very common to use a class of scalar kernels given by

gϑ(t) :=

{
1

Γ(ϑ)
tϑ−1, t > 0,

0, t ≤ 0,

to denote
Jϑf(t) = (gϑ ∗ f)(t), t > 0.

On (0,∞) and for α ∈ (0, 1) we have that

gα ∗ g1−α ≡ 1.

De�nition 1.1.2. Let α ∈ (0, 1) and f ∈ L1([0, T ]), such that the �rst derivative
of J1−αf exists almost everywhere. The Riemann�Liouville derivative of order α is
de�ned as

∂αt f :=
d

dt
(g1−α ∗ f)(t) =

d

dt
(J1−αf)(t).

If f is absolutely continuous, this derivative exists almost everywhere ([61, Lemma
2.2]).

From these de�nitions and the semigroup property, it follows that

∂αJαf = f

for all f ∈ L1([0, T ]) and 0 < α < 1. The equality Jα∂αf = f requires stronger
assumptions (see [61, Theorem 2.4]).

1.2 Mittag-Le�er functions

In this section we review some analytical properties of the Mittag-Le�er functions
and their connection with the densities of stable laws (see e.g., [44] and [66]). These
functions are so named from the Swedish mathematician Gösta Mittag-Le�er (1846-
1927) who introduced them at the beginning of the century XX (1903, 1904, 1905).

In the present thesis we work with the Mittag-Le�er function of two real param-
eters α, ϑ > 0 ([7, Chapter 18]), given by

Eα,ϑ(z) :=
∞∑
k=0

zk

Γ(kα+ ϑ)
, z ∈ C.
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1.2. MITTAG-LEFFLER FUNCTIONS

However, in the literature we can �nd a generalization of this function with three
complex parameters, as well as its relation with the Mellin-Barnes integral and the
H-Function (also called Fox's H-function). See e.g., [46, De�nition 1.4].

It is also known that Eα,ϑ, α, ϑ > 0, is an entire function. Whenever ϑ = 1,

Eα(z) =
∞∑
k=0

zk

Γ(kα + 1)
, z ∈ C,

is the standard Mittag-Le�er function and Eα(−x) is completely monotonic for
x ≥ 0 if 0 < α < 1. The latter is thanks to the work of the American mathematician
Harry Pollard (1919-1985).

The importance of these functions is because they can be de�ned for any operator
that generates a strongly continuous semigroup in a Banach space, using Zolotarev's
formula (or Zolotarev-Pollard formula), in terms of Green functions or strongly con-
tinuous semigroups; see [40, Section 8.1]. This representation plays a fundamental
role for obtaining estimates of the Green functions in evolution equations with frac-
tional time, as we will see in Chapters 2 and 3. In particular, any bounded operator
on a Banach space generates an uniformly (hence strongly) continuous semigroup
([52, Section 1.1 Theorem 1.1]).

On the other hand, the standard Mittag-Le�er function Eα has become a useful
tool to obtain Gronwall type inequalities with singularities. This is particularly
important in this thesis for analysing uniqueness of solutions. For this reason, we
have derived the following inequality including a singularity.

Lemma 1.2.1. Let α ∈ (0, 1) and ϑ ≥ 0 such that α − ϑ > 0. Let g(t) a non-
negative function locally bounded on t ∈ [0, T ) with some T > 0. Suppose that f(t)
is non-negative and locally bounded on [0, T ) such that

f(t) ≤ g(t) + C

� t

0

(t− s)α−1s−ϑf(s)ds

for all t ∈ [0, T ), with some positive constant C. Then

f(t) ≤ g(t) +

� t

0

[
∞∑
n=1

an(t− s)nα−(n−1)ϑ−1s−ϑg(s)

]
ds, 0 ≤ t < T,

where

an = Cn

n−1∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)
.

Proof. The case ϑ = 0 is straightforward from [69, Theorem 1]. For the case ϑ > 0
we require some adjustments in its proof. First, we de�ne the operator B given by

Bϕ(t) := C

� t

0

(t− s)α−1s−ϑϕ(s)ds, t ≥ 0,

for locally bounded functions ϕ. By construction, the operator B is linear and
Bϕ1 ≤ Bϕ2 whenever ϕ1 ≤ ϕ2. Therefore, we have that

f(t) ≤
n−1∑
k=0

Bkg(t) +Bnf(t), n ≥ 1. (1.1)
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1.2. MITTAG-LEFFLER FUNCTIONS

Next, we prove that

Bnf(t) ≤ Cn

n−1∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)

� t

0

(t− s)nα−(n−1)ϑ−1s−ϑf(s)ds (1.2)

is true for all n ∈ N by induction. The case n = 1 follows straightforwardly from
the de�nition of B. Now, we suppose that (1.2) is true for N ∈ N and applying B
we obtain

B
(
BNf

)
(t)

= C

� t

0

(t− s)α−1s−ϑBNf(s)ds

≤ CN+1

N−1∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)

� t

0

(t− s)α−1s−ϑ
[� s

0

(s− τ)Nα−(N−1)ϑ−1τ−ϑf(τ)dτ

]
ds

= CN+1

N−1∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)

� t

0

[� t

τ

(t− s)α−1s−ϑ(s− τ)Nα−(N−1)ϑ−1ds

]
τ−ϑf(τ)dτ,

where the last line comes from the Fubini's theorem. Besides, the integral in the
square brackets can be estimated with the substitution s = τ + z(t− τ) as follows.

� t

τ

(t− s)α−1s−ϑ(s− τ)Nα−(N−1)ϑ−1ds

=

� 1

0

((t− τ)(1− z))α−1(τ + z(t− τ))−ϑ(z(t− τ))Nα−(N−1)ϑ−1(t− τ)dz

≤
� 1

0

((t− τ)(1− z))α−1(z(t− τ))−ϑ(z(t− τ))Nα−(N−1)ϑ−1(t− τ)dz

= (t− τ)(N+1)α−Nϑ−1

� 1

0

(1− z)α−1zN(α−ϑ)−1dz

= (t− τ)(N+1)α−Nϑ−1 Γ(α)Γ(N(α− ϑ))

Γ((N + 1)α−Nϑ)
.

Consequently,

B
(
BNf

)
(t) ≤ CN+1

N∏
k=1

Γ(α)Γ(k(α− ϑ))

Γ((k + 1)α− kϑ)

� t

0

(t− τ)(N+1)α−Nϑ−1τ−ϑf(τ)dτ

which proves the inductive step in (1.2).

Finally, since Γ((k+1)(α−ϑ))
Γ((k+1)α−kϑ) ≤ 1 for k large enough, we have that

lim
n→∞

Bnf(t) = 0

and the expression (1.1) can be written as

f(t) ≤
∞∑
n=0

Bng(t).

The proof is complete.
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1.3. MULTIPLIERS

1.3 Multipliers

We start this section de�ning the Schwartz space given by

S(Rd) := {v ∈ C∞(Rd) : ∥v∥(N,δ) <∞ for all N ∈ N0, δ ∈ Nd
0},

where
∥v∥(N,δ) := sup

x∈Rd
|∂δv(x)|(1 + ∥x∥)N .

On this space we de�ne the Fourier transform as

v̂(ξ) = F(v)(ξ) :=

�
Rd
e−ix·ξv(x)dx, v ∈ S(Rd),

and the inverse Fourier transform as

F−1(w)(x) :=
1

(2π)d

�
Rd
eix·ξw(ξ)dξ, w ∈ S(Rd).

Sometimes we write Fx 7→ξ(v)(ξ) and F−1
ξ 7→x(w)(x) for denoting the Fourier transform

and its inverse, respectively.
The family of norms ∥·∥(N,δ) de�nes a Fréchet topology on S(Rd) ([20, Proposition

8.2]) and F is an homeomorphism into itself with that topology, that is, F : S(Rd) →
S(Rd) is a bijective mapping, where both F and F−1 are continuous ([29, Theorem
3.1.7]). We want to point out that in the literature there are some de�nitions of
the Fourier transform which di�er in the factor 2π, however this does not a�ect our
results.

According to our de�nition and ([29, Remark 3.1.11]), we have that

⟨v, w⟩2 =
1

(2π)d
⟨v̂, ŵ⟩2

for all v, w ∈ S(Rd), which extends to all L2(Rd) by density. In particular, by the
Plancherel's theorem ([29, Theorem 3.2.18 ]),

∥v∥22 =
1

(2π)d
∥v̂∥22, v ∈ L2(Rd).

Having these properties in mind, we can introduce some function spaces such as the
Bessel potential Hm

2 (Rd), which is de�ned as the completion of C∞
0 (Rd) with respect

to the norm

∥v∥Hm
2
=

1

(2π)
d
2

∥∥∥(1 + ∥·∥2
)m

2 v̂
∥∥∥
2
.

If m is a non-negative integer number then the classical Sobolev space Wm
2 (Rd) and

Hm
2 (Rd) are isomorphic ([29, Theorem 3.11.10]).
In a similar way, using a continuous negative de�nite function ψ : Rd → C, we

can de�ne the ψ-Bessel potential spaces

Hψ,2(Rd) := {v ∈ L2(Rd) : ∥v∥Hψ,2 <∞}

13



1.3. MULTIPLIERS

endowed with the norm

∥v∥Hψ,2 :=
1

(2π)
d
2

∥(1 + |ψ(·)|) v̂∥2 .

In this thesis is particularly important the theory of the continuous negative de�nite
functions, hence we have taken the following notions from [29, Sections 3.6 and 3.10].

De�nition 1.3.1. The function ψ : Rd → C is called a continuous negative de�nite
function if ψ is continuous, ψ(0) ≥ 0 and ξ 7→ e−tψ(ξ) is positive de�nite for all
t ≥ 0.

A typical example of continuous negative de�nite functions is

Rd ∋ ξ 7→ ∥ξ∥2s ∈ R

for any s ∈ (0, 1] ([29, Example 3.9.17]).
Nevertheless, the following lemma is often useful when dealing with lesser known

functions ([29, Lemma 3.6.8 and Theorem 3.6.11]).

Lemma 1.3.1. The function ψ : Rd → C is negative de�nite if and only if

ψ(0) ≥ 0,

ψ(ξ) = ψ(−ξ) and

for any k ∈ N, for any ξ1, · · · , ξk ∈ Rd and z1, · · · , zk ∈ C,

k∑
j=1

zj = 0 implies
k∑

j,l=1

ψ(ξj − ξl)zj z̄l ≤ 0.

As we have seen in the de�nition of the space Hψ,2(Rd), the function |ψ| acts on
v̂ as a pointwise multiplier.

In general terms, a function g is called a pointwise multiplier from a space S1

to another space S2, if for every function v ∈ S1 the product g v ∈ S2. Other
de�nitions also require that the linear mapping v 7→ g v is bounded. Due to the
algebraic properties of the pointwise multipliers, its use has expanded to the context
of linear operators giving rise to the multiplier operators.

A multiplier operator is a linear operator de�ned on a functions space which
changes the frequency spectrum of the function via the Fourier transform. In fact,
for a continuous negative de�nite function ψ, we can de�ne a linear operator Λ given
by

v 7→ Λ(v) := F−1 (ψ(·)v̂)

on a suitable domain of functions, for instance C∞
0 (Rd) ⊂ S(Rd). The natural next

step is to study its possible extensions.
The role of these type of multipliers have been investigated widely as a part

of Fourier Analysis (see e.g., [5] and [58]). Thereby, we arrive at the theory of
pseudo-di�erential operators with negative de�nite symbols ([30]) and the theory
of Sobolev multipliers ([47]). As we will see later, we �nd that in the literature

14



1.4. VOLTERRA EQUATIONS

the term multiplier often refers to the symbol associated with the corresponding
linear operator that generates a strongly continuous contraction semigroup on some
Banach space.

For instance, by the theorem of Hille-Yosida ([29, Theorem 4.1.33]) we know that
a linear operator A : D(A) → X, on a Banach space (X, ∥·∥X), is the generator of a
strongly continuous contraction semigroup (Tt)t≥0, if and only if D(A) is dense in X,
A is dissipative and Ran(A − λ) = X for some λ > 0. Therefore, the properties of
the pseudo-di�erential operator A, the semigroup (Tt)t≥0 and the resolvent operator
RA(λ) at λ, λ ∈ ρ(A), are determined by the symbol associated with A (see, e.g.
[31, Chapter 6]).

1.4 Volterra equations

Here, we present the necessary background on the Volterra integral equations in the
sense of Prüss ([57]), of the scalar type

u(t) = f(t) +

� t

0

k(t− s)Au(s)ds, t ∈ [0, T ], (1.3)

where A is a closed linear unbounded operator de�ned on a Banach space X, with
dense domain D(A) ⊂ X. The scalar function k ∈ L1,loc(R+) is called the kernel of
the convolution k ∗ Au. The unknown function u and the forcing term f belong to
the space C([0, T ];X).

The notation Au(s) is understood as A (u(s)) and thus Au can be considered as
a function on [0, T ].

We recall that an operator A : D(A) → X is closed if its graph is closed in X×X
and it is closable if it has a closed extension ([29, De�nition 2.7.3, Lemma 2.7.12,
De�nition 2.7.13 ]). When A is closed, the domain of A equipped with the graph
norm ∥·∥A := ∥·∥X + ∥A(·)∥X is a Banach space, which is usually denoted by XA

(see [57, Chapter 1]).
The term

� t
0
k(t− s)Au(s)ds is understood in the sense of Bochner, that is, the

integral is an element of X if and only if
� t
0
k(t− s)∥Au(s)∥Xds <∞ ([25, Theorem

3.7.4]). If k = gϑ with ϑ > 0 as in Section 1.1, the integral exists almost everywhere
whenever ∥Au(·)∥X is locally integrable on R+. In the case of X = Lp(Rd), 1 ≤ p ≤
∞, we have that

(� t
0
gϑ(t− s)Au(s)ds

)
(x) =

� t
0
gϑ(t− s)Au(s)(x)ds.

If u(t) ∈ D(A) for all t ∈ [0, T ], u and Au belong to C([0, T ];X), then it holds� T
0
u(t)dt ∈ D(A) and A

(� T
0
u(t)dt

)
=

� T
0
Au(t)dt ([29, Lemma 2.3.24 C.]).

We say that a function u ∈ C([0, T ];X) is a strong solution of (1.3) if u ∈
C([0, T ];XA) and it satis�es (1.3). We say that u is a mild solution of (1.3) if
k ∗ u ∈ C([0, T ];XA) and u(t) = f(t) + A (k ∗ u) (t) for all t ∈ [0, T ]. Every strong
solution of (1.3) is a mild solution ([57, De�nition 1.1]).

On the other hand, it is known that the pair of kernels (g1−α, gα), 0 < α < 1, are
of type (PC), i.e., they satisfy the following condition (see [56]):

g1−α ∈ L1,loc(R+) is non-negative and non-increasing, the kernel gα ∈ L1,loc(R+)
and (g1−α ∗ gα) = 1 in (0,∞).
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1.4. VOLTERRA EQUATIONS

In fact, gα is completely positive ([57, De�nition 4.5]). The class of completely pos-
itive kernels and its properties are very useful for applying subordination principles
and obtaining strong solution to (1.3). For instance, there exists a unique scalar
propagation function w(t, τ), t, τ ≥ 0, associated with the completely positive func-
tion gα. Besides, associated with w we have the so-called relaxation function s(t, τ),
t, τ ≥ 0, which is the solution of the scalar Volterra equation, �xing τ ,

s(t, τ) + τ (gα ∗ s(t, τ)) (t) = 1, t ≥ 0.

The precise relation between w and s and their properties, can be found in [57,
Section 4.5] and [56, Sections 2 and 3].

The property (PC), together with the previous abstract notions, allows that the
problem (1) can be rewritten as a Volterra equation of the form (1.3), therefore one
has to choose a suitable Banach space X for �nding strong solutions in accordance
with the particular structure of the evolution problem. This theory is illustrated on
various sections of this thesis.
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Chapter 2

The semi-linear problem with

variable coe�cients

This chapter deals with the solvability of the semi-linear Cauchy problem

∂αt (u− u0)(t, x) + Ψβ(x,−i∇)u(t, x) = λ|u(t, x)|γ−1u(t, x), t > 0, x ∈ Rd,

u(t, x)|t=0 = u0(x), x ∈ Rd.
(2.1)

Here, γ > 1 and λ ∈ R are parameters of the non-linear term. The symbol of the
operator Ψβ(x,−i∇) is a measurable function on Rd × Rd given by

ψ(x, ξ) = ∥ξ∥βωµ
(
x,

ξ

∥ξ∥

)
(2.2)

such that
Ψβ(x,−i∇)v(x) = F−1

ξ→x[ψ(x, ξ)(Fv)(ξ)], v ∈ C∞
0 (Rd).

The function ωµ is real-valued, de�ned on Rd × Sd−1 by

ωµ(x, θ) :=

�
Sd−1

|θ · η|βµ(x, dη), θ ∈ Sd−1, (2.3)

where θ = ξ
∥ξ∥ and Sd−1 denotes the unit (d− 1)-sphere contained in Rd.

Since ωµ is de�ned on Rd×Sd−1, we need �rst to collect some elementary concepts
that are used for the analysis of functions on Sd−1. Besides, in Section 2.1 we
recall the existing relationship between multivariate stable distributions and Borel
measures de�ned on Sd−1. Other properties of these measures are addressed in
Sections 2.2 and 2.3, some of them very useful for obtaining solutions to (2.1) in the
last section of this chapter.

In what follows, we consider Sd−1 as a Hausdor� topological space with the
subspace topology induced by Rd. Thereby, Sd−1 is a (d − 1)-manifold and it is
endowed with a C∞ atlas, that is, a collection of homeomorphisms or real charts
ϕ : U → Rd−1 pairwise C∞-compatible, whose domains are open sets in Sd−1 that
cover Sd−1 (see [50, Chapter I De�nition 1.22]). For simplicity we assume that the
collection has two charts, ϕ1 and ϕ2, with domains U1 = Sd−1 \ (0, 0, · · · , 0, 1) and
U2 = Sd−1 \ (0, 0, · · · , 0,−1), respectively.
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These charts have the form

U1 ∋ θ 7−→ ϕ1(θ) =

(
θ1

1− θd
, · · · , θd−1

1− θd

)
∈ Rd−1,

U2 ∋ θ 7−→ ϕ2(θ) =

(
θ1

1 + θd
, · · · , θd−1

1 + θd

)
∈ Rd−1

and their inverses are, respectively,

Rd−1 ∋ z 7−→ ϕ−1
1 (z) =

(
2z1

1 + ∥z∥2
, · · · , 2zd−1

1 + ∥z∥2
,−1− ∥z∥2

1 + ∥z∥2

)
∈ U1,

Rd−1 ∋ z 7−→ ϕ−1
2 (z) =

(
2z1

1 + ∥z∥2
, · · · , 2zd−1

1 + ∥z∥2
,
1− ∥z∥2

1 + ∥z∥2

)
∈ U2.

We see that {U1, U2} is the standard open covering of Sd−1 and the transition func-
tions, ϕ2 ◦ ϕ−1

1 and ϕ1 ◦ ϕ−1
2 , are smooth on its domain of de�nition. By the com-

pactness of Sd−1, there exists a smooth partition of unity on Sd−1 given by {ν1, ν2},
which is subordinate to the covering {U1, U2} (see, e.g. [15, Lemma 7]). This means
that νj ∈ C∞(Sd−1) and supp νj ⊂ Uj is a compact set, j = 1, 2.

We say that a function h de�ned on Sd−1 belongs to L2(Sd−1) if

(νjh) ◦ ϕ−1
j ∈ L2(Rd−1)

for j ∈ {1, 2}. Besides, we equip L2(Sd−1) with the norm

∥h∥L2(Sd−1) :=
(
∥(ν1h) ◦ ϕ−1

1 ∥2L2(Rd−1) + ∥(ν2h) ◦ ϕ−1
2 ∥2L2(Rd−1)

) 1
2
.

If we change the collection {Uj, ϕj, νj} we obtain an equivalent norm.
In this way, we suppose that µ(x, dη) is a transition kernel on Rd × B(Sd−1) in

the sense of [29, De�nition 2.3.19], that is, for every �xed A ∈ B(Sd−1) the function

Rd ∋ x 7→ µ(x,A) ∈ [0,∞]

is measurable, and for every �xed x ∈ Rd the set function

B(Sd−1) ∋ A 7→ µ(x,A) ∈ [0,∞]

is a centrally symmetric �nite (non-negative) Borel measure on Sd−1. All these
measures are called spectral measures (see, e.g. [40, Section 1.8], [37]). As we
show below, from the properties of these spectral measures one can derive analogous
properties for the function ωµ given in (2.3).

Whenever we say that ωµ(x, ·) is a continuous function on Sd−1 for �xed x, we
understood the continuity (or C∞) in the natural way with the structure of atlas
introduced above (see [15, De�nition 4]).
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2.1. SPECTRAL MEASURES

2.1 Spectral measures

A spectral measure on Sd−1 arises from processes involving multivariate stable dis-
tributions, in our particular case β-stable because of the probabilistic interpretation
of the operator −Ψβ(x,−i∇). We refer to [62, Chapter 2] and [54] for such notions
and some examples.

The spectral measure is a data-structure containing the correlation structure of
a stable distribution on Rd. For a symmetric β-stable random vector in Rd, exis-
tence and uniqueness of its characteristic function and the corresponding symmetric
spectral measure is proved in [62, Theorem 2.4.3].

In order to study the properties of the spectral measures associated with the
transition kernel µ, we consider the map, which we again denote by µ,

Rd ∋ x 7−→ µ(x) ∈M(Sd−1)

including the usual topology of
(
Rd; ∥·∥

)
and

(
Mb(Sd−1); ∥·∥

)
.

Next, we show two lemmata in order to set conditions on the transition kernel µ
that can be inherited by ωµ.

For the �rst lemma we introduce the notion of density of the measure µ(x), for
every x ∈ Rd, that is, the measure can be formulated as µ(x, dη) = ϱ(x, η)dη, where
ϱ(x, ·) is a continuous function on Sd−1. Additionally, it is worth clarifying that for
the di�erentiation of a function on Sd−1 we understand the order as δ ∈ Nd−1

0 , since
Sd−1 is a (d− 1)-dimensional manifold. For the derivatives of functions on Sd−1, we
think of them as directional derivatives along di�erentiable curves on Sd−1.

Lemma 2.1.1. Let N ∈ N. Suppose that the map Rd ∋ x 7→ µ(x) ∈ M(Sd−1)
ful�lls:

(i) µ(x, dη) = ϱ(x, η)dη with ϱ(x, ·) a continuous and non-negative function on
Sd−1, for all x ∈ Rd, whose upper bound is uniform in x.

(ii) The functions

Rd−1 ∋ z 7−→
�
Sd−1

|ϕ−1
k (z) · η|β(ϕ−1

k (z) · η)−|δ|
|δ|∏
n=1

ηjn µ(x, dη)

are continuous and bounded, for all x ∈ Rd, δ ∈ Nd−1
0 , 1 ≤ |δ| ≤ N , k ∈ {1, 2}

and jn ∈ {1, · · · , d}, with bounds that are uniform in x.

Then the function ωµ given by (2.3) is N-times continuously di�erentiable in the
second variable and it satis�es the condition

sup
x∈Rd

{∥∂δωµ(x, ·)∥L∞(Sd−1) : |δ| ≤ N} <∞.

Proof. We �x x ∈ Rd. The continuity of θ 7→ ωµ(x, θ) on Sd−1 is straightforward
since this space is compact and ϱ(x, ·) is continuous on it, besides the upper bound
is uniform in x.
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2.1. SPECTRAL MEASURES

For the di�erentiability we use the structure of atlas that was previously intro-
duced. By de�nition, ωµ(x, ·) ∈ Cm(Sd−1) at the point θ ∈ Uk if and only if the
function

ωµ(x, ·) ◦ ϕ−1
k

is of class Cm(Rd−1) at the point z = ϕk(θ). Without loss of generality we put k = 1.
The partial derivative of this function w.r.t. zj, j = 1, · · · , d− 1, is given by

∂

∂zj

(
ωµ(x, ·) ◦ ϕ−1

1

)
(z)

=

�
Sd−1

∂

∂zj
|ϕ−1

1 (z) · η|βµ(x, dη)

=

�
Sd−1

β|ϕ−1
1 (z) · η|β(ϕ−1

1 (z) · η)−1 ∂

∂zj
(ϕ−1

1 (z) · η)µ(x, dη)

=

�
Sd−1

β|ϕ−1
1 (z) · η|β(ϕ−1

1 (z) · η)−1

[
∂

∂zj

(
2zjηj

1 + ∥z∥2

)
− ∂

∂zj

(
2ηd

1 + ∥z∥2

)]
µ(x, dη)

=
∂

∂zj

(
2zj

1 + ∥z∥2

) �
Sd−1

β|ϕ−1
1 (z) · η|β(ϕ−1

1 (z) · η)−1ηj µ(x, dη)

− ∂

∂zj

(
2

1 + ∥z∥2

) �
Sd−1

β|ϕ−1
1 (z) · η|β(ϕ−1

1 (z) · η)−1ηd µ(x, dη).

The continuity of the integrals as functions of z, which comes from the hypothesis
(ii), proves the continuity of this derivative. Finally, the uniform boundedness in x
and similar arguments leads to the desired condition.

Corollary 2.1.1. Under the assumption of Lemma 2.1.1 part (i), the symbol ψ given
in (2.2) is a negative de�nite function.

Proof. According to [30, De�nition 2.3.1], we only need to show that the function

Rd ∋ ξ 7→ ψ(x, ξ) = ∥ξ∥βωµ
(
x,

ξ

∥ξ∥

)
∈ R

is negative de�nite for each x ∈ Rd. For this purpose, from (2.3) together with the
representation given in [37, Formula (1.9)], we see that

ωµ

(
x,

ξ

∥ξ∥

)
=

�
Sd−1

∣∣∣∣ ξ∥ξ∥ · η
∣∣∣∣β µ(x, dη)

=

� ∞

0

�
Sd−1

(
1 +

i⟨ξ, y⟩
∥ξ∥(1 + ∥y∥2)

− ei⟨
ξ

∥ξ∥ ,y⟩
)

d∥y∥
∥y∥1+β

µ̃(x, dη),

with η = y
∥y∥ and the measure µ̃(x, ·) is proportional to µ(x, ·) ([37, Formula (1.4)]).

Thus we obtain

ψ(x, ξ) =

� ∞

0

�
Sd−1

(
1 +

i⟨ξ, y⟩
1 + ∥y∥2

− ei⟨ξ,y⟩
)

d∥y∥
∥y∥1+β

µ̃(x, dη).

Let N ∈ N, z1, · · · , zN ∈ C and ξ1, · · · , ξN ∈ Rd, such that

N∑
j=1

zj = 0.
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2.1. SPECTRAL MEASURES

It follows that

N∑
j,l=1

zjzlψ(x, ξj − ξl)

=

� ∞

0

�
Sd−1

(
N∑

j,l=1

zjzl + i
N∑

j,l=1

zjzl⟨ξj − ξl, y⟩
1 + ∥y∥2

−
N∑

j,l=1

zje
i⟨ξj ,y⟩zlei⟨ξl,y⟩

)
d∥y∥
∥y∥1+β

µ̃(x, dη)

=

� ∞

0

�
Sd−1

0−
N∑
j=1

zje
i⟨ξj ,y⟩

N∑
l=1

zlei⟨ξl,y⟩

 d∥y∥
∥y∥1+β

µ̃(x, dη)

= −
� ∞

0

�
Sd−1

∣∣∣∣∣
N∑
j=1

zje
i⟨ξj ,y⟩

∣∣∣∣∣
2

µ̃(x, dη)

≤ 0.

The proof is completed by Lemma 1.3.1.

In the sequel we suppose that the hypotheses of Lemma 2.1.1 part (i) hold
throughout this thesis without further reminder.

Lemma 2.1.2. Let N ∈ N. Suppose that the map Rd ∋ x 7→ µ(x) ∈ M(Sd−1)
ful�lls:

(i) ∂δµ(x) is a measure (not necessarily positive) on Sd−1 for all x ∈ Rd and for
all δ ∈ Nd

0, |δ| ≤ N , with the uniformly bounded total variation.

(ii) The maps Rd ∋ x 7→ ∂δµ(x) ∈M(Sd−1) are continuous for all |δ| ≤ N .

Then the function ωµ given by (2.3) is N-times continuously di�erentiable in the
�rst variable and it satis�es the condition

sup
θ∈Sd−1

{∥∂δωµ(·, θ)∥L∞(Rd) : |δ| ≤ N} <∞.

Proof. We �x θ ∈ Sd−1. The continuity of ωµ(·, θ) follows from the continuity of the
map µ and the properties of the space Mb(Sd−1) (see Chapter 1). Indeed, for an
arbitrary (xn)n∈N → x in Rd we have that

lim
n→∞

ωµ(xn, θ) = lim
n→∞

�
Sd−1

|θ · η|βµ(xn, dη)

=

�
Sd−1

|θ · η|β lim
n→∞

µ(xn, dη)

=

�
Sd−1

|θ · η|βµ(x, dη)

= ωµ(x, θ).
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2.2. SOME PROPERTIES OF THE OPERATOR −Ψβ(x,−i∇)

For the derivative w.r.t. xj at the point x, j ∈ {1, 2, · · · , d}, we consider (hn)n∈N → 0
in R and ej = (0, · · · , 1︸︷︷︸

jth position

, · · · , 0). Therefore,

∂ωµ(·, θ)
∂xj

(x) = lim
n→∞

1

hn
[ωµ(x+ hnej, θ)− ωµ(x, θ)]

= lim
n→∞

1

hn

�
Sd−1

|θ · η|β[µ(x+ hnej, dη)− µ(x, dη)]

=

�
Sd−1

|θ · η|β lim
n→∞

1

hn
[µ(x+ ejhn, dη)− µ(x, dη)]

=

�
Sd−1

|θ · η|β ∂µ
∂xj

(x, dη).

The continuity of this derivative is proved by repeating the arguments in the case
of ωµ. Using the same reasoning we �nd the existence and continuity of the others
derivatives up to order N . Finally, uniform boundedness of the total variation of
each measure ∂δµ(x), for all |δ| ≤ N and x ∈ Rd, yields the desired condition.

An open problem for future research could be the study of β-stable random
di�usion processes, whose corresponding spectral measure guarantees the hypothesis
of the previous lemmata.

2.2 Some properties of the operator −Ψβ(x,−i∇)

In this section, we show some properties of the operator −Ψβ(x,−i∇) in terms
of the transition kernel µ. For this purpose, we analyse the symbol ψ(x, ξ) =

∥ξ∥βωµ
(
x, ξ

∥ξ∥

)
given by (2.2), as a product between the symbols ∥·∥β and ωµ.

Since β ∈ (0, 2), we know that ∥·∥β is a continuous negative de�nite function (see
Section 1.3) and we can de�ne the operator associated with −∥·∥β in the form

Υv(x) := −F−1
ξ→x[∥ξ∥

β(Fv)(ξ)], v ∈ C∞
0 (Rd). (2.4)

From [29, Example 4.6.29] we have that (Υ, C∞
0 (Rd))maps from C∞

0 (Rd) into Lp(Rd)
for any 1 < p < ∞. By choosing p = 2, together with Plancherel's theorem and
(2.4), it follows that

Υ : C∞
0 (Rd) → L2(Rd)

is a linear operator well de�ned and

F(Υv) = −∥·∥βF(v).

Now, we de�ne the operator associated with the symbol ωµ given by

Θv(x) := F−1
ξ→x

[
ωµ

(
x,

ξ

∥ξ∥

)
(Fv)(ξ)

]
, v ∈ C∞

0 (Rd). (2.5)

Our goal is to show that Θ is bounded under suitable conditions on ωµ and therefore
it can be extended to all of L2(Rd). With this extension, which is again denoted by
Θ, we obtain that

−Ψβ(x,−i∇) = Θ ◦Υ
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maps from C∞
0 (Rd) into L2(Rd). Finally, we want to show that −Ψβ(x,−i∇) is

closable, again, under suitable conditions on ωµ.
We prove the boundedness of Θ : C∞

0 (Rd) → L2(Rd) by using a result stated in
[47, Theorem 16.3.2.]. First, we de�ne on Rd−1 the function

ζ(z) := (1 + ∥z∥2)l

with some integer number l > d−1
4
, thus we get

�
Rd−1

1

ζ2(z)
dz <∞. (2.6)

For every �xed x ∈ Rd we need that ωµ(x, ·) ∈ L2(Sd−1). Here, we observe that the
continuity of ωµ(x, ·) on Sd−1 and the nature of the collection {Uj, ϕj, νj}, j = 1, 2,
as mentioned at the beginning of the chapter, yield

∥ωµ(x, ·)∥L2(Sd−1) =
(
∥(ν1ωµ(x, ·)) ◦ ϕ−1

1 ∥2L2(Rd−1) + ∥(ν2ωµ(x, ·)) ◦ ϕ−1
2 ∥2L2(Rd−1)

) 1
2
<∞.

As in [47, Sub-section 16.3.1], we introduce the norm

∥h∥Hζ
:=

(�
Rd−1

|ζ(z)F(h)(z)|2dz
) 1

2

, h ∈ C∞
0 (Rd−1),

and we de�ne the space Hζ(Rd−1) as the completion of C∞
0 (Rd−1) in this norm.

Remark 2.2.1. Due to our choice of the function ζ and conditions on l, the space
Hζ(Rd−1) is that of Bessel potentials H2l

2 (Rd−1) which is isomorphic to the Sobolev
space W 2l

2 (Rd−1) (see Section 1.3).

We also de�ne the space of functions w on Rd × Sd−1 given by

Hζ(Rd × Sd−1) :=
{
w : ∥w∥Hζ <∞

}
,

where

∥w∥Hζ :=
(�

Rd
∥w(x, ·);Sd−1∥2Hζ

dx

) 1
2

and

∥w(x, ·);Sd−1∥Hζ
:=
(
∥(ν1w(x, ·)) ◦ ϕ−1

1 ∥2Hζ
+ ∥(ν2w(x, ·)) ◦ ϕ−1

2 ∥2Hζ

) 1
2
.

Since (2.6) holds, it is known that the space Hζ(Rd−1) is an algebra in the sense that

∥h1h2∥Hζ
≤ c∥h1∥Hζ

∥h2∥Hζ
, h1, h2 ∈ Hζ(Rd−1).

The proof of this statement is similar to that of [53, Lemma 1].
Now, we suppose that ωµ(x, ·) ∈ C2l(Sd−1) for every x ∈ Rd and that

k := sup
x∈Rd

{∥∂δωµ(x, ·)∥L∞(Sd−1) : |δ| ≤ 2l} <∞. (2.7)
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According to this assumption, it follows that∣∣∂δ (ωµ(x, ·) ◦ ϕ−1
j

)
(z)
∣∣ ≤ k

for all x ∈ Rd, z ∈ Rd−1 and |δ| ≤ 2l, j = 1, 2.
Let gj ∈ C∞

0 (Uj) such that gjνj = νj, j = 1, 2. We note that the support
of gjωµ(x, ·) ◦ ϕ−1

j and its derivatives up to order 2l, is a compact set in Rd−1.
Therefore,

∂δ
(
gjωµ(x, ·) ◦ ϕ−1

j

)
∈ L2(Rd−1)

and ∑
|δ|≤2l

∥∥∂δ (gjωµ(x, ·) ◦ ϕ−1
j

)∥∥
L2(Rd−1)

< kj,

with some constant kj > 0 which depends on k and an upper bound for all ∂δ
(
gj ◦ ϕ−1

j

)
,

|δ| ≤ 2l. This and Remark 2.2.1 show that gjωµ(x, ·) ◦ ϕ−1
j ∈ Hζ(Rd−1) for every

x ∈ Rd and that
∥gjωµ(x, ·) ◦ ϕ−1

j ∥Hζ
≤ cj, j = 1, 2. (2.8)

We are in position now to prove that the map

Hζ(Rd × Sd−1) ∋ w 7−→ ωµw ∈ Hζ(Rd × Sd−1)

is bounded. Indeed, let w ∈ Hζ(Rd × Sd−1). Since Hζ(Rd−1) is an algebra because
of condition (2.6), it follows that

∥ωµw∥2Hζ =
�
Rd
∥(ωµw)(x, ·);Sd−1∥2Hζ

dx

=
2∑
j=1

�
Rd
∥(νj(ωµw)(x, ·)) ◦ ϕ−1

j ∥2Hζ
dx

=
2∑
j=1

�
Rd
∥((gjωµ)(x, ·)(νjw)(x, ·)) ◦ ϕ−1

j ∥2Hζ
dx

=
2∑
j=1

�
Rd
∥(gjωµ)(x, ·) ◦ ϕ−1

j (νjw)(x, ·) ◦ ϕ−1
j ∥2Hζ

dx

≤ c2
2∑
j=1

�
Rd
∥(gjωµ)(x, ·) ◦ ϕ−1

j ∥2Hζ
∥(νjw)(x, ·) ◦ ϕ−1

j ∥2Hζ
dx

≤ c2
2∑
j=1

�
Rd
c2j∥(νjw)(x, ·) ◦ ϕ−1

j ∥2Hζ
dx

≤ c2max(c21, c
2
2)︸ ︷︷ ︸

K

�
Rd

2∑
j=1

∥(νjw)(x, ·) ◦ ϕ−1
j ∥2Hζ

dx

= K

�
Rd
∥w(x, ·);Sd−1∥2Hζ

dx

= K∥w∥2Hζ ,
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where c1 and c2 come from (2.8).
This implies that Θ : L2(Rd) → L2(Rd), given by (2.5), is bounded ([47, Theorem

16.3.2.]) and that the composition with the operator in (2.4), i.e.,

−Ψβ(x,−i∇) : C∞
0 (Rd) −→ L2(Rd)

v 7−→ −F−1
ξ→x[ψ(x, ξ)(Fv)(ξ)],

(2.9)

is well de�ned.
Next, we show that A := −Ψβ(x,−i∇) is closable using [29, Lemma 2.7.12]. For

this purpose, let (vn)n∈N be a sequence in C∞
0 (Rd) converging in L2(Rd) to zero,

such that (Avn)n∈N converges in L2(Rd) to some φ ∈ L2(Rd). Let ϕ ∈ C∞
0 (Rd) be

arbitrary. We have that

⟨−Avn, ϕ⟩2 =
�
Rd

−Avn(x)ϕ(x)dx

=

�
Rd

[
1

(2π)d

�
Rd
eix·ξψ(x, ξ)v̂n(ξ)dξ

]
ϕ(x)dx

=

�
Rd

[
1

(2π)d

�
Rd
eix·ξψ(x, ξ)

[�
Rd
e−iy·ξvn(y)dy

]
dξ

]
ϕ(x)dx

=
1

(2π)d

�
Rd

�
Rd

�
Rd
eix·ξe−iy·ξψ(x, ξ)vn(y)ϕ(x)dydξdx

=
1

(2π)d

�
Rd
vn(y)


�
Rd
e−iy·ξ

�
Rd
eix·ξψ(x, ξ)ϕ(x)dx︸ ︷︷ ︸

=:g(ξ)

dξ

 dy

=
1

(2π)d

�
Rd
vn(y)

{�
Rd
e−iy·ξg(ξ)dξ

}
dy.

Let m ∈ N such that m > 2β+d
2

. We suppose now that the symbol ωµ and its
derivatives of order up to m w.r.t. x are uniformly bounded on Sd−1, that is,

ke := sup
θ∈Sd−1

{∥∂δωµ(·, θ)∥L∞(Rd) : |δ| ≤ m} <∞. (2.10)

Denoting by B1 the ball in Rd of radius 1 centered at the origin, we observe that
�
Rd
|g(ξ)|2dξ =

�
B1

|g(ξ)|2dξ +
�
Rd\B1

|g(ξ)|2dξ =: I1 + I2

and that

I1 ≤
�
B1

(�
Rd
ψ(x, ξ)|ϕ(x)|dx

)2

dξ

≤
�
B1

(�
Rd
ke∥ξ∥β|ϕ(x)|dx

)2

dξ

≤ (ke∥ϕ∥1)2
�
B1

∥ξ∥2βdξ <∞.
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Here, we may also use the constant k instead of ke. For the integral I2 we note that

iξjg(ξ) =

�
Rd
eix·ξiξjψ(x, ξ)ϕ(x)dx, j = 1, · · · , d,

=

�
Rd

∂eix·ξ

∂xj
ψ(x, ξ)ϕ(x)dx

= −
�
Rd
eix·ξ

∂

∂xj
(ψ(x, ξ)ϕ(x)) dx

= −
�
Rd
eix·ξ

(
∂ψ(x, ξ)

∂xj
ϕ(x) + ψ(x, ξ)

∂ϕ(x)

∂xj

)
dx

and thus we obtain

|ξj||g(ξ)| ≤
�
Rd

(∣∣∣∣∂ψ(x, ξ)∂xj

∣∣∣∣ |ϕ(x)|+ ψ(x, ξ)

∣∣∣∣∂ϕ(x)∂xj

∣∣∣∣) dx
≤ ke∥ξ∥β

(
∥ϕ∥1 +

∥∥∥∥∂ϕ(x)∂xj

∥∥∥∥
1

)
≤ ke∥ξ∥β∥ϕ∥W 1

1
.

Similarly, it can be shown that

∥ξ∥m|g(ξ)| ≤ Ke∥ξ∥β∥ϕ∥Wm
1

where the constant Ke depends on m, d and ke. Therefore,

I2 ≤
(
Ke∥ϕ∥Wm

1

)2 �
Rd\B1

∥ξ∥2β−2mdξ

≲
(
Ke∥ϕ∥Wm

1

)2 � ∞

1

∥ξ∥2β−2m+d−1d∥ξ∥,

which is �nite because we chose m > 2β+d
2

. This proves that g ∈ L2(Rd) and it must
be the Fourier transform of F−1(g) from Plancherel's theorem. Consequently,

⟨−Avn, ϕ⟩2 =
�
Rd
vn(y)F−1(g)(−y)dy

and Hölder's inequality yields

|⟨Avn, ϕ⟩2| ≤ ∥vn∥2∥F−1(g)∥2
≲ ∥vn∥2∥g∥2.

Taking the limit n→ ∞ we obtain that

⟨φ, ϕ⟩2 = 0

holds for all ϕ ∈ C∞
0 (Rd). The hypothesis φ ∈ L2(Rd) and the density of C∞

0 (Rd)
in L2(Rd) show that φ ≡ 0 and hence A = −Ψβ(x,−i∇) given by (2.9) is closable.
From [29, Theorem 2.7.14] we de�ne the domain of its closure as

D(A) := C∞
0

∥·∥
A;L2(Rd)
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with respect to the graph norm

∥·∥A;L2(Rd) := ∥·∥2 + ∥A(·)∥2.

Therefore, we have proved the following result.

Theorem 2.2.1. Let β ∈ (0, 2), l,m ∈ N such that l > d−1
4

and m > 2β+d
2

. Suppose
that the transition kernel µ satis�es the assumptions of Lemma 2.1.1 and Lemma
2.1.2 with the integer number N = 2l and N = m, respectively. Then the conditions
(2.7) and (2.10) hold, the linear operator −Ψβ(x,−i∇) de�ned by (2.9) maps from
C∞

0 (Rd) into L2(Rd) and it is closable.

Remark 2.2.2. We want to point out the case where we �x x0 ∈ Rd, which leads to
the symbol ∥ξ∥βωµ(θ) := ∥ξ∥βωµ(x0, θ) independent of x. The corresponding operator
−Ψβ(x0,−i∇), freezing the coe�cients at x0, will be denoted by −Ψβ(−i∇). This
situation is particularly exploited in the next chapters.

2.3 Sub-Markovian semigroup in L2(Rd)

In this section we study other conditions on the transition kernel µ, which de�nes

the symbol ψ(x, ξ) = ∥ξ∥βωµ
(
x, ξ

∥ξ∥

)
given in (2.2), such that (2.1) is solvable in

the strong sense of Prüss. For instance, as in [30, Corollary 2.6.7], for a large enough
λ̃ > 0 it is known that the operator

Aλ̃ := −Ψβ(x,−i∇)− λ̃

is a Dirichlet operator and generates a sub-Markovian semigroup on the Banach
space L2(Rd), whose domain is the ψ-Bessel potential space

Hψ,2(Rd) := {v ∈ L2(Rd) : ∥v∥Hψ,2 <∞}

introduced in Section 1.3 with the negative de�nite function Rd ∋ ξ 7→ ∥ξ∥β ∈ R.
Thereby, the norm of this space is

∥v∥Hψ,2 :=
1

(2π)
d
2

∥∥(1 + ∥·∥β
)
v̂
∥∥
2
.

Similarly, for all s ≥ 0,

Hψ,s(Rd) := {v ∈ L2(Rd) : ∥v∥Hψ,s <∞}

and

∥v∥Hψ,s :=
1

(2π)
d
2

∥∥∥(1 + ∥·∥β
) s

2 v̂
∥∥∥
2
.

It is clear that Hψ,0(Rd) = L2(Rd) and that ∥·∥Hψ,s ≤ ∥·∥Hψ,s+r , s, r ≥ 0.

Remark 2.3.1. The space S(Rd) is dense in
(
Hψ,s(Rd), ∥·∥Hψ,s

)
, s ≥ 0. (see, e.g.,

[30, Proposition 3.3.14]).
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Remark 2.3.2. We note that
(
Hψ,s(Rd), ∥·∥Hψ,s

)
is a Hilbert space with the inner

product ⟨v, w⟩Hψ,s :=
1

(2π)d

�
Rd
(1 + ∥ξ∥β)s v̂(ξ)ŵ(ξ)dξ, for all s ≥ 0.

In order to exploit the theory of sub-Markovian semigroups, together with the
relation between the constants of our estimates, we rewrite

ψ(x, ξ) = ∥ξ∥βωµ(x0, θ) + ∥ξ∥β[ωµ(x, θ)− ωµ(x0, θ)] =: ψ1(ξ) + ψ2(x, ξ),

with θ = ξ
∥ξ∥ and a suitable �xed x0 ∈ Rd. We denote by Pj the operator associated

with the symbol ψj, j ∈ {1, 2}, and thus

Ψβ(x,−i∇) = P1 + P2(x).

Now, we investigate the behaviour of the symbols ψ1 and ψ2 separately according
to the following assumptions (C1)-(C3).

(C1) µ(x)− µ(x0) ≥ 0 for all x ∈ Rd and the density of µ(x0) is strictly positive.

(C2) The function Rd ∋ x 7→ µ(x) ∈ M(Sd−1) belongs to Cm(Rd) and there exist
functions φδ ∈ L1(Rd), independent of θ, such that

|∂δxωµ(x, θ)| ≤ φδ(x)

for all δ ∈ Nd
0, |δ| ≤ m and m =

[
d
β

]
+ d+ 4.

To establish the last assumption, we use the fact that the norms ∥·∥ and ∥·∥d in Rd

are equivalent. Besides, we de�ne the number

c := sup
η∈Rd\{0}

∥η∥
∥η∥d

and the maps

N0 ∋ k 7→

ς(k) :=
2
k
2 π

d
2 Γ( 1

2)
(2π)dΓ( d+1

2 )

∑
|δ|≤d+k+1 c

|δ|∥φδ∥1
ι(k) := ς(k + 1)

. (2.11)

(C3) We assume:

(i) ς
([

d
β

]
+ 3
)
< c0 < λ̃,

(ii) −λ̃2 + 2λ̃c0 ≤ (c0 − ς(0))2 ≤ λ̃(c0 − ς(1)).

Remark 2.3.3. (a) Assumption (C1) and de�nition of ωµ in (2.3) imply that

ωµ(x, θ)− ωµ(x0, θ) ≥ 0

for all x ∈ Rd, θ ∈ Sd−1, and that there exist constants c0, c1 > 0 such that

c0 ≤ ωµ(x0, θ) ≤ c1, for all θ ∈ Sd−1.
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As we will see later, the strict positivity of c0 is essential in this section.
(b) Assumption (C2) yields

|∂δxψ2(x, ξ)| ≤ φδ(x)∥ξ∥β, |δ| ≤ m.

In particular, the Fourier transform of ψ2(x, ξ) in the variable x, i.e.,

ψ̂2(η, ξ) := Fx→η(ψ2(·, ξ))(η, ξ), η ∈ Rd,

exists.
(c) It is remarkable that a large enough λ̃ is su�cient to satisfy assumption (C3) and
thus the assumption can be reduced to ς

([
d
β

]
+ 3
)
< c0. However, as we will see in

one of the main results of this chapter (Theorem 2.4.2), as λ̃ increases, the existence
time of the local solution could decrease.

Lemma 2.3.1. Under assumptions (C1)-(C2), P1v ∈ L2(Rd) and P2v ∈ L2(Rd) for
all v ∈ S(Rd), respectively.

Proof. Let v ∈ S(Rd). From Section 1.3 we know that v̂ ∈ S(Rd) and Remark
2.3.3(a) implies that

�
Rd

|ψ1(ξ)v̂(ξ)|2 dξ =
�
Rd

∣∣∥ξ∥βωµ(x0, θ)v̂(ξ)∣∣2 dξ
≤ c21

�
Rd
∥ξ∥2β|v̂(ξ)|2dξ <∞.

This shows that P1v = F−1[ψ1v̂] ∈ L2(Rd). For the operator P2(x), by de�nition we
have that

P̂2v(η) =

�
Rd
e−ix·ηP2(x)v(x)dx

=

�
Rd
e−ix·η

[
1

(2π)d

�
Rd
eix·ξψ2(x, ξ)v̂(ξ)dξ

]
dx

=
1

(2π)d

�
Rd

�
Rd
e−ix·(η−ξ)ψ2(x, ξ)v̂(ξ)dxdξ

=
1

(2π)d

�
Rd
ψ̂2(η − ξ, ξ)v̂(ξ)dξ.

From assumption (C2) it follows that

c|δ||η|δ|ψ̂2(η, ξ)| ≤ c|δ|∥φδ∥1∥ξ∥β

and
(1 + c∥η∥d)k |ψ̂2(η, ξ)| ≤ ∥ξ∥β

∑
|δ|≤k

c|δ|∥φδ∥1

for any k ≤ m. Therefore,

|ψ̂2(η, ξ)| ≤
(
1 + ∥η∥2

)− k
2 ∥ξ∥β

∑
|δ|≤k

c|δ|∥φδ∥1.
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This estimate and the Minkowski's integral inequality yield

∥P̂2v∥2 ≤
1

(2π)d

(�
Rd

(�
Rd

|ψ̂2(η − ξ, ξ)| |v̂(ξ)|dξ
)2

dη

) 1
2

≤ 1

(2π)d

�
Rd

(�
Rd

|ψ̂2(η − ξ, ξ)|2|v̂(ξ)|2dη
) 1

2

dξ

≤
∑

|δ|≤d+1 c
|δ|∥φδ∥1

(2π)d

�
Rd

(�
Rd

(
1 + ∥η − ξ∥2

)−(d+1)
dη

) 1
2

∥ξ∥β|v̂(ξ)|dξ

≤
∑

|δ|≤d+1 c
|δ|∥φδ∥1

(2π)d

�
Rd

(�
Rd

(
1 + ∥η − ξ∥2

)− d+1
2 dη

) 1
2

∥ξ∥β|v̂(ξ)|dξ

=

∑
|δ|≤d+1 c

|δ|∥φδ∥1
(2π)d

√√√√π
d
2Γ
(
1
2

)
Γ
(
d+1
2

) �
Rd
∥ξ∥β|v̂(ξ)|dξ.

But this integral is �nite because v̂ ∈ S(Rd).

Lemma 2.3.2. Let s ≥ 0. Under the assumption (C1),

c0
(
∥v∥2Hψ,s+1 − ∥v∥2Hψ,s

)
≤ ⟨P1v, v⟩Hψ,s ≤ c1

(
∥v∥2Hψ,s+1 − ∥v∥2Hψ,s

)
and

c20
(
∥v∥2Hψ,s+2 − 2∥v∥2Hψ,s+1 + ∥v∥2Hψ,s

)
≤ ∥P1v∥2Hψ,s ≤ c21

(
∥v∥2Hψ,s+2 − 2∥v∥2Hψ,s+1 + ∥v∥2Hψ,s

)
hold for all v, w ∈ S(Rd).

Proof. By using Remark 2.3.2 the proof is almost identical to the proof of [30,
Proposition 2.3.6].

Lemma 2.3.3. Under the assumption (C2) and the map ς in (2.11), the estimates

|⟨P2v, w⟩Hψ,k | ≤ ς(k)∥w∥Hψ,k

(
∥v∥2Hψ,k+2 − 2∥v∥2Hψ,k+1 + ∥v∥2Hψ,k

) 1
2

and
∥P2v∥Hψ,k ≤ ς(k)

(
∥v∥2Hψ,k+2 − 2∥v∥2Hψ,k+1 + ∥v∥2Hψ,k

) 1
2

for all 0 ≤ k ≤ m− d− 1, v, w ∈ S(Rd) hold.
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Proof. Let v, w ∈ S(Rd). From the proof of Lemma 2.3.1 we obtain

|⟨P2v, w⟩Hψ,k |

≤ 1

(2π)d

�
Rd
(1 + ∥η∥β)k|P̂2v(η)| |ŵ(η)|dη

≤ 1

(2π)d

�
Rd

[
1

(2π)d

�
Rd

|ψ̂2(η − ξ, ξ)| |v̂(ξ)|dξ
]
(1 + ∥η∥β)k|ŵ(η)|dη

≤
∑

|δ|≤d+k+1 c
|δ|∥φδ∥1

(2π)2d

×
�
Rd

[�
Rd

(
1 + ∥η − ξ∥2

)− d+k+1
2 ∥ξ∥β|v̂(ξ)|dξ

]
(1 + ∥η∥β)k|ŵ(η)|dη

=

∑
|δ|≤d+k+1 c

|δ|∥φδ∥1
(2π)2d

×
�
Rd

[�
Rd

(
1 + ∥η − ξ∥2

)− d+1
2

(
1 + ∥η∥β

(1 + ∥η − ξ∥2)(1 + ∥ξ∥β)

) k
2

(1 + ∥η∥β)
k
2 |ŵ(η)|dη

]
× (1 + ∥ξ∥β)

k
2 ∥ξ∥β|v̂(ξ)|dξ.

We write (
1 + ∥η − ξ∥2

)− d+1
2 =

(
1 + ∥η − ξ∥2

)− d+1
4

− d+1
4

and we use the fact that

1 + ∥η∥β

(1 + ∥ξ − η∥2)(1 + ∥ξ∥β)
≤ 2, η, ξ ∈ Rd.

Hölder's inequality in the square brackets brings

|⟨P2v, w⟩Hψ,k |

≤ 2
k
2

∑
|δ|≤d+k+1 c

|δ|∥φδ∥1
(2π)2d

√√√√π
d
2Γ
(
1
2

)
Γ
(
d+1
2

)
×
�
Rd

(�
Rd

(
1 + ∥η − ξ∥2

)− d+1
2 (1 + ∥η∥β)k|ŵ(η)|2dη

) 1
2

(1 + ∥ξ∥β)
k
2 ∥ξ∥β|v̂(ξ)|dξ.

Again Hölder and Young's inequality for convolutions produce

|⟨P2v, w⟩Hψ,k |

≤ 2
k
2

(2π)d

∑
|δ|≤d+k+1

c|δ|∥φδ∥1
π
d
2Γ
(
1
2

)
Γ
(
d+1
2

) ∥w∥Hψ,k

(
∥v∥2Hψ,k+2 − 2∥v∥2Hψ,k+1 + ∥v∥2Hψ,k

) 1
2 .

This proves the �rst estimate.
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For the second one, previous arguments show that

∥P2v∥Hψ,k

≤ 1

(2π)
3d
2

(�
Rd
(1 + ∥η∥β)k

(�
Rd

|ψ̂2(η − ξ, ξ)| |v̂(ξ)|dξ
)2

dη

) 1
2

≤ 1

(2π)
3d
2

�
Rd

(�
Rd

|ψ̂2(η − ξ, ξ)|2(1 + ∥η∥β)k|v̂(ξ)|2dη
) 1

2

dξ

≤
∑

|δ|≤d+k+1 c
|δ|∥φδ∥1

(2π)
3d
2

�
Rd

(�
Rd

(
1 + ∥η − ξ∥2

)−(d+k+1)
(1 + ∥η∥β)kdη

) 1
2

∥ξ∥β|v̂(ξ)|dξ

≤
∑

|δ|≤d+k+1 c
|δ|∥φδ∥1

(2π)
3d
2

×
�
Rd

(�
Rd

(
1 + ∥η − ξ∥2

)− d+1
2

(
1 + ∥η∥β

(1 + ∥η − ξ∥2)(1 + ∥ξ∥β)

)k
dη

) 1
2

× (1 + ∥ξ∥β)
k
2 ∥ξ∥β|v̂(ξ)|dξ

≤ 2
k
2

∑
|δ|≤d+k+1 c

|δ|∥φδ∥1
(2π)

3d
2

√√√√π
d
2Γ
(
1
2

)
Γ
(
d+1
2

) �
Rd
(1 + ∥ξ∥β)

k
2 ∥ξ∥β|v̂(ξ)|dξ

<∞

whenever v ∈ S(Rd). Applying the density of this space in Hψ,k(Rd) in the �rst
estimate, we obtain the second one.

Remark 2.3.4. Lemma 2.3.2 and Lemma 2.3.3 show that ∥P1v∥Hψ,s ≤ c1∥v∥Hψ,s+2

and that ∥P2v∥Hψ,k ≤ ς(k)∥v∥Hψ,k+2 for all v ∈ S(Rd). Hence, from Remark 2.3.1,
we can extend these results for all v ∈ Hψ,s+2(Rd) and v ∈ Hψ,k+2(Rd) with the
corresponding values of s and k.

Lemma 2.3.4. Under the assumptions (C1)-(C2) and the map ι in (2.11), the esti-
mates,

|⟨P1v, w⟩Hψ,s | ≤ c1∥v∥Hψ,s+1∥w∥Hψ,s+1

for all s ≥ 0, v, w ∈ Hψ,s+1(Rd), and

|⟨P2v, w⟩Hψ,k | ≤ ι(k)∥v∥Hψ,k+1∥w∥Hψ,k+1

for all 0 ≤ k ≤ m− d− 2, v, w ∈ Hψ,k+1(Rd) hold.

Proof. The �rst estimate is obtained as in the proof of [30, Proposition 2.3.20],
together with Remark 2.3.2, for all v, w ∈ S(Rd).

The density of S(Rd) in
(
Hψ,s+1(Rd), ∥·∥Hψ,s+1

)
allows to extend the linear map-

pings
S(Rd) ∋ w 7→ ⟨P1v, w⟩Hψ,s ∈ R

to Hψ,s+1(Rd), �xing v ∈ S(Rd), and

S(Rd) ∋ v 7→ ⟨P1v, w⟩Hψ,s ∈ R
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to Hψ,s+1(Rd), �xing w ∈ Hψ,s+1(Rd).
For the second estimate we use previous arguments and we obtain

|⟨P2v, w⟩Hψ,k |

≤
∑

|δ|≤d+k+2 c
|δ|∥φδ∥1

(2π)2d

×
�
Rd

[�
Rd

(
1 + ∥η − ξ∥2

)− d+k+2
2 (1 + ∥η∥β)k|ŵ(η)|dη

]
(1 + ∥ξ∥β)|v̂(ξ)|dξ

=

∑
|δ|≤d+k+2 c

|δ|∥φδ∥1
(2π)2d

×
�
Rd

[�
Rd

(
1 + ∥η − ξ∥2

)− d+1
2

− k+1
2

(
1 + ∥ξ∥β

1 + ∥η∥β

) 1
2
(
1 + ∥η∥β

1 + ∥ξ∥β

) k
2

(1 + ∥η∥β)
k+1
2 |ŵ(η)|dη

]
× (1 + ∥ξ∥β)

k+1
2 |v̂(ξ)|dξ.

As before,
1 + ∥ξ∥β

(1 + ∥ξ − η∥2)(1 + ∥η∥β)
≤ 2

and thus it follows that

|⟨P2v, w⟩Hψ,k | ≤
√
2 2

k
2

(2π)d

∑
|δ|≤d+k+2

c|δ|∥φδ∥1
π
d
2Γ
(
1
2

)
Γ
(
d+1
2

) ∥w∥Hψ,k+1∥v∥Hψ,k+1 .

Again, the result can be extended to
(
Hψ,k+1(Rd), ∥·∥Hψ,k+1

)
by a density argument.

Theorem 2.3.1. Under the assumptions (C1)-(C2) the operator Ψβ(x,−i∇) satis�es

∥Ψβ(x,−i∇)v∥Hψ,k ≥
(
c0√
2
− ς(k)

)
∥v∥Hψ,k+2 − c0∥v∥Hψ,k

for all v ∈ Hψ,k(Rd) and 0 ≤ k ≤ m− d− 1.

Proof. Let v ∈ Hψ,k(Rd). We �nd that

∥P1v∥2Hψ,k ≥
c20

(2π)d

�
Rd
(1 + ∥ξ∥β)k∥ξ∥2β|v̂(ξ)|2dξ

=
c20

(2π)d

�
Rd
(1 + ∥ξ∥β)k(1 + ∥ξ∥2β)|v̂(ξ)|2dξ − c20

(2π)d

�
Rd
(1 + ∥ξ∥β)k|v̂(ξ)|2dξ

≥ c20
2(2π)d

�
Rd
(1 + ∥ξ∥β)k+2|v̂(ξ)|2dξ − c20

(2π)d

�
Rd
(1 + ∥ξ∥β)k|v̂(ξ)|2dξ

=
c20
2
∥v∥2Hψ,k+2 − c20∥v∥2Hψ,k

≥
(
c0√
2
∥v∥Hψ,k+2 − c0∥v∥Hψ,k

)2

.
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From here and Lemma 2.3.3 we have that

∥Ψβ(x,−i∇)v∥Hψ,k = ∥P1v + P2v∥Hψ,k

≥ ∥P1v∥Hψ,k − ∥P2v∥Hψ,k

≥ c0√
2
∥v∥Hψ,k+2 − c0∥v∥Hψ,k − ς(k)∥v∥Hψ,k+2 .

Theorem 2.3.2. Under the assumptions (C1)-(C3) there exists a constant c6 > 0
such that the operator Ψβ(x,−i∇) + λ̃ satis�es

∥Ψβ(x,−i∇)v + λ̃v∥2 ≥ c6∥v∥Hψ,2

for all v ∈ Hψ,2(Rd).

Proof. Let v ∈ Hψ,2(Rd). We have that

∥Ψβ(x,−i∇)v + λ̃v∥22 = ⟨Ψβ(x,−i∇)v + λ̃v,Ψβ(x,−i∇)v + λ̃v⟩2
= ∥Ψβ(x,−i∇)v∥22 + 2λ̃⟨Ψβ(x,−i∇)v, v⟩2 + λ̃2∥v∥22
= ∥(P1 + P2)v∥22 + 2λ̃⟨(P1 + P2)v, v⟩2 + λ̃2∥v∥22.

The �rst term is estimated using Lemmata 2.3.2 and 2.3.3 with k = s = 0, and
c2 := ς(0):

∥(P1 + P2)v∥22 = ∥P1v∥22 + 2⟨P1v, P2v⟩2 + ∥P2v∥22
≥ ∥P1v∥22 − 2|⟨P2v, P1v⟩2|+ ∥P2v∥22
≥ ∥P1v∥22 − 2∥P1v∥2∥P2v∥2 + ∥P2v∥22
= (∥P1v∥2 − ∥P2v∥2)2

≥
(
c0
(
∥v∥2Hψ,2 − 2∥v∥2Hψ,1 + ∥v∥22

) 1
2 − c2

(
∥v∥2Hψ,2 − 2∥v∥2Hψ,1 + ∥v∥22

) 1
2

)2
= (c0 − c2)

2
(
∥v∥2Hψ,2 − 2∥v∥2Hψ,1 + ∥v∥22

)
whenever c0 ≥ c2. In a similar way, Lemmata 2.3.2 and 2.3.4 with k = s = 0, and
c3 := ι(0), yield

⟨(P1 + P2)v, v⟩2 = ⟨P1v, v⟩2 + ⟨P2v, v⟩2
≥ ⟨P1v, v⟩2 − |⟨P2v, v⟩2|
≥ c0

(
∥v∥2Hψ,1 − ∥v∥22

)
− c3∥v∥2Hψ,1 .

Therefore,

∥Ψβ(x,−i∇)v + λ̃v∥22 ≥ (c0 − c2)
2∥v∥2Hψ,2

+ 2
[
λ̃(c0 − c3)− (c0 − c2)

2
]
∥v∥2Hψ,1

+
[
(c0 − c2)

2 − 2λ̃c0 + λ̃2
]
∥v∥22

≥ (c0 − c2)
2∥v∥2Hψ,2

under assumption (C3).
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At the beginning of this section we de�ned the operator

Aλ̃ = −Ψβ(x,−i∇)− λ̃

on the Banach space
(
Hψ,2(Rd), ∥·∥Hψ,2

)
. Now, we are in a position to prove its

dissipativity and other properties.

Theorem 2.3.3. Under the assumptions (C1)-(C3) the operator
(
Aλ̃, H

ψ,2(Rd)
)
is

L2-dissipative.

Proof. As in the proof of Theorem 2.3.2 we �nd that

⟨−Aλ̃v, v⟩2 = ⟨
(
Ψβ(x,−i∇) + λ̃

)
v, v⟩2

= ⟨(P1 + P2)v, v⟩2 + λ̃∥v∥22
≥ c0

(
∥v∥2Hψ,1 − ∥v∥22

)
− c3∥v∥2Hψ,1 + λ̃∥v∥22

= (λ̃− c0)∥v∥22 + (c0 − c3)∥v∥2Hψ,1

≥ 0

for all v ∈ Hψ,2(Rd). Let τ > 0. It follows that

∥τv − Aλ̃v∥
2
2 = τ 2∥v∥22 − 2τ⟨Aλ̃v, v⟩2 + ∥Aλ̃v∥

2
2

≥ τ 2∥v∥22.

Theorem 2.3.4. Under the assumptions (C1)-(C3) the operator

Aλ̃ : H
ψ,2(Rd) → L2(Rd)

is bijective and closed.

Proof. From Lemma 2.3.4 and c3 as in the proof of Theorem 2.3.2, we �nd that

|⟨Aλ̃v, w⟩2| ≤ |⟨P1v, w⟩2|+ |⟨P2v, w⟩2|+ λ̃|⟨v, w⟩2|
≤ c1∥v∥Hψ,1∥w∥Hψ,1 + c3∥v∥Hψ,1∥w∥Hψ,1 + λ̃∥v∥Hψ,1∥w∥Hψ,1

= (c1 + c3 + λ̃)∥v∥Hψ,1∥w∥Hψ,1

and from the proof of Theorem 2.3.3 we see that

|⟨Aλ̃v, v⟩2| ≥ (λ̃− c0)∥v∥22 + (c0 − c3)∥v∥2Hψ,1

≥ (c0 − c3)∥v∥2Hψ,1

for all v, w ∈ Hψ,1(Rd). Therefore, the existence of the unique v ∈ Hψ,1(Rd) such
that

Aλ̃v = f, f ∈ L2(Rd),

comes from [29, Theorem 2.7.41] and the proof of [30, Theorem 2.3.27]. But this
function v belongs to Hψ,2(Rd) under the same arguments as in the proof of [30,
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Theorem 2.3.28], using Theorem 2.3.2 instead of [30, Theorem 2.3.13]. This proves
the �rst statement.

Let τ > 0. We note that

Aλ̃ − τ = −Ψβ(x,−i∇)− (λ̃+ τ)

and assumption C3 is also true for λ̃+τ instead of λ̃. Hence, (Aλ̃−τ) is also bijective
for all τ > 0 and

(
Aλ̃, H

ψ,2(Rd)
)
is closed by [29, Lemma 4.1.26].

Theorem 2.3.5. Under the assumptions (C1)-(C3) the operator

Aλ̃ : H
ψ,2(Rd) → L2(Rd)

generates a strongly continuous contraction semigroup (Tt)t≥0 on L2(Rd).

Proof. Follows from Theorems 2.3.3 and 2.3.4, together with Theorem of Hille and
Yosida ([29, Theorem 4.1.33]).

Theorem 2.3.6. Under the assumptions (C1)-(C3) the operator

B :Hψ,[ dβ ]+4(Rd) → Hψ,[ dβ ]+2(Rd)

v 7−→ Aλ̃v

is closable and its closure
(
B̄,D(B̄)

)
generates a Feller semigroup (St)t≥0 on C∞(Rd).

Proof. We choose s = k =
[
d
β

]
+ 2 in Lemmata 2.3.2 and 2.3.3. Thus we see that

the operator Aλ̃ maps Hψ,[ dβ ]+4(Rd) into Hψ,[ dβ ]+2(Rd). Besides,

Hψ,[ dβ ]+4(Rd) ↪→ Hψ,[ dβ ]+2(Rd) ↪→ C∞(Rd)

by the choice of s and k ([30, Formula (2.296)]). We want to point out that these
embeddings are continuous with the corresponding norm on the spaces Hψ,k(Rd).

Applying Lemmata 2.3.2 and 2.3.4, with s = k =
[
d
β

]
+2 and c5 := ι

([
d
β

]
+ 2
)
,

we �nd∣∣∣⟨Aλ̃v, w⟩
H
ψ,[ dβ ]+2

∣∣∣ ≤ ∣∣∣⟨P1v, w⟩
H
ψ,[ dβ ]+2

∣∣∣+ ∣∣∣⟨P2v, w⟩
H
ψ,[ dβ ]+2

∣∣∣+ λ̃
∣∣∣⟨v, w⟩

H
ψ,[ dβ ]+2

∣∣∣
≤ (c1 + c5 + λ̃)∥v∥

H
ψ,[ dβ ]+3

∥w∥
H
ψ,[ dβ ]+3

and∣∣∣⟨Aλ̃v, v⟩
H
ψ,[ dβ ]+2

∣∣∣ ≥ ⟨P1v, v⟩
H
ψ,[ dβ ]+2

−
∣∣∣⟨P2v, v⟩

H
ψ,[ dβ ]+2

∣∣∣+ λ̃⟨v, v⟩
H
ψ,[ dβ ]+2

≥ c0

(
∥v∥2

H
ψ,[ dβ ]+3

− ∥v∥2
H
ψ,[ dβ ]+2

)
− c5∥v∥2

H
ψ,[ dβ ]+3

+ λ̃∥v∥2
H
ψ,[ dβ ]+2

= (c0 − c5)∥v∥2
H
ψ,[ dβ ]+3

+ (λ̃− c0)∥v∥2
H
ψ,[ dβ ]+2

≥ (c0 − c5)∥v∥2
H
ψ,[ dβ ]+3

36



2.3. SUB-MARKOVIAN SEMIGROUP IN L2(Rd)

for all v, w ∈ Hψ,[ dβ ]+3(Rd). Once again the existence of the unique v ∈ Hψ,[ dβ ]+3(Rd)
such that

Aλ̃v = f, f ∈ Hψ,[ dβ ]+2(Rd),

comes from [29, Theorem 2.7.41] and similar arguments of the proof of [30, Theorem
2.3.27].

But this function v belongs to Hψ,[ dβ ]+4(Rd) under the same arguments as in the
proof of [30, Theorem 2.3.19], using Theorem 2.3.1 instead of [30, Theorem 2.3.13].

Indeed, from Theorem 2.3.1 with k =
[
d
β

]
+ 2 and c4 := ς

([
d
β

]
+ 2
)
, we see that

∥Ψβ(x,−i∇)v∥
H
ψ,[ dβ ]+2

≥ c0 −
√
2c4√

2
∥v∥

H
ψ,[ dβ ]+4

− c0∥v∥
H
ψ,[ dβ ]+2

and we note that c5 ≥
√
2c4. Therefore c0 >

√
2c4 by assumption (C3).

Taken together, these results show that

B : Hψ,[ dβ ]+4(Rd) → Hψ,[ dβ ]+2(Rd)

is bijective.
Now, as in the proof of Theorem 2.3.4, this procedure also works for λ̃+ τ with

any τ > 0. That is,

Ran(B − τ) = Hψ,[ dβ ]+2(Rd)

for all τ > 0.
On the other hand, from Corollary 2.1.1 and [29, Theorem 4.5.6] we know that the

operator
(
−Ψβ(x,−i∇), C∞

0 (Rd)
)
satis�es the positive maximum principle. Since

C∞
0 (Rd) is a dense subspace of Hψ,[ dβ ]+4(Rd) ([29, Remark 3.10.2 and Theorem

3.10.3]), we have that C∞
0 (Rd) is an operator core in the sense of [30, Theorem

2.6.1]. Hence, the operator
(
B,Hψ,[ dβ ]+4(Rd)

)
also satis�es the positive maximum

principle and the assertion follows from [29, Theorem 4.5.3].

Theorem 2.3.7. Under the assumptions (C1)-(C3),

Aλ̃ : H
ψ,2(Rd) → L2(Rd)

is a Dirichlet operator and generates an L2-sub-Markovian semigroup.

Proof. By Theorem 2.3.5 we know that the operator
(
Aλ̃, H

ψ,2(Rd)
)
generates a

strongly continuous contraction semigroup (Tt)t≥0 on L2(Rd). Hence, its resolvent
satis�es

(τ − Aλ̃)
−1f =

� ∞

0

e−τsTsfds

for all f ∈ L2(Rd) and τ > 0 ([29, Lemma 4.1.18]). In a similar way, by Theorem
2.3.6,

(τ − B̄)−1g =

� ∞

0

e−τsSsgds

for all g ∈ C∞(Rd) and τ > 0.
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On the other hand, as it was described above in the proof of Theorem 2.3.6,

(τ −B) : Hψ,[ dβ ]+4(Rd) → Hψ,[ dβ ]+2(Rd)

is bijective for any τ > 0. Therefore, by construction it follows that

(τ − Aλ̃)
−1
(
Hψ,[ dβ ]+2(Rd)

)
= Hψ,[ dβ ]+4(Rd) ⊂ Hψ,[ dβ ]+2(Rd).

In particular, this means that (τ −Aλ̃)
−1 leaves the set V := Hψ,[ dβ ]+2(Rd) invariant

for all τ > 0. Since V ⊂ Hψ,2(Rd) is dense in L2(Rd), we can conclude that it is a
core operator for

(
Aλ̃, H

ψ,2(Rd)
)
in the sense of [30, Lemma 3.3.9].

Again, by construction we also have that

(τ − B̄)−1f = (τ − Aλ̃)
−1f, f ∈ V,

and therefore
Ttf = Stf a.e.

for all f ∈ V . Using this equality and exploiting the fact that (St)t≥0 is a Feller
semigroup, we �nd that Aλ̃ satis�es the Dirichlet condition�

Rd
(Aλ̃v) (x)

(
(v − 1)+

)
(x)dx ≤ 0, v ∈ Hψ,2(Rd),

taking p = 2 in [29, De�nition 4.6.7]. Indeed, for f ∈ V we note that

�
Rd

(Ttf) (x)
(
(f − 1)+

)
(x)dx =

�
Rd

(Stf) (x)
(
(f − 1)+

)
(x)dx

=

�
Rd

(
St((f − 1)+ +min(1, f))

)
(x)
(
(f − 1)+

)
(x)dx

=

�
Rd

(
St((f − 1)+)

)
(x)
(
(f − 1)+

)
(x)dx

+

�
Rd

(St(min(1, f))) (x)
(
(f − 1)+

)
(x)dx.

Since St is positivity preserving, [29, Lemma 4.6.24 A.] yields

�
Rd

(St(min(1, f))) (x)
(
(f − 1)+

)
(x)dx ≤

�
Rd

(St(1)) (x)
(
(f − 1)+

)
(x)dx

≤
�
Rd

(
(f − 1)+

)
(x)dx.

The result follows from similar arguments as in the proofs of [29, Lemma 4.6.6 and
Theorem 4.6.20] and [29, Lemma 4.6.17].
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2.4 Strong solutions

According to the results of the previous section, let (Tt)t≥0 the L2(Rd)-sub-Markovian
semigroup generated by

(
Aλ̃, H

ψ,2(Rd)
)
under the assumptions (C1)-(C3).

We de�ne the non-linear operator

M(v)(t) := Eα(Aλ̃t
α)u0 + α

� t

0

(t− s)α−1E ′
α(Aλ̃(t− s)α)

(
λ|v|γ−1v + λ̃v

)
(s)ds

(2.12)
on the Banach space

YT := C([0, T ];L2(Rd) ∩ L∞(Rd))

with the usual norm, that is,

∥v∥YT = sup
t∈[0,T ]

(∥v(t)∥2 + ∥v(t)∥∞) .

Due to Pollard-Zolotarev's formula (see, e.g. [40, Formulas (8.5) and (8.6)]) and
the fact that 0 < α < 1, the extended de�nition of the Mittag-Le�er functions to
operators like Aλ̃ yields

Eα(Aλ̃t
α) =

1

α

� ∞

0

Ttαrr
−1− 1

αGα(1, r
− 1
α )dr

and

E ′
α(Aλ̃(t− s)α) =

1

α

� ∞

0

T(t−s)αrr
− 1
αGα(1, r

− 1
α )dr.

Besides, � ∞

0

r−1− 1
αGα(1, r

− 1
α )dr = α

and � ∞

0

r−
1
αGα(1, r

− 1
α )dr =

1

Γ(α)
,

due to the Mellin transform of Gα and the Zolotarev's formula (see [40, Proposition
8.1.1]). Therefore, we can show the following result of �xed point.

Theorem 2.4.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis of Theorem
2.3.7 holds. Let λ ∈ R and γ > 1. If u0 ∈ L2(Rd) ∩ L∞(Rd), then for some
0 < T ∗ < T the operator M de�ned by (2.12) has a unique �xed point in YT ∗.

Proof. Whenever (Tt)t≥0 is a sub-Markovian semigroup on Lp(Rd), 1 ≤ p <∞, it is
well known that

∥Tt(v)∥p ≤ ∥v∥p,

for all v ∈ Lp(Rd) and that
|Tt(v)| ≤ |v|

and
∥Tt(v)∥∞ ≤ ∥v∥∞
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hold for all v ∈ Lp(Rd) ∩ L∞(Rd). Taking p = 2, we can conclude that the operator
M is well de�ned. Indeed,

∥M(v)(t)∥2 ≤ ∥u0∥2 +
� t

0

(t− s)α−1 1

Γ(α)

(
|λ|∥v(s)∥γ−1

∞ ∥v(s)∥2 + λ̃∥v(s)∥2
)
ds

≤ ∥u0∥2 +
1

αΓ(α)
∥v∥YT tα

(
|λ|∥v∥γ−1

YT
+ λ̃
)
<∞

and

∥M(v)(t)∥∞ ≤ ∥u0∥∞ +

� t

0

(t− s)α−1 1

Γ(α)

(
|λ|∥v(s)∥γ∞ + λ̃∥v(s)∥∞

)
ds

≤ ∥u0∥∞ +
1

αΓ(α)
∥v∥YT tα

(
|λ|∥v∥γ−1

YT
+ λ̃
)
<∞.

We note that M(v)(0) = u0 and that the continuity of t 7→ Eα(Aλ̃t
α)u0 in [0, T ]

follows from the strong continuity of (Tt)t≥0 and the continuity of (·)α, 0 < α < 1.
Besides,

∥Eα(Aλ̃(·)
α)u0∥YT ≤ ∥u0∥2 + ∥u0∥∞ = ∥u0∥L2(Rd)∩L∞(Rd). (2.13)

The continuity of

t 7→
� t

0

(t− s)α−1E ′
α(Aλ̃(t− s)α)

(
λ|v|γ−1v + λ̃v

)
(s)ds

at t = 0 is straightforward. For the continuity in (0, T ], let 0 < t0 < t ≤ T without
loss of generality. We see that

� t

0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v + λ̃v

)
(t− s)ds

−
� t0

0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v + λ̃v

)
(t0 − s)ds

=

� t0

0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v(t− s)− λ|v|γ−1v(t0 − s) + λ̃v(t− s)− λ̃v(t0 − s)

)
ds

+

� t

t0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v + λ̃v

)
(t− s)ds

=λ

� t0

0

sα−1E ′
α(Aλ̃s

α)
(
|v|γ−1v(t− s)− |v|γ−1v(t0 − s)

)
ds

+ λ̃

� t0

0

sα−1E ′
α(Aλ̃s

α) (v(t− s)− v(t0 − s)) ds

+

� t

t0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v + λ̃v

)
(t− s)ds

and using the property

| |a|ca− |b|cb | ≲ | a− b |(|a|c + |b|c) ≲ | a− b |( |a|+ |b| )c, a, b ∈ R, c > 0, (2.14)
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∣∣∣∣� t

0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v + λ̃v

)
(t− s)ds

−
� t0

0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v + λ̃v

)
(t0 − s)ds

∣∣∣∣
≲|λ|

� t0

0

sα−1
∣∣|v|γ−1v(t− s)− |v|γ−1v(t0 − s)

∣∣ ds
+λ̃

� t0

0

sα−1 |v(t− s)− v(t0 − s)| ds+
� t

t0

sα−1
(
|λ||v|γ−1|v|+ λ̃|v|

)
(t− s)ds

≲|λ|
� t0

0

sα−1 |v(t− s)− v(t0 − s)|
(
|v|γ−1(t− s) + |v|γ−1(t0 − s)

)
ds

+λ̃

� t0

0

sα−1 |v(t− s)− v(t0 − s)| ds+
� t

t0

sα−1
(
|λ||v|γ−1|v|+ λ̃|v|

)
(t− s)ds.

This shows that∥∥∥∥� t

0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v + λ̃v

)
(t− s)ds

−
� t0

0

sα−1E ′
α(Aλ̃s

α)
(
λ|v|γ−1v + λ̃v

)
(t0 − s)ds

∥∥∥∥
∞

≲|λ|
� t0

0

sα−1 ∥v(t− s)− v(t0 − s)∥∞
(
∥v∥γ−1

YT
+ ∥v∥γ−1

YT

)
ds

+λ̃

� t0

0

sα−1 ∥v(t− s)− v(t0 − s)∥∞ ds

+
(
|λ|∥v∥γYT + λ̃∥v∥YT

) � t

t0

sα−1ds→ 0

whenever t→ t0.
The continuity with respect to the norm ∥·∥2 is proved in a similar way.
For all v, w ∈ YT we also �nd that

∥M(v)(t)−M(w)(t)∥∞

≲ |λ|
� t

0

(t− s)α−1 ∥v(s)− w(s)∥∞
(
∥v∥γ−1

YT
+ ∥w∥γ−1

YT

)
ds

+ λ̃

� t

0

(t− s)α−1 ∥v(s)− w(s)∥∞ ds

≲ ∥v − w∥YT T
α
[
|λ|
(
∥v∥γ−1

YT
+ ∥w∥γ−1

YT

)
+ λ̃
]

and the estimate

∥M(v)(t)−M(w)(t)∥∞ ≲ Tαmax(|λ|, λ̃) ∥v − w∥YT
(
∥v∥γ−1

YT
+ ∥w∥γ−1

YT
+ 1
)

holds. Similarly, we obtain

∥M(v)(t)−M(w)(t)∥2 ≲ Tαmax(|λ|, λ̃) ∥v − w∥YT
(
∥v∥γ−1

YT
+ ∥w∥γ−1

YT
+ 1
)
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which yields

∥M(v)−M(w)∥YT ≤ CTαmax(|λ|, λ̃) ∥v − w∥YT
(
∥v∥γ−1

YT
+ ∥w∥γ−1

YT
+ 1
)
. (2.15)

Let T ∗ ∈ (0, T ) and R = 2∥u0∥L2(Rd)∩L∞(Rd). We de�ne the closed ball on YT ∗ by

BYT∗ = {v ∈ YT ∗ : ∥v∥YT∗ ≤ R}.

Using estimates (2.13) and (2.15), with w = 0, it follows that

∥M(v)∥YT∗ ≤ ∥u0∥L2(Rd)∩L∞(Rd) + C(T ∗)αmax(|λ|, λ̃) ∥v∥YT∗

(
∥v∥γ−1

YT∗ + 1
)
.

For all v ∈ BYT∗ we see that

∥M(v)∥YT∗ ≤ R

2
+ C(T ∗)αmax(|λ|, λ̃)R

(
Rγ−1 + 1

)
and therefore

∥M(v)∥YT∗ ≤ R

for su�ciently small T ∗ such that

C(T ∗)αmax(|λ|, λ̃)R
(
Rγ−1 + 1

)
≤ R

2
.

From (2.15) we can also derive that a su�ciently small T ∗ yields

C(T ∗)αmax(|λ|, λ̃)
(
2Rγ−1 + 1

)
< 1

for all v, w ∈ BYT∗ . This shows that M is a contraction as an operator BYT∗ → BYT∗

if T ∗ is chosen small enough. Now, the existence of the unique �xed point ũ ∈ BYT∗

follows from the Banach contraction principle.
The uniqueness of ũ in YT ∗ is proved as follows. We suppose that there exists

another �xed point v of M in the Banach space YT . The previous analysis leads to

∥M(v)(t)−M(ũ)(t)∥∞ ≲
(
|λ|
(
∥v∥γ−1

YT
+ ∥ũ∥γ−1

YT

)
+ λ̃
)� t

0

(t−s)α−1 ∥v(s)− ũ(s)∥∞ ds

which is equivalent to

∥v(t)− ũ(t)∥∞ ≲
(
|λ|
(
∥v∥γ−1

YT
+ ∥ũ∥γ−1

YT

)
+ λ̃
)� t

0

(t− s)α−1 ∥v(s)− ũ(s)∥∞ ds

by de�nition of �xed point. The Gronwall's inequality given in Lemma 1.2.1, with
ϑ = 0, shows that v(t) = ũ(t) for all t ∈ [0, T ∗].

Next, our aim is to prove that ũ satis�es (2.1) in [0, T ∗]. For this purpose, we
already know that the operator (Aλ̃, H

ψ,2(Rd)) has the following properties: it is L2-
dissipative, it is closed, its domain is a dense subspace of L2(Rd) and it generates an
L2-sub-Markovian semigroup (Theorems 2.3.3, 2.3.4 and 2.3.7). Moreover, (0,∞) ⊂
ρ(Aλ̃) ([29, Lemma 4.1.18]), hence (−∞, 0) ⊂ ρ(−Aλ̃).
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Let v ∈ Hψ,2(Rd) and denote X = L2(Rd). The dissipativity of Aλ̃ and the fact
that any τ > 0 belongs to ρ(Aλ̃), yield

∥τ(τ − Aλ̃)
−1(τ − Aλ̃)v∥X = τ∥v∥X

≤ ∥(τ − Aλ̃)v∥X

which implies that
∥τ(τ − Aλ̃)

−1∥B(X) ≤ 1

for all τ > 0.
We also recall that in the proof of Theorem 2.3.4 we found that

−Aλ̃ : H
ψ,2(Rd) → X

is bijective. That is, −Aλ̃ is a sectorial operator in the sense of [57, Section 8.1].
In addition, the operator −Aλ̃ belongs to the class BIP(X) and θ−Aλ̃ = π

2
([57,

De�nition 8.1 and Section 8.7 c)(ii)]). Hence, it satis�es [57, Theorem 8.7 part (i)]
with ω−Aλ̃ = 0.

On the other hand, the Laplace-transform of gα(t) =
tα−1

Γ(α)
, t > 0, is ĝα(s) = s−α,

Re(s) > 0 ([57, Example 2.1]). This yields

lim
s→∞

|ĝα(s)| <∞.

The kernel gα is also 1-regular ([57, De�nition 3.4 and Proposition 3.3]) and θa-
sectorial with θa = απ

2
([57, De�nition 3.2]). Therefore, θa + θ−A < π because

0 < α < 1. This shows that gα satis�es [57, Theorem 8.7 parts (ii), (iv) and (v)],
with ωa = 0.

We recall that XAλ̃
denotes the space Hψ,2(Rd) equipped with the graph norm

∥·∥Aλ̃ = ∥·∥X + ∥Aλ̃(·)∥X . In fact, norms ∥·∥Hψ,2 and ∥·∥Aλ̃ are equivalent. Let
u0 ∈ XAλ̃

.
Taken together, since X belongs to the class HT (see [57, de�nition in page 216,

a characterization in page 217 and page 234]), above arguments allow to consider
the Volterra equations

u(t)−
� t

0

gα(t− s)Aλ̃u(s)ds = (gα ∗ g) (t), t ∈ [0, T ∗],

and

u(t)−
� t

0

gα(t− s)Aλ̃u(s)ds = u0, t ∈ [0, T ∗],

where g(t)(x) := λ|ũ|γ−1ũ(t, x) + λ̃ũ(t, x).
Since ũ ∈ C([0, T ∗];X ∩ L∞(Rd)), it follows that g ∈ L2([0, T

∗];X) and that
gα ∗g ∈ L2([0, T

∗];X). Consequently, [57, Theorem 8.7 parts (a) and (b)] imply that
these equations have a strong solution u1 and u2, respectively. Therefore,

u(t)−
� t

0

gα(t− s)Aλ̃u(s)ds = u0 + (gα ∗ g) (t), t ∈ [0, T ∗], (2.16)

has a unique a.e. strong solution u := u1 + u2 belonging to L2([0, T
∗];XAλ̃

).
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However, the equation (2.16) is equivalent to the Cauchy problem

∂αt (u− u0)(t)− Aλ̃u(t) = g(t), 0 < t ≤ T ∗,

u(t)|t=0 = u0,
(2.17)

where we have put u(t) = u(t, ·) for simplicity.
Besides, the equation in (2.17) can be written in the form

u(t) = u0 + Jα (Aλ̃u(t) + g(t)) , 0 < t ≤ T ∗,

and Aλ̃ has Yosida approximation ([29, Theorem 4.1.29]) given by

Aτ := τAλ̃(τ − Aλ̃)
−1 = τAλ̃Rτ , τ > 0,

with the following properties.

(P1) : Aτ is bounded on L2(Rd) and the semigroup (etAτ )t≥0

is a strongly continuous contraction semigroup, for all τ > 0.

(P2) : lim
τ→∞

∥Aτf − Aλ̃f∥2 = 0 for all f ∈ D(Aλ̃).

(P3) : Ttf := etAλ̃f := lim
τ→∞

etAτf for all f ∈ L2(Rd), t ≥ 0.

Consequently,

u(t) = u0 + JαAτu(t) + Jα(Aλ̃ − Aτ )u(t) + Jαg(t)

= u0 + AτJ
αu(t) + Jα(Aλ̃ − Aτ )u(t) + Jαg(t).

By replacing u in the second term of the r.h.s. of the last equality and using the
semigroup property of the fractional integral Jα, we �nd that

AτJ
αu(t) = AτJ

αu0(t) + AτJ
2αAτu(t) + AτJ

2α(Aλ̃ − Aτ )u(t) + AτJ
2αg(t)

= AτJ
αu0(t) + A2

τJ
2αu(t) + AτJ

2α(Aλ̃ − Aτ )u(t) + AτJ
2αg(t).

Repeating this procedure recursively k-times, we obtain

u(t) =
k∑

m=0

(AτJ
α)m (u0 + Jαg) (t) +

k∑
m=0

(AτJ
α)mJα(Aλ̃ − Aτ )u(t) + (AτJ

α)k+1u(t),

where the last term has the form

(AτJ
α)k+1u(t) = Ak+1

τ Jαk+αu(t)

= Ak+1
τ

� t

0

(t− s)αk+α−1

Γ(αk + α)
u(s)ds.

The fact that u ∈ L2([0, T
∗];XAλ̃

) and Hölder's inequality imply that

∥(AτJα)k+1u(t)∥2 ≤ ∥Aτ∥k+1
B(X)

� t

0

(t− s)αk+α−1

Γ(αk + α)
∥u(s)∥2ds

≤ ∥Aτ∥k+1
B(X)

� t

0

(t− s)αk+α−1

Γ(αk + α)
∥u(s)∥Aλ̃ds

≤ ∥Aτ∥k+1
B(X)

(� t

0

(t− s)2(αk+α−1)

Γ2(αk + α)
ds

) 1
2
(� T ∗

0

∥u(s)∥2Aλ̃ds
) 1

2

= ∥Aτ∥k+1
B(X)∥u∥L2([0,T ∗];XA

λ̃
)

t2αk+2α−1

Γ(αk + α)(2αk + 2α− 1)
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for some k large enough. Therefore,

lim
k→∞

∥(AτJα)k+1u(t)∥2 = 0

and

u(t) =
∞∑
m=0

(AτJ
α)m (u0 + Jαg) (t) +

∞∑
m=0

(AτJ
α)mJα(Aλ̃ − Aτ )u(t)

is well de�ned for all 0 < t ≤ T ∗.
De�nitions of Jα and Mittag-Le�er functions lead to

u(t) = Eα(t
αAτ )u0 +

� t

0

(t− s)α−1Eα,α((t− s)αAτ )g(s)ds

+

� t

0

(t− s)α−1Eα,α((t− s)αAτ )(Aλ̃ − Aτ )u(s)ds

= Eα(t
αAτ )u0 + α

� t

0

(t− s)α−1E ′
α((t− s)αAτ )g(s)ds

+ α

� t

0

(t− s)α−1E ′
α((t− s)αAτ )(Aλ̃ − Aτ )u(s)ds.

Again, by [40, Formulas (8.5) and (8.6)] one gets the representation

u(t) =
1

α

� ∞

0

et
αAτ r u0r

−1− 1
αGα(1, r

− 1
α )dr

+

� t

0

(t− s)α−1

� ∞

0

e(t−s)
αAτ r g(s)r−

1
αGα(1, r

− 1
α )drds

+

� t

0

(t− s)α−1

� ∞

0

e(t−s)
αAτ r(Aλ̃ − Aτ )u(s)r

− 1
αGα(1, r

− 1
α )drds.

On the other hand, from [52, Section 1.3 Lemma 3.2] it follows that

∥Aτu(t)∥2 ≤ ∥Aλ̃u(t)∥2, τ > 0, 0 ≤ t ≤ T ∗,

and property (P1) implies that the last integral is dominated (in ∥·∥2) by
� t

0

(t− s)α−1∥u(s)∥Aλ̃ds.

Here, we use that u ∈ L2([0, T
∗];XAλ̃

) and Hölder's inequality as above, together
with properties (P2)-(P3) and the dominated convergence. Therefore,

u(t) =
1

α

� ∞

0

Ttαr u0r
−1− 1

αGα(1, r
− 1
α )dr

+

� t

0

(t− s)α−1

� ∞

0

T(t−s)αr g(s)r
− 1
αGα(1, r

− 1
α )drds

whenever τ → ∞ and 1
2
< α < 1.
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This and the de�nition of g, show that the strong solution u has the form of the
r.h.s. of the operator (2.12) and thus u = ũ.

Now, for the case 0 < α ≤ 1
2
we may repeat previous arguments, in particular

[57, Theorem 8.7] using the space Lp̄([0, T
∗];XAλ̃

) with some 1
α
< p̄ < ∞. In this

situation, we note that p̄ > 2 and again u = ũ.
Finally, we note that the problem (2.17) is equivalent to the original (2.1).
We are now ready to state the main result of this section.

Theorem 2.4.2. Let α ∈ (0, 1), β ∈ (0, 2), λ ∈ R and γ > 1. Assume that (C1)-(C3)
are satis�ed. Suppose 1

α
< p̄ <∞. If u0 ∈ Hψ,2(Rd)∩L∞(Rd), then there exists T >

0 such that the Cauchy problem (2.1) has a solution u ∈ C([0, T ];L2(Rd)∩L∞(Rd)).
Moreover, u is strong in the sense that u ∈ L2([0, T ];XAλ̃

) whenever 1
2
< α < 1 and

u ∈ Lp̄([0, T ];XAλ̃
) whenever 0 < α ≤ 1

2
.

46



Chapter 3

The semi-linear problem with

constant coe�cients

This chapter deals with the solvability of the semi-linear Cauchy problem

∂αt (u− u0)(t, x) + Ψβ(−i∇)u(t, x) = λ|u(t, x)|γ−1u(t, x), t > 0, x ∈ Rd,

u(t, x)|t=0 = u0(x), x ∈ Rd,
(3.1)

where the symbol of the operator Ψβ(−i∇) is independent of x, that is,

ψ(ξ) = ∥ξ∥βωµ
(

ξ

∥ξ∥

)
, ξ ∈ Rd,

and

ωµ(θ) :=

�
Sd−1

|θ · η|βµ(dη), θ ∈ Sd−1. (3.2)

Again, γ > 1 and λ ∈ R are parameters of the non-linear term. As it was set
in Chapter 2 for the dependent case of x, µ(dη) is a centrally symmetric �nite
(non-negative) Borel measure de�ned on Sd−1, the so-called spectral measure, and
µ(dη) = ϱ(η)dη with the density ϱ. Some restrictions on the function ϱ may be
required for the lower bound and behaviour of the fundamental solutions; see e.g.,
[38, Section 5.2]. More precisely, our basic hypothesis throughout this chapter is the
following:

(H1) The spectral measure µ has a strictly positive density, such that the function
ωµ is strictly positive and (d + 1 + [β])-times continuously di�erentiable on
Sd−1.

We denote by (H2) to refer to (H1) whenever we need to assume that ωµ is (d+2+
[β])-times continuously di�erentiable on Sd−1. The considerations just made above
have been taken from [40, Proposition 4.5.1] and [40, Theorem 4.5.1], for d = 1 and
d > 1 respectively. We want to point out that the condition of strict positivity on
ωµ in H1, guarantees that the support of the measure µ on Sd−1 is not contained in
any hyperplane of Rd ([40, Section 4.5]).

Evolutionary problems like (3.1) can be considered as a generalization of the
classical rigid ignition model. The behaviour of the combustion processes, involving
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non-linear source terms, has become a challenging �eld for mathematical analysis
in the last decades (see, e.g. [10, Chapter 3],[23]). In the case β = 2 and ωµ ≡ 1
we see that the operator, namely Ψ2(−i∇), becomes the negative Laplacian (−∆)
with symbol ψ(ξ) = ∥ξ∥2. The corresponding fundamental solution with α ∈ (0, 1)
has been studied (see, e.g. [17, Chapter 5]) and bounds can be found in [18]. These
bounds are used in [33] in order to study the fundamental solution Z for the subd-
i�usion problem

∂αt (u− u0)−∆u = 0, t > 0, x ∈ Rd,

u|t=0 = u0, x ∈ Rd.

In this context, an important concept associated with α is the mean squared dis-
placement (MSD) or the centred second moment, which describes how fast is the
dispersion of the particles in a random process. In [33, Lemma 2.1], the authors
proved that the MSD governed by the preceding equation speci�cally turns out to
be 2d

Γ(1+α)
tα, t > 0, 0 < α < 1. In the literature one traditionally �nds that anoma-

lous di�usion refers to this power-law. See, e.g. [64], [45], [43], [3] and references
therein. However, in our case, the Cauchy problem (3.1) does not possess a �nite
MSD. This can be directly checked by using the de�nition ofMSD ([33, expression
(6)]) and similar arguments as in the proof of [33, Lemma 2.1] or Theorem 3.1.1 be-
low. Models with in�nite MSD involving equation (3.1) could be an open problem
for future research, because we know from the existing literature that in some cases
of Lévy �ights there is also a divergent MSD and its physical meaning is still not
very clear (see, e.g. [49] and [65]).

3.1 Fundamental solutions

Whenever we study evolution equations it is natural to ask about the fundamental
solutions associated with the evolutionary problem. For equations like (3.1) we know
that if an operator A generates a strongly continuous semigroup Tt in a Banach space,
under suitable conditions, the solution of the Cauchy problem

∂αt (u− u0)(t, x) = Au(t, x) + g(t, x), t > 0, x ∈ Rd,

u(t, x)|t=0 = u0(x), x ∈ Rd,

has the representation

u(t) = Eα(At
α)u0 + α

� t

0

(t− s)α−1E ′
α(A(t− s)α)g(s)ds

in terms of the Mittagf-Le�er functions Eα and E ′
α, respectively for α ∈ (0, 1) (see

e.g.,[40, Theorem 8.2.1]). This representation is also called the mild solution of the
evolution equation. Considering A = −Ψβ(−i∇), the term corresponding to the
operator Eα(−Ψβ(−i∇)tα) has been studied extensively in [32, Section 2], where
the authors found that one of the fundamental solutions is

Z(t, x) :=
1

α

� ∞

0

G(tαs, x)s−1− 1
αGα(1, s

− 1
α )ds. (3.3)
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Here, G stands for the Green function that solves the equation

∂t v(t, x) + Ψβ(−i∇)v(t, x) = 0, t > 0, x ∈ Rd,

with the initial condition

G(t, x)|t=0 = δ0(x), x ∈ Rd,

δ0 being the Dirac delta distribution. In this case, Gα(·, ·) is the Green function that
solves the problem

∂t v(t, s) +
dα

dsα
v(t, s) = 0, t > 0, s ∈ R, Gα(0, s) = δ(s),

and
dα

dsα
f(s) :=

1

Γ(−α)

� ∞

0

f(s− τ)− f(s)

τ 1+α
dτ,

see [40, Formulas (1.111) and (2.74)]. Besides, in [32, Theorem 2] the authors
established that the fundamental solution Z admits the following bounds. In what
follows, we employ the notation Ω = ∥x∥βt−α for x ∈ Rd and t > 0.

Proposition 3.1.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1)
holds. Then there exists a positive constant C such that for (t, x) ∈ (0,∞)×Rd the
following two-sided estimates for Z hold. For Ω ≤ 1,

Z(t, x) ≍ Ct−
αd
β if d < β, (3.4)

Z(t, x) ≍ Ct−α(| log(Ω)|+ 1) if d = β, (3.5)

Z(t, x) ≍ Ct−
αd
β Ω1− d

β if d > β. (3.6)

For Ω ≥ 1,

Z(t, x) ≍ Ct−
αd
β Ω−1− d

β . (3.7)

In the same way we have derived a second fundamental solution Y , as follows.
From [40, Formula (8.8)] we know that

E ′
α(At

α) =
t1−α

α

� ∞

0

eAsGα(s, t)ds.

By [40, Formula (2.77)] we also have

Gα(s, t) = s−
1
αGα

(
1, s−

1
α t
)
,

which produces

E ′
α(At

α) =
t1−α

α

� ∞

0

eAss−
1
αGα(1, s

− 1
α t)ds.
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Together with the transition density G, we see that

α

� t

0

(t− s)α−1E ′
α(A(t− s)α)g(s)ds

=

� t

0

� ∞

0

eAτg(s)τ−
1
αGα(1, τ

− 1
α (t− s))dτds

=

� t

0

� ∞

0

Tτg(s)τ
− 1
αGα(1, τ

− 1
α (t− s))dτds

=

� t

0

� ∞

0

[�
Rd
G(τ, · − z)g(s)(z)dz

]
τ−

1
αGα(1, τ

− 1
α (t− s))dτds

=

� t

0

�
Rd

[� ∞

0

G(τ, · − z)τ−
1
αGα(1, τ

− 1
α (t− s))dτ

]
g(s)(z)dzds,

i.e., we have the convolution of g(s) with a function given in the square brackets.
This allows us to de�ne

Y (t− s, x) :=

� ∞

0

G(τ, x)τ−
1
αGα(1, τ

− 1
α (t− s))dτ

and changing the integration variable to τ = (t− s)αr we obtain that

Y (t, x) :=

� ∞

0

tα−1G(tαs, x)s−
1
αGα(1, s

− 1
α )ds. (3.8)

Therefore, we �nd the following bounds for the fundamental solution Y .

Proposition 3.1.2. Under the same assumptions as Proposition 3.1.1, the following
two-sided estimates for Y hold. For Ω ≤ 1,

Y (t, x) ≍ Ct−
αd
β
+α−1 if d < 2β, (3.9)

Y (t, x) ≍ Ct−α−1(| log(Ω)|+ 1) if d = 2β, (3.10)

Y (t, x) ≍ Ct−
αd
β
+α−1Ω2− d

β if d > 2β. (3.11)

For Ω ≥ 1,

Y (t, x) ≍ Ct−
αd
β
+α−1Ω−1− d

β . (3.12)

Proof. The assertions follow from straightforward computations made in the proof
of the estimates for Z, in [32, Theorem 2]. There, the authors used the fact that
the asymptotic behaviour of Gα is the same as for the density wα given in [32,
Proposition 1] (with the skewness of the distribution that equals to 0) by

wα(τ) ∼ C

{
τ−1−α as τ → ∞,

fα(τ) := τ−
2−α

2(1−α) e−cατ
− α

1−α
as τ → 0,

where cα = (1−α)α
α

1−α . See e.g., [40, Proposition 2.4.1] and [72, Theorem 2.5.2] for
more details.

Keeping this in mind, we see that a di�erence between the functions Z and Y ,
given by (3.3) and (3.8) respectively, is the factor s−1 inside the improper Riemann
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integral of Z. Thus, we only need to check the corresponding two-sided estimates
for � ∞

0

G(tαs, x)s−
1
αGα(1, s

− 1
α )ds,

which can be written equivalently as

� ∞

0

G(tαs, x)s−1− 1
αGα(1, s

− 1
α )s ds ≍ I1 + I2.

Here, similar to the integrals that are used in [32, expression (33)],

I1 :=

� 1

0

min
(
t−

αd
β Ω−1− d

β s, t−
αd
β s−

d
β

)
s ds

and

I2 :=

� ∞

1

min
(
t−

αd
β Ω−1− d

β s, t−
αd
β s−

d
β

)
s−1− 1

αfα(s
− 1
α )s ds,

where

min
(
t−

αd
β Ω−1− d

β s, t−
αd
β s−

d
β

)
=

{
t−

αd
β Ω−1− d

β s, for s < Ω,

t−
αd
β s−

d
β , for s ≥ Ω,

as in [32, expression (32)]. Next, we need to analyse the two-sided estimates for Ij,
j = 1, 2. The case Ω ≤ 1 yields

I1 = t−
αd
β Ω−1− d

β

� Ω

0

s2ds+ t−
αd
β

� 1

Ω

s−
d
β s ds

=
1

3
t−

αd
β Ω2− d

β + t−
αd
β

� 1

Ω

s1−
d
β ds.

The last integral requires the sub-cases d < 2β, d = 2β and d > 2β:

t−
αd
β

� 1

Ω

s1−
d
β ds =


t−

αd
β 1

2− d
β

(
1− Ω2− d

β

)
, for d < 2β,

t−2α|log(Ω)|, for d = 2β,

t−
αd
β 1

d
β
−2

(
Ω2− d

β − 1
)
, for d > 2β.

For I2, since Ω ≤ 1, we have that

I2 = t−
αd
β

� ∞

1

s−
d
β s−1− 1

αfα(s
− 1
α )s ds

= t−
αd
β

� ∞

1

s−
d
β
− 1
α s

2−α
2α(1−α) e−(1−α)α

α
1−α s

1
1−α

ds

= t−
αd
β

� ∞

1

s−
d
β
+ 1

2(1−α) e−(1−α)α
α

1−α s
1

1−α
ds

= Ct−
αd
β .
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We point out that the improper integral is convergent due to the Laplace method
for integrals (see e.g., [32, (A1)]). Therefore, if d < 2β we �nd that

Ct−
αd
β = I2 ≤ I1 + I2 =

1

3
t−

αd
β Ω2− d

β + t−
αd
β

1

2− d
β

(
1− Ω2− d

β

)
+ Ct−

αd
β

≲ t−
αd
β ,

if d = 2β we obtain

I1 + I2 =
1

3
t−2α + t−2α|log(Ω)|+ Ct−2α

and d > 2β implies that

1

3
t−

αd
β Ω2− d

β ≤ I1 ≤ I1 + I2 =
1

3
t−

αd
β Ω2− d

β + t−
αd
β

1
d
β
− 2

(
Ω2− d

β − 1
)
+ Ct−

αd
β

≲ t−
αd
β Ω2− d

β .

Since the additional factor tα−1 is a constant for the integral of Y , the estimates
(3.9)-(3.11) hold. Now, for the case Ω ≥ 1 we have that

I1 = t−
αd
β Ω−1− d

β

� 1

0

s2ds

=
1

3
t−

αd
β Ω−1− d

β

and

I2 = t−
αd
β Ω−1− d

β

� Ω

1

s1−
1
αfα(s

− 1
α )ds+ t−

αd
β

� ∞

Ω

s−
d
β
− 1
αfα(s

− 1
α )ds.

We see that

I2 ≤ t−
αd
β Ω−1− d

β

� Ω

1

s1−
1
αfα(s

− 1
α )ds+ t−

αd
β Ω−1− d

β

� ∞

Ω

s1−
1
αfα(s

− 1
α )ds

= t−
αd
β Ω−1− d

β

� ∞

1

s1−
1
αfα(s

− 1
α )ds

= C1t
−αd

β Ω−1− d
β .

On the other hand,

I2 ≥ t−
αd
β Ω−1− d

β

� Ω

1

s−
d
β
− 1
αfα(s

− 1
α )ds+ t−

αd
β Ω−1− d

β

� ∞

Ω

s−
d
β
− 1
αfα(s

− 1
α )ds

= t−
αd
β Ω−1− d

β

� ∞

1

s−
d
β
− 1
αfα(s

− 1
α )ds

= C2t
−αd

β Ω−1− d
β .

These bounds show that I1 + I2 ≍ t−
αd
β Ω−1− d

β . The factor tα−1 completes the proof
of the estimate (3.12).
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Remark 3.1.1. We note a singularity at the origin with respect to the spatial variable
for Z, whenever d ≥ β, and for Y whenever d ≥ 2β. It is well known that this type
of singularities occurs in the equations of fractional evolution in time, even if β = 2
and ωµ ≡ 1.

As we will see later, the two-sided estimates of fundamental solutions (Z, Y ) play
a key role for our main results in the present chapter. Now, we continue by showing
some properties of the fundamental solutions Z and Y .

Lemma 3.1.1. Under the same assumptions as Proposition 3.1.1, there exists a
positive constant C for all t1, t2 > 0 and x ∈ Rd, such that there exists tc > 0,
between t1 and t2, and the following estimates for Z hold with Ωc = ∥x∥βt−αc . For
Ωc ≤ 1,

|Z(t1, x)− Z(t2, x)| ≤ C|t1 − t2|


t
−αd

β
−1

c if d < β,

t−α−1
c (| log(Ωc)|+ 1) if d = β,

t
−αd

β
−1

c Ω
1− d

β
c if d > β,

and for Ωc ≥ 1,

|Z(t1, x)− Z(t2, x)| ≤ C|t1 − t2|t
−αd

β
−1

c Ω
−1− d

β
c .

Proof. From (3.3) it follows that

Z(t1, x)− Z(t2, x) =
1

α

� ∞

0

[G(tα1 s, x)−G(tα2 s, x)] s
−1− 1

αGα(1, s
− 1
α )ds.

It is known ([40, Theorem 4.5.1]) that G is di�erentiable with respect to t > 0 and
satis�es

|G(t, x)| ≤ Cmin

(
t−

d
β ,

t

∥x∥d+β

)
,∣∣∣∣t∂G∂t (t, x)

∣∣∣∣ ≤ Cmin

(
t−

d
β ,

t

∥x∥d+β

)
.

In these estimates, C depends on β, d and the bounds for ωµ. Using this and the
mean-value theorem, we have that for some tc between t1 and t2,

|Z(t1, x)− Z(t2, x)|

≤ 1

α

� ∞

0

∣∣∣∣∂G(tαs, x)∂t

∣∣∣∣
t=tc

|t1 − t2|s−1− 1
αGα(1, s

− 1
α )ds

≤ |t1 − t2|
tc

� ∞

0

|tαc sG′(tαc s, x)| s−1− 1
αGα(1, s

− 1
α )ds

≤ C
|t1 − t2|

tc

� ∞

0

min

(
(tαc s)

− d
β ,

tαc s

∥x∥d+β

)
s−1− 1

αGα(1, s
− 1
α )ds.
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Therefore, we proceed in the same way from [32, Theorem 2], i.e.,

� ∞

0

min

(
(tαc s)

− d
β ,

tαc s

∥x∥d+β

)
s−1− 1

αGα(1, s
− 1
α )ds

≍
� 1

0

min

(
(tαc s)

− d
β ,

tαc s

∥x∥d+β

)
s−1− 1

αwα(s
− 1
α )ds

+

� ∞

1

min

(
(tαc s)

− d
β ,

tαc s

∥x∥d+β

)
s−1− 1

αwα(s
− 1
α )ds.

With the asymptotic behaviour of wα, the �rst integral reduces to

C

� 1

0

min

(
(tαc s)

− d
β ,

tαc s

∥x∥d+β

)
ds

and we note that the improper integral

� 1

0

(tαc s)
− d
β ds appears whenever Ωc < s < 1.

Here, we need to check the cases d = β, d < β and d > β, respectively. Thus, we
get the desired bounds.

Lemma 3.1.2. Under the same assumptions as Proposition 3.1.1, there exists a
positive constant C for all t1, t2 > 0 and x ∈ Rd, such that there exists tc > 0,
between t1 and t2, and the following estimates for Y hold with Ωc = ∥x∥βt−αc . For
Ωc ≤ 1,

|Y (t1, x)− Y (t2, x)| ≤ C|t1 − t2|


t
−αd

β
+α−2

c if d < 2β,

t−α−2
c (| log(Ωc)|+ 1) if d = 2β,

t
−αd

β
+α−2

c Ω
2− d

β
c if d > 2β,

and for Ωc ≥ 1,

|Y (t1, x)− Y (t2, x)| ≤ C|t1 − t2|t
−αd

β
+α−2

c Ω
−1− d

β
c .

Proof. The assertions follow from straightforward computations made in the proof
of the previous estimates for Z, but using (3.8).

Lemma 3.1.3. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H2) holds.
Then there exists a positive constant C for all t > 0 and x1, x2 ∈ Rd, such that there
exists ζ in the open segment connecting x1 and x2, and the following estimates for
Z hold with Ωζ = ∥ζ∥βt−α. For Ωζ ≤ 1,

|Z(t, x1)− Z(t, x2)| ≤ C∥x1 − x2∥t−
α(d+1)
β Ω

1− d+1
β

ζ

and for Ωζ ≥ 1,

|Z(t, x1)− Z(t, x2)| ≤ C∥x1 − x2∥t−
α(d+1)
β Ω

−1− d+1
β

ζ .
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Proof. From (3.3) it follows that

Z(t, x1)− Z(t, x2) =
1

α

� ∞

0

[G(tαs, x1)−G(tαs, x2)] s
−1− 1

αGα(1, s
− 1
α )ds.

From ([40, Theorem 4.5.1]) we know that G is one time continuously di�erentiable
in x and satis�es, for any j = 1, · · · , d,∣∣∣∣ ∂G∂xj (t, x)

∣∣∣∣ ≤ Cmin

(
t−

d+1
β ,

t

∥x∥d+β+1

)
.

We recall that C depends on β, d and the bounds for ωµ. Let DG(tαs, x) the
Jacobian of G(tαs, ·) in the point x. By the mean-value inequality, we have that for
some ζ in the open segment between x1 and x2,

|Z(t, x1)− Z(t, x2)|

≤ 1

α

� ∞

0

|DG(tαs, ζ)(x1 − x2)|s−1− 1
αGα(1, s

− 1
α )ds

≤ ∥x1 − x2∥
α

� ∞

0

d∑
j=1

∣∣∣∣ ∂G∂xj (tαs, ζ)
∣∣∣∣ s−1− 1

αGα(1, s
− 1
α )ds

≲ ∥x1 − x2∥
� ∞

0

min

(
(tαs)−

d+1
β ,

tαs

∥ζ∥d+β+1

)
s−1− 1

αGα(1, s
− 1
α )ds.

Now, we proceed in the same way from [32, Theorem 2].

Lemma 3.1.4. Under the same assumptions as Lemma 3.1.3, then there exists a
positive constant C for all t > 0 and x1, x2 ∈ Rd, such that there exists ζ in the
open segment connecting x1 and x2, and the following estimates for Y hold with
Ωζ = ∥ζ∥βt−α. For Ωζ ≤ 1,

|Y (t, x1)− Y (t, x2)| ≤ C∥x1 − x2∥


t−

α(d+1)
β

+α−1 if d+ 1 < 2β,

t−α−1(| log(Ωζ)|+ 1) if d+ 1 = 2β,

t−
α(d+1)
β

+α−1Ω
2− d+1

β

ζ if d+ 1 > 2β,

and for Ωζ ≥ 1,

|Y (t, x1)− Y (t, x2)| ≤ C∥x1 − x2∥t−
α(d+1)
β

+α−1Ω
−1− d+1

β

ζ .

Proof. This is similar to the proof of the previous lemma for Z.

Remark 3.1.2. It is worth mentioning that all these estimates have been thor-
oughly investigated using the Zolotarev-Pollard formula for Mittag-Le�er functions
Eα, which is valid for the case 0 < α < 1 (see [32, Section 2] and [40, Proposition
8.1.1]). To our knowledge this type of representation has not been explored explicitly
in the literature for the case α > 1, however, we refer the reader to [9] and [4] for the
study of evolution equations with a Caputo fractional derivative of order 1 < α < 2.
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Next, we estimate the Lp-norm of Z. Let p ≥ 1 and t ∈ (0,∞). We begin by
splitting the integral on Rd according to the conditions for Ω given by (3.4)-(3.7).
That is, �

Rd
Zp(t, x)dx =

�
{Ω≥1}

Zp(t, x)dx+

�
{Ω≤1}

Zp(t, x)dx.

In the case of Ω ≥ 1, the integral on this set has two-sided estimates for all d ≥ 1
and all β ∈ (0, 2), given by (3.7). Therefore

�
{Ω≥1}

Zp(t, x)dx ≍
�
{Ω≥1}

t−
αdp
β Ω(−1− d

β
)pdx.

Setting r = ∥x∥, we obtain
�
{Ω≥1}

Zp(t, x)dx ≍
� ∞

t
α
β

t−
αdp
β (rβt−α)(−1− d

β
)prd−1dr

=

� ∞

t
α
β

tαpr(−β−d)p+d−1dr

=

� ∞

t
α
β

tαp(t
α
β t−

α
β r︸︷︷︸
s

)(−β−d)p+d−1dr

=

� ∞

1

t−
αdp
β

+αd
β s−βp−1−(p−1)dds

= t−
αdp
β (1− 1

p)
� ∞

1

s−βp−1−(p−1)dds.

The last integral converges if and only if βp+1+ (p− 1)d > 1, which holds true
for all d ≥ 1, β ∈ (0, 2) and 1 ≤ p <∞. Consequently, we obtain the estimate

�
{Ω≥1}

Zp(t, x)dx ≍ t−
αdp
β (1− 1

p). (3.13)

Now, for Ω ≤ 1, we consider the following cases separately: β ∈ (0, 1), β = 1 and
β ∈ (1, 2). For β ∈ (0, 1), we employ the bounds given by (3.6) and we set again
r = ∥x∥ and the substitution r = t

α
β s, obtaining

�
{Ω≤1}

Zp(t, x)dx ≍
�
{Ω≤1}

t−
αdp
β Ω(1− d

β
)pdx

≍
� t

α
β

0

t−
αdp
β (rβt−α)(1−

d
β
)prd−1dr

=

� t
α
β

0

t−αpr(β−d)p+d−1dr

=

� 1

0

t−
αdp
β

+αd
β s(β−d)p+d−1ds

= t−
αdp
β (1− 1

p)
� 1

0

s(β−d)p+d−1ds.
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The last integral converges if and only if 1 − d + (d − β)p < 1, which is equivalent

with p <
d

d− β
. This together with (3.13) gives

∥Z(t, ·)∥p ≍ t−
αd
β (1−

1
p), 1 ≤ p <

d

d− β
, d ≥ 1, β ∈ (0, 1). (3.14)

For β = 1, we check out d = β = 1 and d > β. We employ the bounds given by
(3.5) and (3.6), respectively. In the case of d = 1, we obtain�

{Ω≤1}
Zp(t, x)dx ≍

�
{Ω≤1}

t−αp (| log Ω|+ 1)p dx

≍
� tα

0

t−αp
(
| log(rt−α)|+ 1

)p
dr

=

� 1

0

t−αp+α (| log(s)|+ 1)p ds

= t−αp(1−
1
p)
� 1

0

(| log(s)|+ 1)p ds.

The last integral converges for all 1 ≤ p <∞. Together with (3.13) yields

∥Z(t, ·)∥p ≍ t−α(1−
1
p), 1 ≤ p <∞, d = 1, β = 1. (3.15)

Now, for d ≥ 2 the corresponding estimate is similar to the case of β ∈ (0, 1).
Thus,

∥Z(t, ·)∥p ≍ t−αd(1−
1
p), 1 ≤ p <

d

d− 1
, d ≥ 2, β = 1. (3.16)

Finally, for β ∈ (1, 2), we check out d < β and d > β. We employ the bounds
given by (3.4) and (3.6), respectively. For d = 1,�

{Ω≤1}
Zp(t, x)dx ≍

�
{Ω≤1}

t−
αdp
β dx

≍
� t

α
β

0

t−
αp
β dr

= t−
αp
β t

α
β

= t−
αp
β (1−

1
p).

Together with (3.13) and the fact that

sup
x∈R

Z(t, ·) ≍ t−
α
β ,

we conclude

∥Z(t, ·)∥p ≍ t−
α
β (1−

1
p), 1 ≤ p ≤ ∞, d = 1, β ∈ (1, 2). (3.17)

In the case of d ≥ 2, the corresponding estimate is similar to that of β ∈ (0, 1).
Thus,

∥Z(t, ·)∥p ≍ t−
αd
β (1−

1
p), 1 ≤ p <

d

d− β
, d ≥ 2, β ∈ (1, 2). (3.18)
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Gathering the two-sided estimates from (3.14) to (3.18), we have proved the
following result.

Theorem 3.1.1. Let d ∈ N, α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1)
holds. The kernel Z(t, ·) belongs to Lp(Rd) for all t > 0 if, and only if, 1 ≤ p < κ1,
where

κ1 = κ1(d, β) :=

{
d

d−β if d > β,

∞ otherwise.

Moreover, the two-sided estimate

∥Z(t, ·)∥p ≍ t−
αd
β (1−

1
p), t > 0, (3.19)

holds for every 1 ≤ p < κ1. In the case of d < β, (3.19) remains true for p = ∞.

Remark 3.1.3. As we can see, unlike the Gaussian fundamental solutions here we
can not ensure the Lp-integrability of Z(t, ·) for all 1 ≤ p ≤ ∞, t > 0.

We next examine the critical case p = d
d−β for d > β, in the Lp-weak space with

the quasi-norm | · |p,∞ de�ned by

|f |p,∞ := sup
λ>0

{λ df (λ)
1
p},

where
df (λ) = |{x ∈ Rd : f(x) > λ}|

stands for the distribution function of f .

Theorem 3.1.2. Let d ∈ N, α ∈ (0, 1) and β ∈ (0, 2) such that d > β. Assume the
hypothesis (H1) holds. Then Z(t, ·) ∈ L d

d−β ,∞
(Rd) and satis�es

|Z(t)| d
d−β ,∞

≲ t−α, t > 0.

Proof. Let t > 0 and denote Z(t) = Z(t, ·). Set p =
d

d− β
. By de�nition, Z(t) ∈

Lp,∞(Rd) if the quasi-norm

|Z(t)|p,∞ = sup
λ>0

{λ dZ(t)(λ)
1
p} <∞.

As above we use the similarity variable Ω = ∥x∥βt−α and we split Z(t) as Z(t) =
Z(t)χ(t){Ω≤1} + Z(t)χ(t){Ω≥1}. Then

|Z(t)|p,∞ ≤ 2
(
|Z(t)χ(t){Ω≤1}|p,∞ + |Z(t)χ(t){Ω≥1}|p,∞

)
.

By (3.13) and the Lp version Tchebyshev's inequality ([68, Formula (5.49)]), we
obtain

|Z(t)χ(t){Ω≥1}|p,∞ ≤ ∥Z(t)χ(t){Ω≥1}∥p ≤ Ct−
αd
β (1−

1
p) = Ct−α.
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Now, employing (3.6) we have

dZ(t)χ(t){Ω≤1}(λ) = |{x ∈ Rd : Z(t, x) > λ y Ω ≤ 1}|

≤ |{x ∈ Rd : λ < Ct−
αd
β Ω1− d

β }|

= |{x ∈ Rd : λ < Ct−
αd
β (∥x∥βt−α)1−

d
β }|

= |{x ∈ Rd : λ < Ct−α∥x∥β−d}|

≤ C1

(
t−αλ−1

) d
d−β .

Thereby, we �nd that

λ dZ(t)χ(t){Ω≤1}(λ)
1
p ≤ C

1
p

1 t
−α,

and thus
|Z(t)χ(t){Ω≤1}|p,∞ ≲ t−α.

The proof is complete.

Analogously to the analysis done for the Lp-integrability of Z, we can obtain the
corresponding results for Y using the bounds given by (3.9)-(3.12).

Theorem 3.1.3. Let d ∈ N, α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1)
holds. The kernel Y (t, ·) belongs to Lp(Rd) for all t > 0 if, and only if, 1 ≤ p < κ2,
where

κ2 = κ2(d, β) :=

{
d

d−2β
if d > 2β,

∞ otherwise.

Moreover, the two-sided estimate

∥Y (t, ·)∥p ≍ t−
αd
β (1−

1
p)+(α−1), t > 0, (3.20)

holds for every 1 ≤ p < κ2. In the case of d < 2β, (3.20) remains true for p = ∞.

Theorem 3.1.4. Let d ∈ N, α ∈ (0, 1) and β ∈ (0, 2) such that d > 2β. Assume
the hypothesis (H1) holds. Then Y (t, ·) ∈ L d

d−2β
,∞(Rd) and satis�es

|Y (t)| d
d−2β

,∞ ≲ t−α−1, t > 0.

Now, we can establish that Z(t, ·) is a locally Lipschitz function in Lp and it is
an approximation of the identity. To this end, we �rst show that Z and Y satisfy
the following scaling property.

Lemma 3.1.5. Let t > 0, x ∈ Rd. Then

Z(t, x) = t−
αd
β Z

(
1, t−

α
β x
)

and
Y (t, x) = t−

αd
β
+α−1Y

(
1, t−

α
β x
)
.
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3.1. FUNDAMENTAL SOLUTIONS

Proof. It is well-known that the Fourier transform in the spatial variable of Z,
denoted by Ẑ(t, ξ), is

Ẑ(t, ξ) = Eα,1(−tαψ(ξ)), t > 0, (3.21)

see, e.g. [34, Sub-section 8.4] and [44, Section 5]).
Using this and changing the integration variables, where ξ = ξ

∥ξ∥ and ωµ is given

by (3.2), we get

Z(t, x)

=
1

(2π)d

�
Rd
ei x·ξEα,1(−tαψ(ξ))dξ

=
1

(2π)d

� ∞

0

�
Sd−1

e
i

( x
t
α
β

·ξ
)
t
α
β ∥ξ∥

Eα,1(−(t
α
β ∥ξ∥)βωµ(ξ))∥ξ∥d−1θ(dξ)d∥ξ∥

=
1

(2π)d

� ∞

0

�
Sd−1

e
i

( x
t
α
β

·ξ
)
t
α
β ∥ξ∥

Eα,1(−(t
α
β ∥ξ∥)βωµ(ξ))(t−

α
β t

α
β ∥ξ∥︸ ︷︷ ︸
r

)d−1θ(dξ)d∥ξ∥

= t−
αd
β

1

(2π)d

� ∞

0

�
Sd−1

e
i

( x
t
α
β

·ξ
)
r

Eα,1(−rβωµ(ξ))rd−1θ(dξ)dr

= t−
αd
β Z

(
1, t−

α
β x
)
.

On the other hand, it is also known that the Fourier transform in the spatial variable
of Y is given by

Ŷ (t, ξ) = tα−1Eα,α(−tαψ(ξ)), t > 0. (3.22)

Therefore, the previous argument can be applied to

Y (t, x) =
1

(2π)d

�
Rd
ei x·ξtα−1Eα,α(−tαψ(ξ))dξ.

Theorem 3.1.5. Let d ∈ N, α ∈ (0, 1), β ∈ (0, 2). Assume the hypothesis (H1)
holds. Then

(i) Z ∈ C((0,∞);Lp(Rd)) for 1 ≤ p < κ1. Further, for each ϵ > 0 there exists a
constant C > 0 depending on ϵ, d, p, α, β such that

∥Z(t, ·)− Z(s, ·)∥p ≤ C|t− s|, (3.23)

holds for all t, s ≥ ϵ. In the case of d < β, (3.23) remains true for p = ∞.

(ii) For any v ∈ Lp(Rd), with 1 ≤ p <∞, we have

lim
t→0

∥Z(t, ·) ⋆ v − v∥p = 0.
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3.1. FUNDAMENTAL SOLUTIONS

Proof. Let 0 < ϵ ≤ s, t. From Lemma 3.1.1 we know that there exists τ > 0 between
s and t, with Ωc = ∥x∥βτ−α, such that

|Z(t, x)− Z(s, x)| ≤ C|t− s|


τ−

αd
β
−1 if d < β,

τ−α−1(| log(Ωc)|+ 1) if d = β,

τ−
αd
β
−1Ω

1− d
β

c if d > β,

for Ωc ≤ 1 and

|Z(t, x)− Z(s, x)| ≤ C|t− s|τ−
αd
β
−1Ω

−1− d
β

c

for Ωc ≥ 1. Similar arguments as in the proof of Theorem 3.1.1, with the only
di�erence that there appears Ω instead of Ωc in the spatial integral respect to x,
show that

∥Z(t, ·)− Z(s, ·)∥p ≤ C1|t− s|τ−
αd
β (1−

1
p)−1, t > 0,

if and only if 1 ≤ p < κ1. Recall that the condition if and only if guarantees the
existence of the improper Riemann integrals in the proof.

Indeed, let Ωs = ∥x∥βs−α and Ωt = ∥x∥βt−α. Without loss of generality we
suppose that s < τ < t, which implies that Ωt < Ωc < Ωs. When Ωc ≥ 1 we note
that Ωs ≥ 1 and if Ωc ≤ 1 then Ωt ≤ 1. Keeping this in mind we have that

�
{Ωc≥1}

|Z(t, x)− Z(s, x)|pdx ≤ Cp|t− s|p
�
{Ωc≥1}

τ(−
αd
β
−1)pΩ

(−1− d
β )p

c dx

≲ Cp|t− s|p
�
{Ωs≥1}

τ (α−1)p∥x∥(−β−d)pdx

≲ Cp|t− s|ps(α−1)p

� +∞

s
α
β

r(−β−d)prd−1dr

= Cp|t− s|ps−
αdp
β (1− 1

p)−p.

For Ωc ≤ 1 we need to check the cases d < β, d = β and d > β, respectively. If
d < β we see that

�
{Ωc≤1}

|Z(t, x)− Z(s, x)|pdx ≤ Cp|t− s|p
�
{Ωc≤1}

τ(−
αd
β
−1)pdx

≲ Cp|t− s|ps(−
αd
β
−1)p

�
{Ωt≤1}

dx

= Cp|t− s|ps(−
αd
β
−1)pt

αd
β

= Cp|t− s|ps(−
αd
β
−1)p(s+ (t− s))

αd
β

≲ Cp|t− s|ps(−
αd
β
−1)p

(
s
αd
β + (t− s)

αd
β

)
= Cp|t− s|ps−

αdp
β (1− 1

p)−p
(
1 + (s−1(t− s))

αd
β

)
.
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If d = β we obtain

�
{Ωc≤1}

|Z(t, x)− Z(s, x)|pdx ≤ Cp|t− s|p
�
{Ωc≤1}

τ (−α−1)p (|log(Ωc)|+ 1)p dx

≲ Cp|t− s|ps(−α−1)p

�
{Ωt≤1}

(|log(Ωt)|+ 1)p dx

= Cp|t− s|ps(−α−1)ptα

≲ Cp|t− s|ps(−α−1)p (sα + (t− s)α)

= Cp|t− s|ps−αp(1−
1
p)−p

(
1 + (s−1(t− s))α

)
and d > β, with p < d

d−β , yields

�
{Ωc≤1}

|Z(t, x)− Z(s, x)|pdx ≤ Cp|t− s|p
�
{Ωc≤1}

τ(−
αd
β
−1)pΩ

(1− d
β )p

c dx

≲ Cp|t− s|p
�
{Ωt≤1}

τ (−α−1)p∥x∥(β−d)pdx

≲ Cp|t− s|ps(−α−1)p

� t
α
β

0

r(β−d)prd−1dr

= Cp|t− s|ps(−α−1)ptαp−
αdp
β

+αd
β

≲ Cp|t− s|ps(−α−1)p
(
sαp−

αdp
β

+αd
β + (t− s)αp−

αdp
β

+αd
β

)
= Cp|t− s|ps−

αdp
β (1− 1

p)−p
(
1 + (s−1(t− s))αp−

αdp
β

+αd
β

)
.

This implies that

∥Z(t, ·)− Z(s, ·)∥p ≤ C1|t− s|s−
αd
β (1−

1
p)−1

(
1 + (s−1(t− s))k

)
,

with k = αd
βp

whenever d < β, k = α
p
whenever d < β and k = α − αd

β

(
1− 1

p

)
whenever d > β. Nevertheless, the factor s−1(t−s) does not a�ect the results of our
work and therefore it will not be considered. Thus, it makes sense to assume that
τ , between s and t, is independent of x.

In order to get (3.23), we use the fact that τ > ϵ. Thus,

∥Z(t, ·)− Z(s, ·)∥p ≤ C1|t− s|ϵ−
αd
β (1−

1
p)−1

for all t, s ≥ ϵ and we take C = C1ϵ
−αd

β (1−
1
p)−1. This proves (i).

To prove (ii), let v ∈ Lp(Rd) with p ≥ 1. From (3.21) and since ψ(0) = 0, we
have �

Rd
Z(t, x)dx = Ẑ(t, 0) = 1, t > 0. (3.24)

Now, for t > 0 de�ne ϕt(x) := t−
αd
β Z

(
1, t−

α
β x
)
, x ∈ Rd. By (3.24) it follows

that ϕt ⋆ v ∈ Lp(Rd) for all p ≥ 1. By applying the Minkowski's integral inequality
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we obtain

∥ϕt ⋆ v − v∥p =
(�

Rd
|(ϕt ⋆ v)(x)− v(x)|pdx

) 1
p

=

(�
Rd

∣∣∣∣�
Rd
v(x− y)ϕt(y)dy −

�
Rd
v(x)ϕt(y)dy

∣∣∣∣p dx) 1
p

=

(�
Rd

∣∣∣∣�
Rd
(v(x− y)− v(x))ϕt(y)dy

∣∣∣∣p dx) 1
p

=

(�
Rd

∣∣∣∣�
Rd
(v(x− t

α
β y)− v(x))Z(1, y)dy

∣∣∣∣p dx) 1
p

≤
�
Rd

(�
Rd

|v(x− t
α
β y)− v(x)|pZp(1, y)dx

) 1
p

dy

=

�
Rd
Z(1, y)∥v(· − t

α
β y)− v(·)∥p dy.

Since ∥v(· − t
α
β y)− v(·)∥p → 0 as t→ 0 and ∥v(· − t

α
β y)− v(·)∥p ≤ 2∥v∥p, we apply

the dominated convergence theorem to the last integral concluding Z(t, ·) ⋆ v → v
in Lp(Rd) as t→ 0.

In the same way, we can establish that Y (t, ·) is locally Lipschitz function in Lp
and that 1

gα(t)
Y (t, ·) is an approximation of the identity in Lp as t→ 0.

Theorem 3.1.6. Let d ∈ N, α ∈ (0, 1), β ∈ (0, 2). Assume the hypothesis (H1)
holds. Then

(i) Y ∈ C((0,∞);Lp(Rd)) for 1 ≤ p < κ2. Further, for each ϵ > 0 there exists a
constant C > 0 depending on ϵ, d, p, α, β such that

∥Y (t, ·)− Y (s, ·)∥p ≤ C|t− s|, (3.25)

holds for all t, s ≥ ϵ. In the case of d < 2β, (3.25) remains true for p = ∞.

(ii) For any v ∈ Lp(Rd), with 1 ≤ p <∞, we have that

lim
t→0

∥∥∥∥ 1

gα(t)
Y (t, ·) ⋆ v − v

∥∥∥∥
p

= 0.

Proof. The proof of (i) is similar to the one we used in Theorem 3.1.5 part (i). Such
arguments and Lemma 3.1.2 imply that

∥Y (t, ·)− Y (s, ·)∥p ≤ C1|t− s|s−
αd
β (1−

1
p)+α−2

(
1 + (s−1(t− s))k

)
,

with k = αd
βp

whenever d < 2β, k = 2α
p
whenever d = 2β and k = 2α − αd

β

(
1− 1

p

)
whenever d > 2β. Again, the factor s−1(t−s) does not a�ect the results of our work
and therefore it will not be considered.
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The key point to prove (ii) is Lemma 3.1.5 and (3.22), because

1

gα(t)

�
Rd
Y (t, x)dx = 1, t > 0.

We �nish this section by proving the following relation between the fundamental
solutions Z and Y .

Lemma 3.1.6. Let �xed x ∈ Rd\{0}. Under the same assumptions as in Proposition
3.1.1, Z and Y satisfy

Y (·, x) = d

dt
(gα ∗ Z(·, x)), t > 0.

Proof. From (3.22) and Fubini, we have that

(g1−α ∗ Y (·, x))(t) =
� t

0

g1−α(t− s)Y (s, x)ds

=

� t

0

(t− s)−α

Γ(1− α)

[
1

(2π)d

�
Rd
eix·ξsα−1Eα,α(−ψ(ξ)sα)dξ

]
ds

=
1

Γ(1− α)(2π)d

�
Rd
eix·ξ

� t

0

sα−1

(t− s)α
Eα,α(−ψ(ξ)sα)ds dξ.

On the other hand, using the de�nition of Eα,α given in Section 1.2, it follows that

sα−1

(t− s)α
Eα,α(−ψ(ξ)sα) =

∞∑
k=0

(−ψ(ξ))kskα+α−1

Γ(kα + α)

1

(t− s)α
.

By integrating respect to s, we obtain� t

0

sα−1

(t− s)α
Eα,α(−ψ(ξ)sα)ds =

∞∑
k=0

(−ψ(ξ))k

Γ(kα+ α)

� t

0

skα+α−1

(t− s)α
ds.

In the last integral, the substitution s = tτ yields� t

0

skα+α−1

(t− s)α
ds =

� 1

0

tkατ kα+α−1

(1− τ)α
dτ.

We note that this improper integral exists because α ∈ (0, 1). By using Beta B and
Euler Gamma Γ functions, we get� 1

0

τ kα+α−1(1− τ)1−α−1dτ = B(kα+ α, 1− α) =
Γ(kα + α)Γ(1− α)

Γ(kα + 1)

and thus� t

0

sα−1

(t− s)α
Eα,α(−ψ(ξ)sα)ds =

∞∑
k=0

(−ψ(ξ))k

Γ(kα+ α)
tkα

Γ(kα+ α)Γ(1− α)

Γ(kα+ 1)

= Γ(1− α)Eα,1(−ψ(ξ)tα).

Using this in the �rst part of the proof, we conclude that

Z(t, x) = (g1−α ∗ Y (·, x))(t).

The convolution with gα and the derivative w.r.t. the time complete the proof.
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3.2 Local well-posedness

Due to the properties of the pair (gα, g1−α), with 0 < α < 1 (see Section 1.4), and
under suitable conditions, the problem (3.1) can be rewritten as the semi-linear
Volterra equation

u+ gα ∗Ψβ(−i∇)u = u0 + λ gα ∗ |u|γ−1u.

This fact is particularly exploited in Section 3.4. However, in this section we deal
with the corresponding integral representation for mild solutions in the sense of
Volterra, which leads to �xed points of the integral equation

u(t, x) =

�
Rd
Z(t, x− y)u0(y)dy + λ

� t

0

�
Rd
Y (t− s, x− y)|u(s, y)|γ−1u(s, y)dyds.

(3.26)
In this section, by a local solution of the Cauchy problem (3.1) we understand the
solution u of the corresponding integral equation (3.26) (the so-called mild solution)
belonging to the Banach space

ET := C([0, T ];Lp(Rd) ∩ L1(Rd)) ∩ C((0, T ];L∞(Rd)),

with the norm

∥v∥ET := sup
t∈[0,T ]

(
∥v(t, ·)∥p + ∥v(t, ·)∥1

)
+ sup

t∈(0,T ]
t
αd
βp ∥v(t, ·)∥∞ .

We de�ne on ET the operator M given by

M(v)(t, x) :=

�
Rd
Z(t, x− y)u0(y)dy+λ

� t

0

�
Rd
Y (t− s, x− y)|v(s, y)|γ−1v(s, y)dyds

(3.27)
where u0 ∈ Lp(Rd)∩L1(Rd) is a given data and v ∈ ET . The space Lp(Rd)∩L1(Rd)
is equipped with the usual norm ∥·∥1 + ∥·∥p.

We also need to de�ne the number κ :=

{
d
β
, d > β,

1, otherwise.

Theorem 3.2.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1) holds.

Let λ ∈ R and γ > 1. Suppose that max
(
1, κ, d(γ−1)

β

)
< p < ∞. If u0 ∈ Lp(Rd) ∩

L1(Rd), then for some 0 < T ∗ < T the operator M de�ned by (3.27) has a unique
�xed point in ET ∗.

Proof. Since u0 ∈ Lp(Rd)∩L1(Rd) and Z(t, ·) ∈ L1(Rd), it follows that Z(t, ·) ⋆u0 ∈
Lp(Rd) ∩ L1(Rd) for each t ∈ [0, T ]. Condition max(1, κ) < p < ∞ and Young's
inequality for convolutions imply that Z(t, ·) ⋆u0 ∈ L∞(Rd) for each t ∈ (0, T ], since
there exists a q such that 1

p
+ 1

q
= 1 and 1 < q < κ1, thus Z(t, ·) ∈ Lq(Rd). We recall

that κ1 was introduced in Theorem 3.1.1. Furthermore,

∥Z(t, ·) ⋆ u0∥1 ≤ ∥Z(t, ·)∥1 ∥u0∥1 = ∥u0∥1 ,
∥Z(t, ·) ⋆ u0∥p ≤ ∥Z(t, ·)∥1 ∥u0∥p = ∥u0∥p ,

∥Z(t, ·) ⋆ u0∥∞ ≤ ∥Z(t, ·)∥q ∥u0∥p ≲ t−
αd
βp ∥u0∥p .

(3.28)
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The continuity of t 7→ Z(t, ·) ⋆ u0 in [0, T ] with respect to the norm topology on
Lp(Rd) ∩ L1(Rd) follows from Theorem 3.1.5. The continuity in (0, T ] with respect
to the norm topology on L∞(Rd) follows from the same considerations mentioned
above for p and from Theorem 3.1.5 part (i).

Let us consider t 7→
� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds, where 0 < t ≤ T .

Previous arguments together with the Minkowski's integral inequality and the

fact that ∥|v(s, ·)|γ−1v(s, ·)∥1 ≤ s−
αd(γ−1)

βp ∥v∥γ−1
ET

∥v(s, ·)∥1 for s > 0, produce∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
1

≤ ∥v∥γET

� t

0

∥Y (t− s, ·)∥1s−
αd(γ−1)

βp ds.

From Theorem 3.1.3 it follows that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
1

≲ ∥v∥γET

� t

0

(t− s)α−1s−
αd(γ−1)

βp ds.

Condition d(γ−1)
β

< p <∞ yields∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
1

≲ ∥v∥γET t
α−αd(γ−1)

βp

with

0 < α− αd(γ − 1)

βp
< 1.

Similarly, ∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
p

≲ ∥v∥γET t
α−αd(γ−1)

βp .

Therefore,∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
1

+

∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
p

≲ ∥v∥γET t
α−αd(γ−1)

βp .

This shows that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
Lp(Rd)∩L1(Rd)

→ 0

whenever t→ 0, and that

� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds ∈ Lp(Rd) ∩ L1(Rd)

for t ∈ [0, T ].
Again, condition max(1, κ) < p < ∞ and Young's convolution inequality imply

that for any t ∈ (0, T ], Y (t, ·) ∈ Lq(Rd) with 1
p
+ 1

q
= 1 and 1 < q < κ2 (see Theorem
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3.1.3 and note that κ2 ≥ κ1). Hence, Y (t − s, ·) ⋆ |v(s, ·)|γ−1v(s, ·) ∈ L∞(Rd),
0 < s < t.

Further, condition max(1, κ) < p <∞ also implies that 0 < d
βp
< 1. Thus,∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
∞

≤
� t

0

∥Y (t− s, ·)∥ p
p−1

∥|v(s, ·)|γ−1v(s, ·)∥p ds

≲ ∥v∥γET

� t

0

(t− s)−
αd
βp

+α−1s−
αd(γ−1)

βp ds

≲ ∥v∥γET

[� t
2

0

(t− s)−
αd
βp

+α−1s−
αd(γ−1)

βp ds+

� t

t
2

(t− s)−
αd
βp

+α−1s−
αd(γ−1)

βp ds

]

≲ ∥v∥γET

[(
t

2

)−αd
βp

+α−1 � t
2

0

s−
αd(γ−1)

βp ds+

(
t

2

)−αd(γ−1)
βp

� t

t
2

(t− s)−
αd
βp

+α−1ds

]

≲ ∥v∥γET

(
t

2

)−αd
βp

+α−αd(γ−1)
βp

<∞.

The continuity of t 7→
� t

0

Y (t−s, ·)⋆ |v(s, ·)|γ−1v(s, ·)ds in (0, T ] with respect to the

norm topology on Lp(Rd) ∩ L1(Rd), it follows from conditions on p, continuity of v
and the property (2.14),

| |a|ca− |b|cb | ≲ | a− b |(|a|c + |b|c) ≲ | a− b |( |a|+ |b| )c, a, b ∈ R, c > 0.

Indeed, suppose 0 < t0 < t without loss of generality. We have that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds−
� t0

0

Y (t0 − s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
1

≤
� t0

0

∥Y (s, ·)∥1∥|v(t− s, ·)|γ−1v(t− s, ·)− |v(t0 − s, ·)|γ−1v(t0 − s, ·)∥1ds

+

� t

t0

∥Y (s, ·)∥1∥|v(t− s, ·)|γ−1v(t− s, ·)∥1ds

≲ ∥v∥γ−1
ET

ε

� t0

0

sα−1
(
(t− s)−

αd(γ−1)
βp + (t0 − s)−

αd(γ−1)
βp

)
ds

+ ∥v∥γET

� t

t0

sα−1(t− s)−
αd(γ−1)

βp ds

≲ ∥v∥γ−1
ET

ε

� t0

0

sα−1(t0 − s)−
αd(γ−1)

βp ds+ ∥v∥γET

� t

t0

sα−1(t− s)−
αd(γ−1)

βp ds

≲ ∥v∥γ−1
ET

εt
α−αd(γ−1)

βp

0 + ∥v∥γET (t− t0)
α−αd(γ−1)

βp .
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Similarly, we obtain that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds−
� t0

0

Y (t0 − s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
p

→ 0

whenever t→ t0.

Now, for the continuity of t 7→
� t

0

Y (t − s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds in (0, T ] with

respect to the norm topology on L∞(Rd), we �nd that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds−
� t0

0

Y (t0 − s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
∞

≤
� t0

0

∥Y (s, ·)∥q∥|v(t− s, ·)|γ−1v(t− s, ·)− |v(t0 − s, ·)|γ−1v(t0 − s, ·)∥p ds

+

� t

t0

∥Y (s, ·)∥q∥|v(t− s, ·)|γ−1v(t− s, ·)∥p ds

≲ ∥v∥γ−1
ET

ε

� t0

0

s−
αd
βp

+α−1
(
(t− s)−

αd(γ−1)
βp + (t0 − s)−

αd(γ−1)
βp

)
ds

+ ∥v∥γET

� t

t0

s−
αd
βp

+α−1(t− s)−
αd(γ−1)

βp ds

≲ ∥v∥γ−1
ET

ε

� t0

0

s−
αd
βp

+α−1(t0 − s)−
αd(γ−1)

βp ds+ ∥v∥γET

� t

t0

s−
αd
βp

+α−1(t− s)−
αd(γ−1)

βp ds

≲ ∥v∥γ−1
ET

εt
−αd
βp

+α−αd(γ−1)
βp

0 + ∥v∥γET t
−αd
βp

0 (t− t0)
α−αd(γ−1)

βp .

Up to this point, we have proved that the operatorM given by (3.27) is well de�ned.
Now, let v, w ∈ ET . Previous arguments show that

∥M(v)(t, ·)−M(w)(t, ·)∥1

≤ |λ|
� t

0

∥Y (t− s, ·)∥1
∥∥|v(s, ·)|γ−1v(s, ·)− |w(s, ·)|γ−1w(s, ·)

∥∥
1
ds

≲ (∥v∥ET + ∥w∥ET )
γ−1 ∥v − w∥ET

� t

0

(t− s)α−1s−
αd(γ−1)

βp ds

≲ (∥v∥ET + ∥w∥ET )
γ−1 ∥v − w∥ET t

α−αd(γ−1)
βp

≲ (∥v∥ET + ∥w∥ET )
γ−1 ∥v − w∥ETT

α−αd(γ−1)
βp .

In the same way we estimate

∥M(v)(t, ·)−M(w)(t, ·)∥p ≲ (∥v∥ET + ∥w∥ET )
γ−1 ∥v − w∥ETT

α−αd(γ−1)
βp .

Similarly,

∥M(v)(t, ·)−M(w)(t, ·)∥∞ ≲ (∥v∥ET + ∥w∥ET )
γ−1 ∥v − w∥ET t

α−αd
βp

−αd(γ−1)
βp

and we have

t
αd
βp ∥M(v)(t, ·)−M(w)(t, ·)∥∞ ≲ (∥v∥ET + ∥w∥ET )

γ−1 ∥v − w∥ET t
α−αd(γ−1)

βp

≲ (∥v∥ET + ∥w∥ET )
γ−1 ∥v − w∥ETT

α−αd(γ−1)
βp .
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This shows that

∥M(v)−M(w)∥ET ≤ C2T
α−αd(γ−1)

βp ∥v − w∥ET (∥v∥ET + ∥w∥ET )
γ−1 . (3.29)

Besides, we derive from (3.28) that

∥Z ⋆ u0∥ET ≤ C1(∥u0∥1 + ∥u0∥p). (3.30)

Let T ∗ ∈ (0, T ) and R = 2C1∥u0∥Lp(Rd)∩L1(Rd). We consider the closed ball

BT ∗,R := {w ∈ ET ∗ : ∥w∥ET∗ ≤ R}.

Our aim now is to obtain a suitable T ∗ such that M is a contraction as an operator
BT ∗,R → BT ∗,R, thereby existence and uniqueness of a �xed point of this operator
follow from the Banach �xed-point theorem.

First, we �nd a condition on T ∗ such that M(BT ∗,R) ⊂ BT ∗,R. Let w ∈ BT ∗,R.
Using (3.29) with v ≡ 0 and (3.30), we obtain that

∥M(w)∥ET∗ ≤ C1∥u0∥Lp(Rd)∩L1(Rd) + C2(T
∗)α−

αd(γ−1)
βp ∥w∥ET∗ (∥w∥ET∗ )

γ−1

=
R

2
+ C2(T

∗)α−
αd(γ−1)

βp ∥w∥γET∗

≤ R

2
+ C2(T

∗)α−
αd(γ−1)

βp Rγ.

Therefore, we need to set the condition

C2(T
∗)α−

αd(γ−1)
βp Rγ ≤ R

2
. (3.31)

On the other hand, let v, w ∈ BT ∗,R. Using (3.29) we get

∥M(v)−M(w)∥ET∗ ≤ C2(T
∗)α−

αd(γ−1)
βp ∥v − w∥ET∗ (∥v∥ET∗ + ∥w∥ET∗ )

γ−1

≤ C2(T
∗)α−

αd(γ−1)
βp ∥v − w∥ET∗ (2R)

γ−1.

Consequently, we also need

C2(T
∗)α−

αd(γ−1)
βp (2R)γ−1 < 1. (3.32)

Thus, for su�ciently small T ∗, the requirements (3.31) and (3.32) are satis�ed.
For the uniqueness, we want to conclude that the integral equation (3.26),

u(t, x) =

�
Rd
Z(t, x− y)u0(y)dy + λ

� t

0

�
Rd
Y (t− s, x− y)|u(s, y)|γ−1u(s, y)dyds,

can only have at most one solution (�xed point) in the Banach space

ET := C([0, T ];Lp(Rd) ∩ L1(Rd)) ∩ C((0, T ];L∞(Rd)),

with the norm

∥v∥ET := sup
t∈[0,T ]

(
∥v(t, ·)∥p + ∥v(t, ·)∥1

)
+ sup

t∈(0,T ]
t
αd
βp ∥v(t, ·)∥∞ ,
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3.3. GLOBAL SOLUTION WITH SMALL INITIAL CONDITION

whenever d(γ−1)
βp

< 1.

Indeed, we suppose that there are two solutions, u1 and u2, of (3.26). Using the
property given by (2.14), it follows that

∥u1(t)− u2(t)∥1 ≤ |λ|
� t

0

∥Y (t− s, ·)∥1∥|u1(s, ·)|γ−1u1(s, ·)− |u2(s, ·)|γ−1u2(s, ·)∥1ds

≲ |λ| (∥u1∥ET + ∥u2∥ET )
γ−1

� t

0

(t− s)α−1s−
αd(γ−1)

βp ∥u1(s)− u2(s)∥1ds.

By applying Lemma 1.2.1, with g = 0 and ϑ = αd(γ−1)
βp

, we obtain the desired
result.

3.3 Global solution with small initial condition

In this section, by a global solution of the Cauchy problem (3.1) we understand the
solution u of the integral equation (3.26) belonging to the Banach space

E := C([0,∞);Lp(Rd) ∩ L1(Rd)) ∩ C((0,∞);L∞(Rd)),

with the norm

∥v∥E := sup
t≥0

(
⟨t⟩

αd
β

(
1
p′−

1
p

)
∥v(t, ·)∥p + ∥v(t, ·)∥1

)
+ sup

t>0
{t}

αd
βp ⟨t⟩

αd
βp′ ∥v(t, ·)∥∞ ,

where 1 ≤ p′ < p, ⟨t⟩ :=
√
1 + t2 and {t} :=

t√
1 + t2

.

As in the previous section, we de�ne on E the operator

M(v)(t, x) :=

�
Rd
Z(t, x−y)u0(y)dy+λ

� t

0

�
Rd
Y (t−s, x−y)|v(s, y)|γ−1v(s, y)dyds,

u0 ∈ Lp(Rd) ∩ L1(Rd) is a given data and v ∈ E.
Let λ ∈ R and γ > 1. Let 1 = p′ < d

β
(γ−1) whenever d < β, or d

β
< p′ < d

β
(γ−1)

whenever d ≥ β. Suppose that max
(
1, κ, d(γ−1)

β

)
< p < ∞. These conditions on p

and p′ guarantee the existence of 1 ≤ q < κ1 such that

1

l
+

1

q
= 1 +

1

r
,

considering r ∈ {1, p,∞}, where l, q and r are related to Young's convolution
inequality, that is,

∥Z(t, ·) ⋆ u0∥r ≤ ∥Z(t, ·)∥q∥u0∥l, t ≥ 0.

We note that for r = 1, this is possible only if l = q = 1. Similar situation we
have for Y . For r = 1 we can not get a factor of time estimating ∥Z ⋆ u0∥1 because
∥Z(t, ·)∥1 = 1 por all t ≥ 0.
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These conditions, together with Young's convolution inequality and a result of
interpolation, yield the following bounds.

∥Z(t, ·) ⋆ u0∥1 ≤ ∥Z(t, ·)∥1 ∥u0∥1 = ∥u0∥1 for all t ≥ 0.
∥Z(t, ·) ⋆ u0∥p ≤ ∥Z(t, ·)∥1 ∥u0∥p = ∥u0∥p for all 0 ≤ t ≤ 1.

∥Z(t, ·) ⋆ u0∥p ≤ ∥Z(t, ·)∥q ∥u0∥p′ ≲ t
−αd

β

(
1
p′−

1
p

)
max(∥u0∥1, ∥u0∥p) for all t > 1.

∥Z(t, ·) ⋆ u0∥∞ ≤ ∥Z(t, ·)∥q ∥u0∥p ≲ t−
αd
βp ∥u0∥p for all 0 < t ≤ 1.

∥Z(t, ·) ⋆ u0∥∞ ≤ ∥Z(t, ·)∥q ∥u0∥p′ ≲ t
− αd
βp′ ∥u0∥p′ ≲ t

− αd
βp′ max(∥u0∥1, ∥u0∥p) for

t > 1.
Therefore,

sup
t≥0

(
⟨t⟩

αd
β

(
1
p′−

1
p

)
∥Z(t, ·) ⋆ u0∥p + ∥Z(t, ·) ⋆ u0∥1

)
+ sup

t>0
{t}

αd
βp ⟨t⟩

αd
βp′ ∥Z(t, ·) ⋆ u0∥∞

≲ (∥u0∥1 + ∥u0∥p).

For 0 ≤ t ≤ 1 we have that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
1

≤
� t

0

∥Y (t− s, ·)∥1∥|v(s, ·)|γ−1v(s, ·)∥1ds

≲ ∥v∥γE
� t

0

(t− s)α−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥v∥γE
� t

0

(t− s)α−1s−
αd
βp

(γ−1)ds

≲ ∥v∥γEt
α−αd

βp
(γ−1) ≲ ∥v∥γE.

For t > 1, we use the fact that α− αd(γ−1)
βp

> 0 and that α− αd(γ−1)
βp′

< 0. Choosing
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0 < c <
t

2
we get that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
1

≤
� t

0

∥Y (t− s, ·)∥1∥|v(s, ·)|γ−1v(s, ·)∥1ds

≲ ∥v∥γE
� t

0

(t− s)α−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥v∥γE

[� t
2

0

(t− s)α−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

+

� t

t
2

(t− s)α−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

]

≲ ∥v∥γE
[� c

0

sα−1−αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

+

� t
2

c

sα−1−αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

+

� t

t
2

(t− s)α−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

]

≲ ∥v∥γE

[� c

0

sα−1−αd
βp

(γ−1)ds+

� t
2

c

s
α−1− αd

βp′ (γ−1)
ds

+

〈
t

2

〉−αd
β
(γ−1)

(
1
p′−

1
p

) � t

t
2

(t− s)α−1s−
αd
βp

(γ−1)ds


≲ ∥v∥γE

 cα−
αd
βp

(γ−1)

α− αd(γ−1)
βp

− c
α− αd

βp′ (γ−1)

α− αd(γ−1)
βp′

+

〈
t

2

〉−αd
β
(γ−1)

(
1
p′−

1
p

)〈
t

2

〉α−αd
βp

(γ−1)


≲ ∥v∥γE

[
C +

〈
t

2

〉α− αd
βp′ (γ−1)

]
≲ ∥v∥γE.

For 0 ≤ t ≤ 1 we get∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
p

≤
� t

0

∥Y (t− s, ·)∥1∥|v(s, ·)|γ−1v(s, ·)∥pds

≲ ∥v∥γE
� t

0

(t− s)α−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
⟨s⟩−

αd
β

(
1
p′−

1
p

)
ds

≲ ∥v∥γE
� t

0

(t− s)α−1s−
αd
βp

(γ−1)ds ≲ ∥v∥γE.

For t > 1, the fact that ∥v(s, ·)∥p′ ≤ max(∥v(s, ·)∥1, ∥v(s, ·)∥p), s > 0, together with
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the condition d
βp′

< 1, yields∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
p

≤
� t

0

∥Y (t− s, ·)∥q∥|v(s, ·)|γ−1v(s, ·)∥p′ds

≲ ∥v∥γ−1
E

� t

0

(t− s)
−αd

β

(
1
p′−

1
p

)
+α−1

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
∥v(s, ·)∥p′ds

≲ ∥v∥γE
� t

0

(t− s)
−αd

β

(
1
p′−

1
p

)
+α−1

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥v∥γEt
αd
βp

� t

0

(t− s)
− αd
βp′+α−1

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥v∥γEt
αd
βp

[� t
2

0

(t− s)
− αd
βp′+α−1

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

+

� t

t
2

(t− s)
− αd
βp′+α−1

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

]

≤ ∥v∥γEt
αd
βp

[(
t

2

)− αd
βp′

� t
2

0

(t− s)α−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

+

〈
t

2

〉−αd
β
(γ−1)

(
1
p′−

1
p

)(
t

2

)−αd
βp

(γ−1) � t

t
2

(t− s)
− αd
βp′+α−1

ds


≲ ∥v∥γEt

αd
βp

C ( t
2

)− αd
βp′

+

〈
t

2

〉−αd
β
(γ−1)

(
1
p′−

1
p

)(
t

2

)−αd
βp

(γ−1)− αd
βp′+α


≲ ∥v∥γEt

αd
βp

− αd
βp′

C +

〈
t

2

〉−αd
β
(γ−1)

(
1
p′−

1
p

)(
t

2

)−αd
βp

(γ−1)+α


≲ ∥v∥γEt
−αd

β

(
1
p′−

1
p

)
.

Now, for all 0 < t ≤ 1, as in the proof of Theorem 3.2.1, we obtain that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
∞

≤
� t

0

∥Y (t− s, ·)∥ p
p−1

∥|v(s, ·)|γ−1v(s, ·)∥pds

≲ ∥v∥γE
� t

0

(t− s)−
αd
βp

+α−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥v∥γE
� t

0

(t− s)−
αd
βp

+α−1s−
αd
βp

(γ−1)ds

≲ ∥v∥γEt
−αd
βp .
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For all t > 1 we �nd∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
∞

≤
� t

0

∥Y (t− s, ·)∥ p′
p′−1

∥|v(s, ·)|γ−1v(s, ·)∥p′ds

≲ ∥v∥γE
� t

0

(t− s)
− αd
βp′+α−1

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥v∥γEt
− αd
βp′ .

Using these bounds and from a straightforward inspection of the proof of Theorem
3.2.1, it follows that the operator M is well de�ned on E. From the beginning of
this section, we also get the estimate

∥Z ⋆ u0∥E ≤ C1(∥u0∥1 + ∥u0∥p).

In the same way, as in the proof of Theorem 3.2.1, the following estimate

∥M(v)−M(w)∥E ≤ C2∥v − w∥E (∥v∥E + ∥w∥E)γ−1

holds, considering as before the cases 0 ≤ t ≤ 1 and t > 1, respectively.
Finally, if u0 ∈ Lp(Rd) ∩ L1(Rd) is su�ciently small, then the operator M also

satis�es the proof of Theorem 3.2.1 with the corresponding closed ball on E, that
is, the conditions (3.31) and (3.32) are satis�ed without the restriction on the time.

As the uniqueness of the local solution was shown, similar situation happens for
a global solution of (3.26) in the Banach space

E := C([0,∞);Lp(Rd) ∩ L1(Rd)) ∩ C((0,∞);L∞(Rd)),

with the norm

∥v∥E := sup
t≥0

(
⟨t⟩

αd
β

(
1
p′−

1
p

)
∥v(t, ·)∥p + ∥v(t, ·)∥1

)
+ sup

t>0
{t}

αd
βp ⟨t⟩

αd
βp′ ∥v(t, ·)∥∞ .

Recall that 1 ≤ p′ < p, ⟨t⟩ :=
√
1 + t2 and {t} :=

t√
1 + t2

. Again, we use that

d(γ−1)
βp

< 1 for applying Lemma 1.2.1.
Consequently, we have proved the following result.

Theorem 3.3.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1) holds.
Let λ ∈ R and γ > 1. Let 1 = p′ < d

β
(γ − 1) whenever d < β, or d

β
< p′ < d

β
(γ − 1)

whenever d ≥ β. Suppose that max
(
1, κ, d(γ−1)

β

)
< p <∞. If u0 ∈ Lp(Rd)∩L1(Rd)

is su�ciently small, then the operator M has a unique �xed point u in E and the
optimal time decay estimate

∥u(t)∥1 + t
αd
β

(
1
p′−

1
p

)
∥u(t)∥p + t

αd
βp′ ∥u(t)∥∞ ≲ (∥u0∥1 + ∥u0∥p)

is true for all t ≥ 1.
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CONDITION

3.4 Global solution with non-negative initial

condition

In this section we consider the operator (−Ψβ(−i∇), C∞
0 (Rd)) on the Hilbert space

X = (L2(Rd), ∥·∥2). First, we have that (−Ψβ(−i∇), C∞
0 (Rd)) satis�es the posi-

tive maximum principle since its symbol ψ (independent of x) is a continuous and
negative de�nite function on Rd (Corollary 2.1.1, [29, Theorem 4.5.6]). It is also
symmetric because ψ is real. Consequently, (−Ψβ(−i∇), C∞

0 (Rd)) is closable ([63,
Theorem 3.6]).

De�ning the domain of−Ψβ(−i∇) asD(−Ψβ(−i∇)) = C∞
0 (Rd)

∥·∥Ψβ,L2 =: Hβ
2 (Rd),

where the closure is respect to the graph norm ∥·∥2Ψβ ,L2
= ∥·∥22+∥Ψβ(−i∇)(·)∥22 ([29,

Theorems 2.7.14 and 3.10.3]) and Hβ
2 (Rd) is an anisotropic function space ([29, Sec-

tion 3.10 and Example 4.1.16]), we get that (−Ψβ(−i∇), Hβ
2 (Rd)) =: A generates a

symmetric sub-Markovian semigroup on L2(Rd), ([29, Examples 4.1.13 and 4.3.9]).
As we know (see Chapter 1), a sub-Markovian semigroup is a strongly continuous

contraction semigroup. Therefore, A is closed and Hβ
2 (Rd) is dense in L2(Rd) ([29,

Corollary 4.1.15]). Moreover, A is a self-adjoint operator ([29, Section 4.7]).
Since A is closed, linear, densely de�ned and self-adjoint on the Hilbert space

X, it follows that −A is a normal operator ([59, De�nition 13.29]) and σ(−A) ⊂ R.
Moreover, σ(−A) ⊂ [0,∞) because A satis�es [13, Theorem 8.3.2 (i)]. From Parse-
val's theorem we also have that −A is strictly positive, hence it is 1-1 and satis�es
[59, Theorem 13.11 b)]. Therefore, −A is sectorial ([57, Section 8.1]). Besides, X
belongs to the class HT (see [57, de�nition in page 216, a characterization in page
217 and page 234]).

This shows that the operator −A belongs to BIP(X) and θ−A = 0 ([57, De�ni-
tion 8.1 and Section 8.7 c)(i)]), furthermore, it satis�es [57, Theorem 8.7 (i)] with
ω−A = 0.

On the other hand, the Laplace-transform of gα(t) =
tα−1

Γ(α)
, t > 0, is ĝα(s) = s−α,

Re(s) > 0 ([57, Example 2.1]). This yields

lim
s→∞

|ĝα(s)| <∞.

The kernel gα is also 1-regular ([57, De�nition 3.4 and Proposition 3.3]) and θa-
sectorial with θa = απ

2
([57, De�nition 3.2]). Therefore, θa + θ−A < π.

This shows that gα satis�es [57, Theorem 8.7 parts (ii), (iv) and (v)], with ωa = 0.
Now, we consider the Volterra equation

u(t) = f(t) +

� t

0

gα(t− s)Au(s)ds, t ∈ [0, T ]. (3.33)

The family of bounded linear operators {S(t)}t≥0 on L2(Rd), given by

S(t)v := Z(t, ·) ⋆ v, (3.34)

is a resolvent for (3.33). That is, S satis�es the following conditions ([57, De�nition
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1.3]).

(S1) : S(0) = I and S(t) is strongly continuous on [0,∞),

(S2) : S(t)v ∈ D(A) and AS(t)v = S(t)Av, for all v ∈ D(A) and t ≥ 0,

(S3) : S(t)v = v +

� t

0

gα(t− s)AS(s)vds, for all v ∈ D(A) and t ≥ 0.

Indeed, it is easy to see that S(t) is a bounded linear operator and (S1) is satis�ed
from Theorem 3.1.5. For (S2), let t ≥ 0 and v ∈ Hβ

2 (Rd). We have that

∥S(t)v∥2 ≤ ∥v∥2 <∞

and �
Rd
(1 + ∥ξ∥2)β|Ŝ(t)v(ξ)|2dξ =

�
Rd
(1 + ∥ξ∥2)βE2

α,1(−tαψ(ξ))|v̂(ξ)|2dξ

≤
�
Rd
(1 + ∥ξ∥2)β|v̂(ξ)|2dξ <∞.

Besides, denoting by ⟨·, ·⟩ the usual Euclidean inner product on Rd, we obtain

AS(t)v =
1

(2π)d

�
Rd
ei⟨·,ξ⟩(−ψ(ξ))Ŝ(t)v(ξ)dξ

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩(−ψ(ξ))Eα,1(−tαψ(ξ))v̂(ξ)dξ

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩Eα,1(−tαψ(ξ))(−ψ(ξ))v̂(ξ)dξ

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩Eα,1(−tαψ(ξ))Âv(ξ)dξ

= S(t)Av.

The last condition (S3) also holds because

� t

0

gα(t− s)AS(s)vds

=

� t

0

gα(t− s)
1

(2π)d

�
Rd
ei⟨·,ξ⟩(−ψ(ξ))Eα,1(−sαψ(ξ))v̂(ξ)dξds

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩(−ψ(ξ))v̂(ξ)

� t

0

(t− s)α−1

Γ(α)
Eα,1(−sαψ(ξ))dsdξ

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩(−ψ(ξ))v̂(ξ)

� t

0

(t− s)α−1

Γ(α)

∞∑
k=0

(−ψ(ξ))ksαk

Γ(αk + 1)
dsdξ

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩(−ψ(ξ))v̂(ξ)

∞∑
k=0

(−ψ(ξ))k
� t

0

(t− s)α−1sαk

Γ(α)Γ(αk + 1)
dsdξ
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=
1

(2π)d

�
Rd
ei⟨·,ξ⟩(−ψ(ξ))v̂(ξ)

∞∑
k=0

(−ψ(ξ))k tα+αk

Γ(αk + 1 + α)
dξ

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩v̂(ξ)

∞∑
k=0

(−ψ(ξ))k+1(tα)k+1

Γ(α(k + 1) + 1)
dξ

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩v̂(ξ) [Eα,1(−tαψ(ξ))− 1] dξ

=
1

(2π)d

�
Rd
ei⟨·,ξ⟩Eα,1(−tαψ(ξ))v̂(ξ)dξ −

1

(2π)d

�
Rd
ei⟨·,ξ⟩v̂(ξ)dξ

= S(t)v − v.

Since a strong solution u of (3.33) is also a mild solution, from [57, Proposition 1.2
(i)] it follows that u satis�es

u(t) =
d

dt

� t

0

S(s)f(t− s)ds, t ∈ [0, T ]. (3.35)

The equation (3.35) is called the variation of parameters formula for the Volterra
equation (3.33).

Now, let ũ the unique local mild solution of (3.1) given by (3.26) on [0, T ], under
the assumptions of Theorem 3.2.1. De�ne

g(t)(x) = g(t, x) := λ|ũ(t, x)|γ−1ũ(t, x), 0 ≤ t ≤ T, x ∈ Rd. (3.36)

We claim that gα ∗ g(t) ∈ L2(Rd) for 0 ≤ t ≤ T , whenever dγ
βp
< 1. Indeed,

∥gα ∗ g(t)∥L2(Rd) =

(�
Rd

|(gα ∗ g(t))(x)|2 dx
) 1

2

≤

(�
Rd

(� t

0

(t− s)α−1

Γ(α)
|g(s, x)|ds

)2

dx

) 1
2

≤
� t

0

(t− s)α−1

Γ(α)

(�
Rd

|g(s, x)|2dx
) 1

2

ds

≲ ∥ũ∥γ−1
ET

� t

0

(t− s)α−1s−
αd(γ−1)

βp

(�
Rd

|ũ(s, x)|2dx
) 1

2

ds

≲ ∥ũ∥γ−1
ET

� t

0

(t− s)α−1s−
αd(γ−1)

βp ∥ũ(s, ·)∥2ds

≲ ∥ũ∥γ−1
ET

� t

0

(t− s)α−1s−
αd(γ−1)

βp max(∥ũ(s, ·)∥1, ∥ũ(s, ·)∥∞)ds

≲ ∥ũ∥γ−1
ET

� t

0

(t− s)α−1s−
αd(γ−1)

βp (∥ũ(s, ·)∥1 + ∥ũ(s, ·)∥∞)ds

≲ ∥ũ∥γET

� t

0

(t− s)α−1s−
αd(γ−1)

βp

(
1 + s−

αd
βp

)
ds

≲ ∥ũ∥γET
(
tα−

αd(γ−1)
βp + tα−

αdγ
βp

)
<∞.
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From here, we get
gα ∗ g(0) ≡ 0.

In the same way it can be shown that gα ∗ g ∈ L2([0, T ];L2(Rd)). We additionally
have that g ∈ L2([0, T ];L2(Rd)) whenever 2αdγ

βp
< 1.

Let u0 ∈ D(A). Consider the equations of Volterra

u(t) = gα ∗ g(t) +
� t

0

gα(t− s)Au(s)ds (3.37)

and

u(t) = u0 +

� t

0

gα(t− s)Au(s)ds, (3.38)

for t ∈ [0, T ].
Conclusions (a) and (b) of [57, Theorem 8.7], using B ≡ 0 and the Banach space

XA = (Hβ
2 (Rd), ∥·∥Ψβ ,L2), imply that (3.37) and (3.38) have a unique a.e. strong

solution u1 and u2, respectively.
Therefore, u := u1 + u2 ∈ L2([0, T ];XA) is the unique a.e. strong solution of the

Volterra equation

u(t) = u0 + gα ∗ g(t) +
� t

0

gα(t− s)Au(s)ds (3.39)

and satis�es (3.35) with f(t) := u0 + gα ∗ g(t), t ∈ [0, T ].

Next, we need to prove the following result using the operators S(t) given by
(3.34).

Lemma 3.4.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1) holds.
Let λ ∈ R and γ > 1. Assume that u is a �xed point of the operator given by (3.27)
on ET with u0 ∈ L2(Rd). If dγ

βp
< 1, then u satis�es

u(t) =
d

dt

� t

0

S(s)f(t− s)ds,

where f(t) := u0 + gα ∗ g(t) and g like (3.36), t ∈ [0, T ].

Proof. Let x ∈ Rd. We de�ne

F (t, s) :=

�
Rd
gα ∗ Z(·, x− y)(t− s)g(s, y)dy

=

�
Rd
g(s, y)

[� t−s

0

(t− s− τ)α−1

Γ(α)
Z(τ, x− y)dτ

]
dy

=

� t−s

0

(t− s− τ)α−1

Γ(α)

�
Rd
Z(τ, x− y)g(s, y)dydτ

≲ ∥u∥γET

� t−s

0

(t− s− τ)α−1

Γ(α)
s−

αdγ
βp

�
Rd
Z(τ, x− y)dy︸ ︷︷ ︸

1

dτ

≲ ∥u∥γET s
−αdγ

βp (t− s)α.
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That is,

gα ∗ Z(·, x− ··)(t− s)g(s, ··) ∈ L1(Rd), 0 < s ≤ t, t > 0. (3.40)

Without loss of generality, let 0 < t0 < t. The same arguments as in the proof of
Theorem 3.1.5, part (i), but using the bounds of Y given in Lemma 3.1.2, yield∣∣∣∣�

Rd
Y (t− s, x− y)g(s, y)dy −

�
Rd
Y (t0 − s, x− y)g(s, y)dy

∣∣∣∣
≤

�
Rd

|Y (t− s, x− y)− Y (t0 − s, x− y)| |g(s, y)|dy

≲ ∥u∥γET s
−αdγ

βp

�
Rd

|Y (t− s, x− y)− Y (t0 − s, x− y)| dy

≲ ∥u∥γET s
−αdγ

βp ∥Y (t− s, x− ·)− Y (t0 − s, x− ·)∥1
≲ ∥u∥γET s

−αdγ
βp |t− t0|(t0 − s)α−2 → 0

whenever t→ t0.
This, together with (3.40) and Lemma 3.1.6, proves that

∂F

∂t
(t, s) =

�
Rd
Y (t− s, x− y)g(s, y)dy, (3.41)

which is continuous w.r.t. t ∈ (0, T ], for 0 < s < t. Therefore,

� t

0

�
Rd
Y (t− s, x− y)g(s, y)dyds =

� t

0

∂F

∂t
(t, s)ds.

From the previous work to (3.40) we also obtain∣∣∣∣� t

t0

F (t, s)ds

∣∣∣∣ ≲ � t

t0

s−
αdγ
βp (t− s)αds ≲ t

−αdγ
βp

0 (t− t0)
α+1

and thus

lim
t→t0

1

t− t0

� t

t0

F (t, s)ds = 0.

The mean-value theorem and the dominated convergence theorem yield

d

dt

� t

0

F (t, s)ds

∣∣∣∣
t=t0

= lim
t→t0

1

t− t0

(� t

0

F (t, s)ds−
� t0

0

F (t0, s)ds

)
= lim

t→t0

1

t− t0

� t0

0

[F (t, s)− F (t0, s)] ds+ lim
t→t0

1

t− t0

� t

t0

F (t, s)ds

= lim
t→t0

� t0

0

∂F

∂t
(tc, s)ds

=

� t0

0

lim
t→t0

∂F

∂t
(tc, s)ds

=

� t0

0

∂F

∂t
(t0, s)ds <∞,
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because t0 < tc < t and the equality (3.41) implies∣∣∣∣∂F∂t (tc, s)
∣∣∣∣ ≲ �

Rd
Y (tc − s, x− y)|g(s, y)|dy

≲ ∥u∥γET s
−αdγ

βp

�
Rd
Y (tc − s, x− y)dy

≲ ∥u∥γET s
−αdγ

βp
(tc − s)α−1

Γ(α)

≲ ∥u∥γET s
−αdγ

βp (t0 − s)α−1.

Consequently,
d

dt

� t

0

F (t, s)ds =

� t

0

∂F

∂t
(t, s)ds.

In view of (3.41), the non-linear part of (3.27) can be written as� t

0

�
Rd
Y (t− s, x− y)g(s, y)dyds =

� t

0

∂

∂t
F (t, s)ds

=
d

dt

� t

0

F (t, s)ds

=
d

dt

� t

0

�
Rd
gα ∗ Z(·, x− y)(t− s)g(s, y)dyds

=
d

dt

� t

0

�
Rd
gα ∗ Z(·, x− y)(s)g(t− s, y)dyds.

Using Fubini and convolution respect to the time, the integral over Rd is� s

0

�
Rd

(s− τ)α−1

Γ(α)
Z(τ, x− y)g(t− s, y)dydτ

and hence � t

0

�
Rd
gα ∗ Z(·, x− y)(s)g(t− s, y)dyds

=

� t

0

� s

0

�
Rd

(s− τ)α−1

Γ(α)
Z(τ, x− y)g(t− s, y)dydτds

=

� t

0

� t

τ

�
Rd

(s− τ)α−1

Γ(α)
Z(τ, x− y)g(t− s, y)dydsdτ

=

� t

0

�
Rd
Z(τ, x− y)

� t

τ

(s− τ)α−1

Γ(α)
g(t− s, y)dsdydτ

=

� t

0

�
Rd
Z(τ, x− y)

� t−τ

0

(t− τ − s)α−1

Γ(α)
g(s, y)dsdydτ

=

� t

0

�
Rd
Z(τ, x− y)gα ∗ g(·, y)(t− τ)dydτ

=

� t

0

Z(τ, ··) ⋆ (gα ∗ g(·, ··)(t− τ))(x)dτ

=

� t

0

S(τ)(gα ∗ g(·, ··)(t− τ))(x)dτ.

80



3.4. GLOBAL SOLUTION WITH NON-NEGATIVE INITIAL
CONDITION

Therefore, the operator (3.27) evaluated in u has the form

u(t) =
d

dt

� t

0

S(s) (u0 + gα ∗ g(·, ··)(t− s)) ds, t ∈ [0, T ].

By Lemma 3.4.1 and uniqueness, we obtain ũ = u. Besides, (3.39) is equivalent
to

∂αt (u− u0)(t, x) + Ψβ(−i∇)u(t, x) = λ|u(t, x)|γ−1u(t, x), t ∈ (0, T ], x ∈ Rd,

u(t, x)|t=0 = u0(x), x ∈ Rd.

(3.42)

Indeed,

u(t)−
� t

0

gα(t− s)Au(s)ds = u0 + gα ∗ g(t)

⇔ g1−α ∗ u(t) + g1−α ∗ gα ∗Ψβ(−i∇)u(t) = g1−α ∗ (u0 + gα ∗ g)(t)
⇔ g1−α ∗ (u− u0)(t) + 1 ∗Ψβ(−i∇)u(t) = 1 ∗ g(t)

⇔ d

dt
g1−α ∗ (u− u0)(t) + Ψβ(−i∇)u(t) = g(t).

Now, we de�ne u+(t, x) = max(u(t, x), 0) and u−(t, x) = max(−u(t, x), 0).
From [70, Section 2], it is known that if v ∈ L2([0, T ];R), g1−α ∗v ∈ W 1

2 ([0, T ];R)

and (g1−α ∗ v)(0) = 0, then the operator ∂αt v :=
d

dt
(g1−α ∗ v) has a Yosida approxi-

mation
d

dt
(g1−α,n∗v) in L2([0, T ];R) as n→ ∞, with nonnegative and nonincreasing

g1−α,n ∈ W 1
1 ([0, T ];R) for all n ∈ N. From this work, one can also derive

v−
d

dt
(g1−α,n ∗ v)(t) ≤ −1

2

d

dt
(g1−α,n ∗ (v−)2)(t) a.e. t ∈ (0, T ), n ∈ N. (3.43)

Next, we use these results to prove that u is a local positive solution a.e. of (3.1),
whenever u0 ≥ 0, but non zero, and λ < 0. By contradiction, suppose that u < 0
somewhere on (0, T ] × Rd. Let x ∈ Rd. In order to apply (3.43) to u(·, x), we
need the condition 2αd

βp
< 1 to get u(·, x) ∈ L2([0, T ];R). For the requirement

g1−α ∗ u(·, x) ∈ L2([0, T ];R), we have that

∥g1−α ∗ u(·, x)∥22 =
� T

0

|g1−α ∗ u(t, x)|2dt

=

� T

0

∣∣∣∣� t

0

(t− s)−α

Γ(1− α)
u(s, x)ds

∣∣∣∣2 dt
≲ ∥u∥2ET

� T

0

[� t

0

(t− s)−αs−
αd
βp ds

]2
dt ≲

� T

0

[
t1−α−

αd
βp

]2
dt

which is �nite because 0 < 2αd
βp

< 1 and 0 < α < 1.
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We also �nd conditions such that
d

dt
(g1−α ∗ u)(·, x) ∈ L2([0, T ];R). For this

purpose, we already know that u ∈ L2([0, T ];XA) is a strong solution of (3.39) and
satis�es the equation (3.42). Conclusions (a) and (b) of [57, Theorem 8.7]) yield

� T

0

|Ψβ(−i∇)u(t, x)|2dt <∞ a.e., x ∈ Rd.

If 2αdγ
βp

< 1, we also get that |u|γ−1u(·, x) ∈ L2([0, T ];R) and
d

dt
(g1−α ∗ u0)(·, x) ∈

L2([0, T ];R) whenever 0 < α < 1
2
. Finally, it can be readily checked that (g1−α ∗

u)(0, x) = 0 whenever α + αd
βp
< 1.

This work allows one to employ the Yosida approximation of g1−α in L2([0, T ];R)
with u. Using (3.43) we obtain

u−
d

dt
(g1−α,n ∗ u)(t, x) ≤ −1

2

d

dt
(g1−α,n ∗ (u−)2)(t, x) a.e. t ∈ (0, T ).

Besides, (g1−α,n ∗ (u−)2)(0, x) = 0 for all n ∈ N (see e.g., [70, Formula 8] and [33,
Formula 10]). Consequently,

� T

0

u−
d

dt
(g1−α,n ∗ u)(t, x)dt

≤ −1

2

� T

0

d

dt
(g1−α,n ∗ (u−)2)(t, x)dt

= −1

2
(g1−α,n ∗ (u−)2)(T, x) +

1

2
(g1−α,n ∗ (u−)2)(0, x)

= −1

2
(g1−α,n ∗ (u−)2)(T, x)

≤ 0.

Thus,

� T

0

u−
d

dt
(g1−α ∗ u)(t, x)dt ≤

� T

0

u−
d

dt
((g1−α − g1−α,n) ∗ u)(t, x)dt

and applying Hölder we conclude that

� T

0

u−
d

dt
(g1−α ∗ u)(t, x)dt

≤
(� T

0

(u−)2(t, x)dt

) 1
2

(� T

0

∣∣∣∣ ddt((g1−α − g1−α,n) ∗ u)(t, x)
∣∣∣∣2 dt

) 1
2

< ∥u−(·, x)∥2ε.

This shows that � T

0

u−
d

dt
(g1−α ∗ (u− u0))(t, x)dt ≤ 0 (3.44)

a.e., x ∈ Rd.
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On the other hand, if v, w ∈ ET we have that v(t, ·), w(t, ·) ∈ L2(Rd) whenever
t > 0. Besides, −Ψβ(−i∇) satis�es [63, Theorem 3.6] and we can write

⟨Ψβ(−i∇)v(t, ·), w(t, ·)⟩2 =
1

2

�
R2d

(v(t, y)−v(t, x))(w(t, y)−w(t, x))ν(dy)dx (3.45)

with a positive kernel ν on Rd such that

�
Rd\{x}

∥y − x∥2

1 + ∥y − x∥2
ν(dy) <∞.

Using (3.42), we obtain

u−(t, x)∂αt (u− u0)(t, x) =− u−(t, x)Ψβ(−i∇)u(t, x) + λu−(t, x)|u(t, x)|γ−1u(t, x)

=− u−(t, x)Ψβ(−i∇)u+(t, x) + u−(t, x)Ψβ(−i∇)u−(t, x)

− λ|u(t, x)|γ−1(u−)2(t, x).

Integrating over [0, T ]× Rd and using Fubini in a convenient form, we get

�
Rd

� T

0

u−(t, x)∂αt (u− u0)(t, x)dtdx =−
� T

0

�
Rd
u−(t, x)Ψβ(−i∇)u+(t, x)dxdt

+

� T

0

�
Rd
u−(t, x)Ψβ(−i∇)u−(t, x)dxdt

− λ

� T

0

�
Rd
|u(t, x)|γ−1(u−)2(t, x)dxdt.

From (3.44) and (3.45) it follows that the left-hand side is non-positive and the right-
hand side is strictly positive, respectively. This contradiction shows that u ≥ 0 a.e.
For the case 1

2
≤ α < 1 we set the parameter p̄, such that 1 < p̄ < 1

α
. Due to

this choice, we have that p̄ < p̄
p̄−1

and that 2 < p̄
p̄−1

. Thereby, we can apply similar

arguments, i.e., Yosida approximation of g1−α in Lp̄([0, T ];R) and [57, Theorem 8.7]
in Lp̄([0, T ];L2(Rd)), for obtaining again that u ≥ 0 a.e. Whenever 0 < α < 1

2
, we

�x p̄ = 2. We are now in a position to show the following theorem.

Theorem 3.4.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1) holds.

Let λ < 0, γ > 1. Suppose that max
(
1, κ, dγ

β

)
< p < ∞, p̄αd

(p̄−1)βp
< 1, p̄αdγ

βp
< 1

and α + αd
βp

< 1. If u0 ∈ Lp(Rd) ∩ L1(Rd) ∩ Hβ
2 (Rd) is non-negative a.e., then

there exists a unique non-negative global solution u ∈ C([0,∞);Lp(Rd) ∩ L1(Rd)) ∩
C((0,∞);L∞(Rd)) to the Cauchy problem (3.1). Moreover, estimate

∥u(t)∥1 + t
αd
β

(
1
p′−

1
p

)
∥u(t)∥p + t

αd
βp′ ∥u(t)∥∞ ≲ (∥u0∥1 + ∥u0∥p)

is true for all t ≥ 1, with p′ as in Theorem 3.3.1.

Proof. As in Section 3.2, one �nds that there exists a unique local solution u ∈ ET ∗

for some T ∗ > 0. This solution is non-negative a.e., as discussed above, and satis�es

u(t, x) =

�
Rd
Z(t, x− y)u0(y)dy + λ

� t

0

�
Rd
Y (t− s, x− y)|u(s, y)|γ−1u(s, y)dyds.
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The positivity of Z and Y yields

u(t, x) ≤
�
Rd
Z(t, x− y)u0(y)dy.

Therefore,
∥u(t, ·)∥1 ≤ ∥Z(t, ·) ⋆ u0∥1 ≤ ∥u0∥1 for t ∈ [0, T ∗],
∥u(t, ·)∥p ≤ ∥Z(t, ·) ⋆ u0∥p ≤ ∥u0∥p for t ∈ [0, T ∗],

∥u(t, ·)∥∞ ≤ ∥Z(t, ·) ⋆ u0∥∞ ≲ t−
αd
βp ∥u0∥p for t ∈ (0, T ∗]

and thus we obtain
∥u∥ET∗ ≤ C∥u0∥Lp(Rd)∩L1(Rd). (3.46)

We note that the constant C is independent of T ∗, that is, we can apply Theorem
3.2.1 on [T ∗, T1], with 0 < T ∗ < T1, and the extended solution u ∈ ET1 also satis�es
(3.46).

In particular, ∥u(T ∗)∥Lp(Rd)∩L1(Rd) ≤ C∥u0∥Lp(Rd)∩L1(Rd). This estimate allows to
prolong the local solution for all times t > 0 (see [24, Theorem 1.20]). Since u(T ∗)
is non-negative and it is the new initial condition on [T ∗, T1], it follows that u ∈ ET1
is also non-negative. Consequently, the global solution is non-negative.

On the other hand, as in proof of Theorem 3.3.1, we also get for all t ≥ 1,

∥u(t, ·)∥p ≤ ∥Z(t, ·) ⋆ u0∥p ≲ t
−αd

β

(
1
p′−

1
p

)
max(∥u0∥1, ∥u0∥p),

∥u(t, ·)∥∞ ≤ ∥Z(t, ·) ⋆ u0∥∞ ≲ t
− αd
βp′ max(∥u0∥1, ∥u0∥p).

Thus, we obtain the desired estimate.

3.5 Asymptotic behaviour for global solutions

In this section we study the Lp-decay of a global solution, which was obtained in
Section 3.3 and in Section 3.4, respectively. We recall that in the �rst case (Theorem
3.3.1), a small initial data is required. In the other case (Theorem 3.4.1), λ < 0 and
initial data non-negative are required, which yield a global solution non-negative.

Lemma 3.5.1. Let α ∈ (0, 1) and β ∈ (1, 2). Assume the hypothesis (H2) holds.
Then there exists a positive constant C for all t > 0 and y ∈ Rd, such that the
estimate

∥Z(t, · − y)− Z(t, ·)∥q ≤ C∥y∥∥∇Z(t, ·)∥q ≲ ∥y∥t−
αd
β (1−

1
q )−

α
β

is true for 1 ≤ q < d
d+1−β .

Proof. By application of bounds given in Lemma 3.1.3, we have

|Z(t, x− y)− Z(t, x)| ≤ C∥y∥

{
t−α∥x− εy∥β−(d+1) if ∥x− εy∥ ≤ t

α
β

tα∥x− εy∥−β−(d+1) if ∥x− εy∥ ≥ t
α
β

=: C∥y∥D(t, x− εy),
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where ε ∈ (0, 1). Using an argument as in Hardy's inequality proof, we get

∥Z(t, · − y)− Z(t, ·)∥q =
(�

Rd
|Z(t, x− y)− Z(t, x)|qdx

) 1
q

≲ ∥y∥
(�

Rd
Dq(t, x− εy)dx

) 1
q

≲ ∥y∥
(�

Rd

(� 1

0

D(t, x− sy)ds

)q
dx

) 1
q

≲ ∥y∥
� 1

0

(�
Rd
Dq(t, x− sy)dx

) 1
q

ds

≲ ∥y∥∥D(t, ·)∥q.

We note that ∥D(t, ·)∥q can be estimated in the same way as Z(t, ·) in Theorem
3.1.1 and that ∥∇Z(t, ·)∥q ≲ ∥D(t, ·)∥q. The mean-value inequality completes the
proof.

On the other hand, from [16] it is known the following decomposition lemma.

Lemma 3.5.2. Assume that 1 ≤ r < d
d−1

, f ∈ L1(Rd) and ∥·∥f ∈ Lr(Rd), then

there exists a vectorial function F ∈ Lr(Rd;Rd) such that

f =

(�
Rd
f(y)dy

)
δ0 + divF.

in the distributional sense and

∥F∥r ≤ C(q, d)∥∥·∥f∥r.

Using this with f = u0, we �nd that

Z(t, ·) ⋆ u0(x) =
(�

Rd
u0(y)dy

)
Z(t, ·) ⋆ δ0(x) + Z(t, ·) ⋆ divF(x)

=

(�
Rd
u0(y)dy

)
Z(t, x) +∇Z(t, ·) ⋆ F(x).

Let A =

�
Rd
u0(y)dy. Young's inequality for convolutions yields

∥Z(t, ·) ⋆ u0 − AZ(t, ·)∥p ≲ ∥∇Z(t, ·)∥q∥F∥r
≲ ∥∇Z(t, ·)∥q∥∥·∥u0∥r

and we get

∥Z(t, ·) ⋆ u0 − AZ(t, ·)∥p ≲ t−
αd
β (1−

1
q )−

α
β ∥∥·∥u0∥r. (3.47)

Now, the idea is to �nd conditions such that

1

p
+ 1 =

1

q
+

1

r
, 1 ≤ q <

d

d+ 1− β
, 1 ≤ r <

d

d− 1
. (3.48)
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First, we need β ∈ (1, 2) since Lemma 3.5.1 requires this for choices of q. Besides,
in the case d = 1 is enough p < ∞ but in the case d ≥ 2 we need p < d

d−β . In

this way it is possible to get the estimate (3.47) and the required upper bound on p
allows one to achieve both the Lp-norm and the Lq-norm for kernel Y . Therefore,
the estimate∥∥∥∥λ� t

0

Y (t− s, ··) ⋆ |u(s, ··)|γ−1u(s, ··)(·)ds−BY (t, ·)
∥∥∥∥
p

≲ t
−αd

β

(
1
p′−

1
p

)
+α−1

(3.49)

is true for t ≥ 1, with B = λ

� ∞

0

�
Rd

|u(s, y)|γ−1u(s, y)dyds, whenever αd
βp′

(γ−1) > 1.

Here, p′ is the same as in Theorems 3.3.1 and 3.4.1.
Indeed, we have that

� t

0

Y (t− s, ··) ⋆ |u(s, ··)|γ−1u(s, ··)(x)ds− Y (t, x)

� ∞

0

�
Rd

|u(s, y)|γ−1u(s, y)dyds

=

� t
2

0

Y (t− s, ··) ⋆ |u(s, ··)|γ−1u(s, ··)(x)ds+
� t

t
2

Y (t− s, ··) ⋆ |u(s, ··)|γ−1u(s, ··)(x)ds

−
� t

2

0

(Y (t, x)− Y (t− s, x) + Y (t− s, x))

�
Rd

|u(s, y)|γ−1u(s, y)dyds

−
� ∞

t
2

Y (t, x)

�
Rd

|u(s, y)|γ−1u(s, y)dyds

=

� t
2

0

Y (t− s, ··) ⋆ |u(s, ··)|γ−1u(s, ··)(x)ds+
� t

t
2

Y (t− s, ··) ⋆ |u(s, ··)|γ−1u(s, ··)(x)ds

−
� t

2

0

Y (t− s, x)

�
Rd

|u(s, y)|γ−1u(s, y)dyds−
� ∞

t
2

Y (t, x)

�
Rd

|u(s, y)|γ−1u(s, y)dyds

−
� t

2

0

(Y (t, x)− Y (t− s, x))

�
Rd

|u(s, y)|γ−1u(s, y)dyds

=:J1(t, x) + J2(t, x)− J3(t, x)− J4(t, x)− J5(t, x).

Now, we estimate the Lp-norm for Jk, k = 1, · · · , 5, recalling that d
βp
(γ − 1) < 1,

d
βp′

< 1 and 1 ≤ p′ < p.

∥J1(t, ·)∥p ≤
� t

2

0

∥Y (t− s, ··) ⋆ |u(s, ··)|γ−1u(s, ··)∥pds

≤
� t

2

0

∥Y (t− s, ··)∥p∥|u(s, ··)|γ−1u(s, ··)∥1ds

≲ ∥u∥γE
� t

2

0

(t− s)−
αd
β (1−

1
p)+α−1s−

αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥u∥γE
(
t

2

)−αd
β (1−

1
p)+α−1 � t

2

0

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds.
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Choosing 0 < c < t
2
we get

� t
2

0

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

=

� c

0

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds+

� t
2

c

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲
� c

0

s−
αd
βp

(γ−1)ds+

� t
2

c

s
− αd
βp′ (γ−1)

ds

≲
1

1− αd
βp
(γ − 1)

c1−
αd
βp

(γ−1) +
1

1− αd
βp′

(γ − 1)

((
t

2

)1− αd
βp′ (γ−1)

− c
1− αd

βp′ (γ−1)

)
.

We note that 1− αd
βp
(γ − 1) > 0 and 1− αd

βp′
(γ − 1) < 0. Thus,

∥J1(t, ·)∥p ≲ ∥u∥γE
(
t

2

)−αd
β (1−

1
p)+α−1

≲ t−
αd
β (1−

1
p)+α−1.

However, if t ≥ 1 we have that t−
αd
β (1−

1
p) ≤ t

−αd
β

(
1
p′−

1
p

)
and we obtain

∥J1(t, ·)∥p ≲ t
−αd

β

(
1
p′−

1
p

)
+α−1

. (3.50)

We continue with J2 and we estimate

∥J2(t, ·)∥p ≤
� t

t
2

∥Y (t− s, ··) ⋆ |u(s, ··)|γ−1u(s, ··)∥pds

≤
� t

t
2

∥Y (t− s, ··)∥q∥|u(s, ··)|γ−1u(s, ··)∥p′ds

≲ ∥u∥γE
� t

t
2

(t− s)
−αd

β

(
1
p′−

1
p

)
+α−1

s
− αd
βp′ (γ−1)

ds

≲ ∥u∥γE
(
t

2

)− αd
βp′ (γ−1) � t

t
2

(t− s)
−αd

β

(
1
p′−

1
p

)
+α−1

ds

≲ ∥u∥γE
(
t

2

)− αd
βp′ (γ−1)

(t− s)
−αd

β

(
1
p′−

1
p

)
+α

∣∣∣∣t
t
2

≲ ∥u∥γE
(
t

2

)− αd
βp′ (γ−1)(

t

2

)−αd
β

(
1
p′−

1
p

)
+α

.

Therefore,

∥J2(t, ·)∥p ≲ t
−αd

β

(
1
p′−

1
p

)
+α− αd

βp′ (γ−1)
. (3.51)
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For J3 we have that

∥J3(t, ·)∥p ≤
� t

2

0

∥Y (t− s, ·)∥p
�
Rd

|u(s, y)|γ−1|u(s, y)|dy ds

≲ ∥u∥γE
� t

2

0

(t− s)−
αd
β (1−

1
p)+α−1s−

αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥u∥γE
(
t

2

)−αd
β (1−

1
p)+α−1 � t

2

0

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

and proceeding in the same way as in the estimate of J1, we obtain

∥J3(t, ·)∥p ≲ t
−αd

β

(
1
p′−

1
p

)
+α−1

. (3.52)

For J4 we �nd

∥J4(t, ·)∥p ≤ ∥Y (t, ·)∥p
� ∞

t
2

�
Rd

|u(s, y)|γ−1|u(s, y)|dyds

≲ ∥u∥γEt
−αd

β (1−
1
p)+α−1

� ∞

t
2

s
− αd
βp′ (γ−1)

ds

≲ ∥u∥γEt
−αd

β (1−
1
p)+α−1

(
t

2

)1− αd
βp′ (γ−1)

and we get

∥J4(t, ·)∥p ≲ t
−αd

β

(
1
p′−

1
p

)
+α− αd

βp′ (γ−1)
. (3.53)

In order to estimate J5, we follow the same arguments as in the proof of Theorem
3.1.5, �rst part, but using the bounds of Y given in Lemma 3.1.2, that is,

∥J5(t, ·)∥p ≤
� t

2

0

∥Y (t, ·)− Y (t− s, ·)∥p
�
Rd

|u(s, y)|γ−1|u(s, y)|dyds

≲ ∥u∥γE
� t

2

0

s(t− s)−
αd
β (1−

1
p)+α−2s−

αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥u∥γE
(
t

2

)−αd
β (1−

1
p)+α−1 � t

2

0

s(t− s)−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥u∥γE
(
t

2

)−αd
β (1−

1
p)+α−1 � t

2

0

s s−1s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥u∥γE
(
t

2

)−αd
β (1−

1
p)+α−1 � t

2

0

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds.

Now, we proceed in the same way as in the estimate of J1 and thus

∥J5(t, ·)∥p ≲ t
−αd

β

(
1
p′−

1
p

)
+α−1

. (3.54)

Gathering estimates from (3.50) to (3.54), we have proved (3.49). This, together
with (3.47), show the following result.
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Theorem 3.5.1. Let α ∈ (0, 1) and β ∈ (1, 2). Assume the hypothesis (H2) holds.
Let λ ∈ R and γ > 1. Suppose that the initial data u0 ∈ L1(Rd), p and p′ satisfy
conditions as in Theorem 3.3.1. Let p < κ1 as in Theorem 3.1.1 and αd

βp′
(γ− 1) > 1.

Assume in addition that ∥·∥u0 ∈ Lr(Rd), with some r and q as in (3.48). If u ∈ E
is a global solution to the Cauchy problem (3.1), then u has the asymptotic behavior

∥u(t, ·)− AZ(t, ·)−BY (t, ·)∥p → 0

as t→ ∞, with the constants

A =

�
Rd
u0(y)dy

and

B = λ

� ∞

0

�
Rd

|u(s, y)|γ−1u(s, y)dyds.
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Chapter 4

A blow-up case

In this chapter we study the behaviour of solutions for the Cauchy problem

∂αt (u− u0)(t, x) + Ψβ(−i∇)u(t, x) = |u(t, x)|γ−1u(t, x), t > 0, x ∈ Rd,

u(t, x)|t=0 = u0(x) ≥ 0, x ∈ Rd,
(4.1)

under the same de�nitions given in Chapter 3. In this case, we recall that the symbol
of the operator Ψβ(−i∇) is independent of x and it has the form

ψ(ξ) = ∥ξ∥βωµ
(

ξ

∥ξ∥

)
, ξ ∈ Rd,

with

ωµ(θ) :=

�
Sd−1

|θ · η|βµ(dη), θ ∈ Sd−1.

We also recall that the Borel measure µ(dη) is centrally symmetric, �nite (non-
negative), de�ned on Sd−1. The basic hypothesis throughout the chapter is the
same as in Chapter 3:

(H1) The spectral measure µ has a strictly positive density, such that the function
ωµ is strictly positive and (d + 1 + [β])-times continuously di�erentiable on
Sd−1.

Again, we denote by (H2) to refer to (H1) whenever we need to assume that ωµ is
(d+ 2 + [β])-times continuously di�erentiable on Sd−1.

Our aim here is to obtain a Fujita type blow-up result, together with Fujita's
critical exponent in terms of the parameters of the stable non-Gaussian process.
Besides, we want to show a result for global solutions. For this purpose, we introduce
the following de�nitions.

De�nition 4.0.1. Let α ∈ (0, 1), β ∈ (0, 2) and γ > 1. Assume the hypothesis (H1)
holds. Suppose that 1 < p <∞ and that u0 ∈ Lp(Rd) is a non-negative function. A
function u is called a local solution of (4.1), if there exists T > 0 such that

(i) u ∈ C([0, T ];Lp(Rd)) ∩ L∞((0, T )× Rd),

(ii) u satis�es (4.1) in [0, T ].
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4.1. REPRESENTATION OF SOLUTION IN ITS INTEGRAL FORM

A function u is called a global solution of (4.1) if (i)-(ii) are satis�ed for any
T > 0. We say that u is a mild solution of (4.1) if u ∈ C([0, T ];Lp(Rd)) ∩
L∞((0, T )× Rd) and it satis�es the integral equation

u(t, x) =

�
Rd
Z(t, x−y)u0(y)dy+

� t

0

�
Rd
Y (t−s, x−y)|u(s, y)|γ−1u(s, y)dyds (4.2)

for all x ∈ Rd and 0 ≤ t < T .

De�nition 4.0.2. Let T > 0. We say that a function u : [0, T )× Rd → R blows-up
at the �nite time T if

lim
t→T−

∥u(t)∥∞ = +∞,

Therefore, our main result is stated as follows.

Theorem 4.0.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1) holds.
Suppose that α = β

2
, that 1 < p <∞ and that u0 ∈ Lp(Rd)∩C(Rd) is a non-negative

function. If 1 < γ < 1 + β
d
, then all non-trivial non-negative solutions of (4.1) that

admit the representation (4.2) can only be local. If γ = 1 + β
d
, then the non-trivial

non-negative solutions can only be local whenever the initial condition is su�ciently
large. Moreover, if additionally u0 ∈ L∞(Rd), then any positive mild solution of
(4.1) blows-up in �nite time.

Since the literature on blow-up theorems of Fujita type is quite extensive, we do
not attempt to review it in this chapter. Nevertheless, let us emphasize that the
relation α = β

2
pays a crucial role in the proof of Theorem 4.0.1, which makes a

similarity with what Fujita (1928-) found in 1966 for the case α = 1 working in the
Gaussian framework when β = 2 and ωµ ≡ 1.

Before proving Theorem 4.0.1, we give some precise results for solutions of (4.1)
in the sense of De�nition 4.0.1.

4.1 Representation of solution in its integral form

In this section we analyse the conditions under which a local solution u of (4.1), in
the sense of De�nition 4.0.1, can be represented by (4.2).

Although the subordination principle employed here follows directly from [8,
Chapter 3], for instance, the point we want to emphasize is the relation

Y (·, x) = d

dt
(gα ∗ Z(·, x)), t > 0,

in the context of non-Gaussian process, which was proved in Lemma 3.1.6.
First, we recall from Corollary 2.1.1 that the symbol ψ(ξ) is a continuous and

negative de�nite function. Thereby, from [29, Example 4.6.29] we know that the
operator (−Ψβ(−i∇), C∞

0 (Rd)) satis�es, for any 1 < p <∞, the Dirichlet condition

�
Rd

(−Ψβ(−i∇)f) (x)
(
(f − 1)+

)p−1
(x)dx ≤ 0, f ∈ C∞

0 (Rd),
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and consequently it is Lp(Rd)-dissipative ([29, Propositions 4.6.11 and 4.6.12]). In
fact, the density of C∞

0 (Rd) in Lp(Rd) implies that (−Ψβ(−i∇), C∞
0 (Rd)) is closable

and its closure (A,D(A)) generates a sub-Markovian semigroup {Tt}t≥0 on Lp(Rd)
which is a strongly continuous contraction semigroup ([29, Lemma 4.1.36, Theorems
4.1.33 and 4.6.17, De�nition 4.1.6]). Besides, A is densely de�ned on Lp(Rd) ([29,
Corollary 4.1.15]). On the other hand, it is well known that gα is a completely
positive function and belongs to L1,loc(R+) (see Section 1.4).

We denote u(t) = u(t, ·) and |u|γ−1(t) = |u(t, ·)|γ−1. Since u and u0 satisfy
De�nition 4.0.1, if u0 ∈ L∞(Rd) we observe that gα ∗ |u|γ−1u(t) ∈ Lp(Rd) for 0 ≤
t < T .

Equation (4.1) can be written as the Volterra equation

u(t) = u0 + gα ∗ |u|γ−1u(t) + gα ∗ Au(t), 0 < t < T, (4.3)

which admits a resolvent {S(t)}t≥0 in Lp(Rd) ([57, Theorems 4.1 and 4.2]). From
[57, Corollary 4.5] we have that

S(t) = −
� ∞

0

Tτ w(t; dτ), t > 0,

where w is the propagation function associated with gα. In order to describe this
resolvent we use the representation

Ttf(·) =
�
Rd
G(t, · − y)f(y)dy, f ∈ D(A),

the function G being the fundamental solution of the homogeneous problem

∂tG(t, x) + Ψβ(−i∇)G(t, x) = 0, t > 0, x ∈ Rd,

G(t, x)|t=0 = δ0(x), x ∈ Rd.

See, e.g. [52, Section 1.2 Theorem 2.4 (c) and Section 4.1 Theorem 1.3 ]. For
v ∈ D(A) we see that

S(t)v = −
� ∞

0

Tτv w(t; dτ)

= −
� ∞

0

G(t, ·) ⋆ v w(t; dτ)

and using the Fourier transform we obtain

F(S(t)v) = −
� ∞

0

e−τψ(ξ)v̂ w(t; dτ)

= s(t, ψ(ξ))v̂

= Ẑ(t, ξ)v̂

with the relaxation function s that comes via scalar Volterra equations (see Section
1.4, [57, Proposition 4.9], [33, Section 1]). This implies that

S(t)v = Z(t, ·) ⋆ v
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and the boundedness of S(t) leads to an extension to all of Lp(Rd).
Let 0 < t < T . If u(s) ∈ D(A), 0 ≤ s ≤ t, identity (4.3) and [57, Proposition

1.1, De�nition 1.3] yield

1 ∗ u(t) =
� t

0

u(s)ds

=

� t

0

(S(t− s)u(s)− A(gα ∗ S)(t− s)u(s)) ds

=

� t

0

S(t− s)u(s)ds−
� t

0

(gα ∗ S)(t− s)Au(s)ds

=

� t

0

S(s)u(t− s)ds−
� t

0

S(s)(gα ∗ Au)(t− s)ds

=

� t

0

S(s) (u(t− s)− (gα ∗ Au)(t− s)) ds

=

� t

0

S(s)
(
u0 + gα ∗ |u|γ−1u(t− s)

)
ds

and thus we get the variation of parameters formula for (4.3) given by

u(t) =
d

dt

� t

0

S(s)
(
u0 + gα ∗ |u|γ−1u

)
(t− s)ds.

We note that
d

dt

� t

0

S(s)u0ds = S(t)u0 = Z(t, ·) ⋆ u0.

By proceeding as in the proof of Lemma 3.4.1 together with Lemma 3.1.6, but
working with the Lp(Rd) space, the fact that sup

0≤t<T
∥|u|γ−1u(t)∥∞ <∞ leads to

d

dt

� t

0

S(s)
(
gα ∗ |u|γ−1u

)
(t− s)ds =

� t

0

Y (t− s, ·) ⋆ |u|γ−1u(s, ·)ds.

Theorem 4.1.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1) holds.
Let γ > 1 and suppose that 1 < p <∞. Let u0 ∈ D(A) ∩ L∞(Rd) be a non-negative
function. If u is a local solution in the sense of De�nition 4.0.1 for some T > 0 and
u(t) ∈ D(A) for all 0 ≤ t < T , then u admits the representation (4.2).

4.2 Continuity and non-negativeness of solution in

[0, T )× Rd

Let u be a local solution of (4.1). In this section we show that u is a continuous and
non-negative function on [0, T ) × Rd, for some T > 0. For this purpose, the repre-
sentation (4.2) obtained in the previous section is particularly important. Besides,
we need the following technical results.
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Lemma 4.2.1. Let d ∈ N, α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis
(H1) holds. If f is a continuous and bounded function on Rd, then Z(t, ·) ⋆ f → f
uniformly on compact sets whenever t→ 0.

Proof. From Lemma 3.1.5 and Formula (3.24) we know that g(x) := Z(1, x), x ∈ Rd,
satis�es all assumptions of [19, Theorem 1.6] with ϵ = t

α
β .

Lemma 4.2.2. Under the same assumptions as Lemma 3.1.3, then there exists a
positive constant C for all t > 0 and x1, x2 ∈ Rd, such that the estimate

∥Y (t, · − x1)− Y (t, · − x2)∥q ≤ C∥x1 − x2∥∥∇Y (t, ·)∥q ≲ ∥x1 − x2∥t−
αd
β (1−

1
q )−

α
β
+α−1

(4.4)

is true for 1 ≤ q < κ′, where κ′ :=

{
d

d+1−2β
, d+ 1 > 2β and β > 1

2
,

∞, d+ 1 ≤ 2β.

In the case of d+ 1 < 2β, (4.4) remains true for q = ∞.

Proof. It follows from the same arguments as in Lemma 3.5.1 but using the bounds
given in Lemma 3.1.4.

In what follows we use the parameter κ :=

{
d
β
, d > β,

1, otherwise
which sets a condi-

tion on p for the existence of some q ≥ 1 such that

1

p
+

1

q
= 1

and the Lq-norm for Y (t, ·), t > 0, is reached. Indeed, by choosing κ < p < ∞ we
obtain that 1 < q < ∞ whenever κ = 1 and 1 < q < d

d−β whenever κ = d
β
. This

implies that q < κ2, with κ2 as in Theorem 3.1.3.

Theorem 4.2.1. Let α ∈ (0, 1) and β ∈ (1, 2). Assume the hypothesis (H2) holds.
Let γ > 1 and suppose that max (1, κ) < p < ∞. Let u0 ∈ D(A) ∩ L∞(Rd) ∩ C(Rd)
be a non-negative function. If u is a local solution in the sense of De�nition 4.0.1
for some T > 0 and u(t) ∈ D(A) for all 0 ≤ t < T , then u ∈ C([0, T )× Rd).

Proof. From Theorem 4.1.1 it follows that the local solution u has the form

u(t, x) =

�
Rd
Z(t, x− y)u0(y)dy +

� t

0

�
Rd
Y (t− s, x− y)|u|γ−1u(s, y)dyds,

x ∈ Rd, 0 ≤ t < T . We de�ne

u1(t, x) :=

�
Rd
Z(t, x− y)u0(y)dy

and

u2(t, x) :=

� t

0

�
Rd
Y (t− s, x− y)|u|γ−1u(s, y)dyds.

We shall show that for all ϵ > 0, there exists δ > 0 such that

|uj(t, x)− uj(t0, x0)| < ϵ,∀(t, x) ∈ B((t0, x0), δ) ⊂ [0, T )× Rd,
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for j ∈ {1, 2}.
Let x0 ∈ Rd and 0 < t0 < T . We suppose t0 < t < T without loss of generality.

For u1 we see that

|u1(t, x)− u1(t0, x0)| ≤
�
Rd

|Z(t, x− y)− Z(t0, x0 − y)|u0(y)dy

≤
�
Rd

|Z(t, x− y)− Z(t0, x− y)|u0(y)dy

+

�
Rd

|Z(t0, x− y)− Z(t0, x0 − y)|u0(y)dy

≲ ∥u0∥∞
�
Rd

|Z(t, x− y)− Z(t0, x− y)|dy

+ ∥u0∥∞
�
Rd

|Z(t0, x− y)− Z(t0, x0 − y)|dy

≲ ∥u0∥∞|t− t0|t−1
0 + ∥u0∥∞∥x− x0∥t

−α
β

0 ,

where the last estimates follow from Theorem 3.1.5 and Lemma 3.5.1, respectively.
Thus,

|u1(t, x)− u1(t0, x0)| ≲ |t− t0|t−1
0 + ∥x− x0∥t

−α
β

0

and we can take a ball in Rd of radius C−1ϵt
α
β

0 centered at x0, and an interval in
[0, T ) of radius C−1ϵt0 centered at t0, where C is the constant of the estimate.

For the continuity of u1 in (0, x0) we have that

|u1(t, x)− u1(0, x0)| = |u1(t, x)− u0(x0)|
= |u1(t, x)− u0(x) + u0(x)− u0(x0)|
≤ |u1(t, x)− u0(x)|+ |u0(x)− u0(x0)|

=

∣∣∣∣�
Rd
Z(t, x− y)u0(y)dy − u0(x)

∣∣∣∣+ |u0(x)− u0(x0)|.

We note that, by Lemma 4.2.1, the continuity and boundedness of u0 imply the
uniform limit on compact subsets of Rd for the �rst term as t → 0. By choosing a
su�ciently small δ we get the desired result.

Next, we analyse the continuity of u2. We see that

|u2(t, x)| ≤
� t

0

�
Rd
Y (t− s, x− y)|u(s, y)|γdyds

≤ sup
0≤s≤t

∥u(s)∥γ∞
� t

0

�
Rd
Y (t− s, x− y)dyds

≤ sup
0≤s≤t

∥u(s)∥γ∞
� t

0

(t− s)α−1

Γ(α)
ds

≤ sup
0≤s≤t

∥u(s)∥γ∞
tα

Γ(α + 1)
.

This proves that
lim
t→0

u2(t, x) = 0
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uniformly on Rd.
Now, let x0 ∈ Rd and 0 < t0 < T . Again, we suppose t0 < t < T without loss of

generality. We �nd that

|u2(t, x)− u2(t0, x0)|
≤ |u2(t, x)− u2(t0, x)|+ |u2(t0, x)− u2(t0, x0)|

≤
� t0

0

�
Rd
Y (s, x− y)

∣∣|u|γ−1u(t− s, y)− |u|γ−1u(t0 − s, y)
∣∣ dyds

+

� t

t0

�
Rd
Y (s, x− y)|u(t− s, y)|γdyds

+

� t0

0

�
Rd

|Y (t0 − s, x− y)− Y (t0 − s, x0 − y)||u(s, y)|γdyds

≲ γ sup
0≤s≤t

∥u(s)∥γ−1
∞

� t0

0

�
Rd
Y (s, x− y)|u(t− s, y)− u(t0 − s, y)|dyds

+ sup
0≤s≤t

∥u(s)∥γ∞
� t

t0

�
Rd
Y (s, x− y)dyds

+ sup
0≤s≤t

∥u(s)∥γ∞
� t0

0

�
Rd

|Y (t0 − s, x− y)− Y (t0 − s, x0 − y)|dyds

≲ γ sup
0≤s≤t

∥u(s)∥γ−1
∞

� t0

0

∥Y (s, ·) ⋆ |u(t− s)− u(t0 − s)|∥∞ ds

+ sup
0≤s≤t

∥u(s)∥γ∞
� t

t0

sα−1ds

+ sup
0≤s≤t

∥u(s)∥γ∞
� t0

0

∥x− x0∥(t0 − s)−
α
β
+α−1ds,

where the last integral is estimated by Lemma 4.2.2. For estimating the �rst term,
we use the continuity of u with respect to the norm topology on Lp(Rd), Young's
convolution inequality and Theorem 3.1.3, i.e.,
� t0

0

∥Y (s, ·) ⋆ |u(t− s)− u(t0 − s)|∥∞ ds ≲
� t0

0

∥Y (s, ·)∥q∥u(t− s)− u(t0 − s)∥p ds

≲ ϵ

� t0

0

s−
αd
βp

+α−1ds.

Thus,

|u2(t, x)− u2(t0, x0)| ≲ ϵt
α−αd

βp

0 + (tα − tα0 ) + ∥x− x0∥t
α−α

β

0 .

The second result of this section is the following.

Theorem 4.2.2. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1) holds.
Let γ > 1 and suppose that 1 < p <∞. Let u0 ∈ D(A) ∩ L∞(Rd) be a non-negative
function. If u is a local solution in the sense of De�nition 4.0.1 for some T > 0
and u(t) ∈ D(A) for all 0 ≤ t < T , then there exists 0 < T ∗ ≤ T such that u is
non-negative in [0, T ∗)× Rd.
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4.2. CONTINUITY AND NON-NEGATIVENESS OF SOLUTION IN [0, T )× Rd

Proof. We de�ne the operator

Mv(t, x) :=

�
Rd
Z(t, x− y)v0(y)dy +

� t

0

�
Rd
Y (t− s, x− y)g(v(s, y))dyds

on the Banach space L∞((0, T )×Rd), where g is a non-decreasing Lipschitz function
with g(0) = 0 and v0 ∈ L∞(Rd). As in the proof of [1, Lemma 1.3], we derive that
the operator M has a unique �xed point v. Furthermore, v ≥ w whenever v0 ≥ w0,
where w is the �xed point associated with w0 ∈ L∞(Rd). Our aim now is to apply
this result to a sequence of functions gn, such that for each n ∈ N they have the same
properties as g but with the additional constraint that their structure approximates
the non-linear term (·)γ on [0,∞). In accordance with our particular situation with
γ > 1, we need a sequence that allows us to control the derivative of the function
(·)γ. For that purpose, we de�ne

gn(r) :=


0 if r < 0,

rγ if 0 ≤ r ≤ n,

an − bne
−r if r > n,

where an, bn are positive constants that guarantee the existence of g′n ≥ 0 on R a.e.
By construction we have that for all n ∈ N the constant Lipschitz of gn is γnγ−1,
gn(0) = 0 and gn(r) = rγ for 0 ≤ r ≤ n. Therefore, there exists a unique function
un ∈ L∞((0, T )× Rd) such that 0 ≤ un and

un(t, x) =

�
Rd
Z(t, x− y)

(
u0 +

1

n

)
(y)dy +

� t

0

�
Rd
Y (t− s, x− y)gn(un(s, y))dyds,

for x ∈ Rd and 0 < t < T . Since 1
n
≥ 1

n+1
, we have that un+1 ≤ un. Thus, for almost

every (t, x) ∈ (0, T ) × Rd, the sequence of real numbers (un(t, x))n∈N is decreasing
and bounded from below by zero. Consequently, we can de�ne the function

ũ(t, x) = lim
n→∞

un(t, x)

a.e. in (0, T )× Rd. On the other hand, we have that

∥un(t)∥∞ ≤
∥∥∥∥u0 + 1

n

∥∥∥∥
∞
+
γnγ−1

Γ(α)

� t

0

(t− s)α−1∥un(s)∥∞ds

and Gronwall's inequality (see [69, Corollary 2]) yields

∥un(t)∥∞ ≤
∥∥∥∥u0 + 1

n

∥∥∥∥
∞
Eα,1

(
γnγ−1tα

)
≤
∥∥∥∥u0 + 1

n

∥∥∥∥
∞
Eα,1

(
γnγ−1Tα

)
, 0 < t < T.

Now, for small enough 0 < T ∗ ≤ T we can �nd N ∈ N such that∥∥∥∥u0 + 1

N

∥∥∥∥
∞
Eα,1

(
γNγ−1(T ∗)α

)
≤ N.
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Therefore, for all n ≥ N it follows that un(t, x) ≤ N , for x ∈ Rd and 0 < t < T ∗.
This shows that

un(t, x) =

�
Rd
Z(t, x−y)

(
u0 +

1

n

)
(y)dy+

� t

0

�
Rd
Y (t−s, x−y)un(s, y)γdyds, n ≥ N.

We note that the non-linear integral term is dominated by Nγ and the dominated
convergence theorem implies that

ũ(t, x) =

�
Rd
Z(t, x− y)u0(y)dy +

� t

0

�
Rd
Y (t− s, x− y)ũ(s, y)γdyds.

Next, we show that u = ũ a.e. in (0, T ∗). Indeed,

|u(t, x)− ũ(t, x)|

≤
� t

0

�
Rd
Y (t− s, x− y)

∣∣|u|γ−1u(s, y)− ũ(s, y)γ
∣∣ dyds

=

� t

0

�
Rd
Y (t− s, x− y)

∣∣|u|γ−1u(s, y)− |ũ|γ−1ũ(s, y)
∣∣ dyds

≲ sup
0≤s<T ∗

(
∥u(s)∥γ−1

∞ + ∥ũ(s)∥γ−1
∞
) � t

0

�
Rd
Y (t− s, x− y)|u(s, y)− ũ(s, y)|dyds

≤ C(T ∗)

� t

0

�
Rd
Y (t− s, x− y)∥u(s)− ũ(s)∥∞dyds

≤ C(T ∗)

� t

0

(t− s)α−1

Γ(α)
∥u(s)− ũ(s)∥∞ds

and thus

∥u(t)− ũ(t)∥∞ ≤ C(T ∗)

Γ(α)

� t

0

(t− s)α−1∥u(s)− ũ(s)∥∞ds.

By Gronwall's inequality we conclude the desired result.

4.3 Existence of blow-up

In this section we prove Theorem 4.0.1. We start by obtaining some estimates. Let
t > 0. Using the bounds given in Proposition 3.1.1, it is clear that

Z(t, x− y) ≥ Ct−
αd
β e−

∥x−y∥2
4t , Ω ≤ 1.

If Ω ≥ 1, we have that

Z(t, x− y) ≥ Ct−
αd
β Ω−1− d

β

= Ct−
αd
β tα+

αd
β ∥x− y∥−β−d

= Ct−
αd
β tα+

αd
β (2

√
t)−β−d

(
∥x− y∥
2
√
t

)−β−d

≥ Ct−
αd
β tα+

αd
β (2

√
t)−β−de−

∥x−y∥2
4t ,
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whenever d ≤ 3. For larger dimensions, it is always possible to �nd a suitable

constant K > 1, depending on β and d, such that
(

∥x−y∥
2
√
t

)−β−d
≥ e−K

∥x−y∥2
4t . From

the hypothesis α = β
2
, it follows that

Z(t, x− y) ≥ C2−β−dt−
αd
β e−

∥x−y∥2
4t , Ω ≥ 1,

which means that

Z(t, x− y) ≥ C1t
−αd

β e−
∥x−y∥2

4t , (4.5)

for all t > 0 and x, y ∈ Rd, with C1 =
C

2β+d
.

We may assume without loss of generality that the constant C of the Proposition
3.1.2 is the same as that of the Proposition 3.1.1. In this way, we have also derived

Y (t− s, x− y) ≥ C1(t− s)−
αd
β
+α−1e−

∥x−y∥2
4(t−s) , (4.6)

for all 0 ≤ s < t and x, y ∈ Rd.
Now, we proceed by contradiction. We suppose that there exists a global non-

trivial non-negative solution u of (4.1), according to De�nition 4.0.1. In this case,
u0(y0) > 0 for some y0 ∈ Rd. The continuity of u0 implies that

u0(y) > C0, ∀y ∈ B(y0, δ),

with some δ > 0 and C0 =
u0(y0)

2
.

The representation (4.2) for u is

u(t, x) =

�
Rd
Z(t, x− y)u0(y)dy +

� t

0

�
Rd
Y (t− s, x− y)u(s, y)γdyds

for all x ∈ Rd and 0 < t < T . We note that, given the assumption made, T can be
arbitrarily large. As in Section 4.2, we de�ne

u1(t, x) :=

�
Rd
Z(t, x− y)u0(y)dy

and

u2(t, x) :=

� t

0

�
Rd
Y (t− s, x− y)u(s, y)γdyds.

Using (4.5), it follows that

u1(t, x) ≥ C1t
−αd

β

�
Rd
e−

∥x−y∥2
4t u0(y)dy

≥ C1C0t
−αd

β

�
B(y0,δ)

e−
∥x−y∥2

4t dy

≥ C1C0t
−αd

β e−
∥x−y0∥

2

2t

�
B(y0,δ)

e−
∥y−y0∥

2

2t dy
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and we obtain

u1(t, x) ≥ C2t
−αd

β e−
∥x∥2
t , t > 1, x ∈ Rd. (4.7)

Let H be the heat kernel

H(t, x) =
1

(4πt)
d
2

e−
∥x∥2
4t , t > 0, x ∈ Rd.

Using the fact that �
Rd
H(t, x)dx = 1,

we de�ne the function

F (t) =

�
Rd
H(t, x)u(t, x)dx, t > 0, (4.8)

and splitting the integral into two parts we see that

F (t) =

�
Rd
H(t, x)u1(t, x)dx+

�
Rd
H(t, x)u2(t, x)dx.

In the �rst integral we use the estimate (4.7), for obtaining

F (t) ≥ C3t
−αd

β +

�
Rd
H(t, x)u2(t, x)dx

whenever t > 1.
In the second integral, we use the fact that (see Theorem 3.1.6)

1

gα(t)

�
Rd
Y (t, x)dx = 1, t > 0.

Jensen's inequality and Fubini's theorem yield

�
Rd
H(t, x)u2(t, x)dx

=

�
Rd
H(t, x)

[� t

0

�
Rd
Y (t− s, x− y)u(s, y)γdyds

]
dx

=

� t

0

gα(t− s)

�
Rd
H(t, x)

[�
Rd

1

gα(t− s)
Y (t− s, x− y)u(s, y)γdy

]
dxds

≥
� t

0

gα(t− s)

�
Rd
H(t, x)

[�
Rd

1

gα(t− s)
Y (t− s, x− y)u(s, y)dy

]γ
dxds

=

� t

0

(gα(t− s))1−γ
�
Rd
H(t, x)

[�
Rd
Y (t− s, x− y)u(s, y)dy

]γ
dxds

≥
� t

0

(gα(t− s))1−γ
[�

Rd
H(t, x)

�
Rd
Y (t− s, x− y)u(s, y)dy dx

]γ
ds

≥
� t

0

(gα(t− s))1−γ
{�

Rd

[�
Rd
H(t, x)Y (t− s, x− y)dx

]
u(s, y)dy

}γ
ds.
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The expression in the square brackets can be estimated with (4.6), i.e.,

�
Rd
H(t, x)Y (t− s, x− y)dx

≥ C1(t− s)−
αd
β
+α−1

�
Rd
H(t, x)e−

∥x−y∥2
4(t−s) dx

= C1(4πs)
− d

2 e−
∥y∥2
4s

(s
t

) d
2
(t− s)−

αd
β
+α−1

�
Rd
e

∥y∥2
4s

− ∥x∥2
4t

− ∥x−y∥2
4(t−s) dx.

Proceeding in the same way as in [27, page 42], with α = β
2
, we get

�
Rd
H(t, x)Y (t− s, x− y)dx ≥ C4(4πs)

− d
2 e−

∥y∥2
4s

(s
t

) d
2
(t− s)α−1

and thus {�
Rd

[�
Rd
H(t, x)Y (t− s, x− y)dx

]
u(s, y)dy

}γ
≥ Cγ

4 (t− s)(α−1)γ
(s
t

) d
2
γ
{�

Rd
(4πs)−

d
2 e−

∥y∥2
4s u(s, y)dy

}γ
= Cγ

4 (t− s)(α−1)γ
(s
t

) d
2
γ

F γ(s)

for 0 < s < t. It follows that

�
Rd
H(t, x)u2(t, x)dx ≥ Cγ

4

� t

0

(gα(t− s))1−γ (t− s)(α−1)γ
(s
t

) d
2
γ

F γ(s)ds

and hence

F (t) ≥ C3

t
d
2

+ C5
tα−1

t
d
2
γ

� t

0

s
d
2
γF γ(s)ds

for all t > 1. Consequently,

t
d
2
γt1−αF (t) ≥ C3t

d
2
(γ−1)t1−α + C5

� t

0

s
d
2
γF γ(s)ds. (4.9)

De�ning the r.h.s. of this expression as f(t), t > 1, we have that

f(t) ≥ C3t
d
2
(γ−1)t1−α (4.10)

and that
f ′(t) ≥ C5t

d
2
γF γ(t). (4.11)

From (4.9) it follows that

f ′(t) ≥ C5t
d
2
γ

(
f(t)

t
d
2
γ+1−α

)γ
= C5t

d
2
γ(1−γ)−(1−α)γfγ(t).
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Therefore,

f ′(t)f−γ(t) ≥ C5t
d
2
γ(1−γ)−(1−α)γ

and � T

t

f ′(s)f−γ(s)ds ≥ C5

� T

t

s
d
2
γ(1−γ)−(1−α)γds

with T > t. From here, we get that

f 1−γ(t)

γ − 1
≥ C5

� T

t

s
d
2
γ(1−γ)−(1−α)γds

and using (4.10) we also obtain the estimate

f 1−γ(t)

γ − 1
≤ C1−γ

3

γ − 1
t−

d
2
(1−γ)2−(1−α)(γ−1).

This implies that

C1−γ
3

γ − 1
t−

d
2
(1−γ)2−(1−α)(γ−1) ≥ C5

� T

t

s−
d
2
γ(γ−1)−(1−α)γds. (4.12)

Next we analyse the r.h.s. of (4.12), according to the following cases with a :=
d− 2(1− α).

For the case 1 < γ ≤ a
d
+ 2

dγ
, we have

γ ≤ a

d
+

2

dγ
⇒ dγ2 ≤ aγ + 2

⇔ dγ2 + 2(1− α)γ − dγ − 2 ≤ 0

⇔ −dγ
2
(γ − 1)− (1− α)γ + 1 ≥ 0,

which yields a contradiction for large enough T .
For the case a

d
+ 2

dγ
< γ < a

d
+ 2

d
, we write the expression (4.12) as

C1−γ
3

γ − 1
t−

d
2
(1−γ)2−(1−α)(γ−1) ≥ C5

t−
d
2
γ(γ−1)−(1−α)γ+1 − T− d

2
γ(γ−1)−(1−α)γ+1

d
2
γ(γ − 1) + (1− α)γ − 1

.

Besides

γ <
a

d
+

2

d
⇒ dγ < d− 2(1− α) + 2

⇔ −1 < −d
2
(γ − 1)− (1− α)

⇔ dγ

2
(γ − 1) + (1− α)γ − 1 <

d

2
(γ − 1)2 + (1− α)(γ − 1),

which is a contradiction for large enough t and T → ∞.
For the critical case γ = 1 + β

d
, we use the facts that

u(t, x)γ ≥ u1(t, x)
γ
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and
u(t, x) ≥ u2(t, x),

together with the estimates (4.6) and (4.7). Therefore, for t > 2, we get

u(t, x) ≥
� t

2

1

�
Rd
Y (t− s, x− y)u(s, y)γdyds

≥ C1C
γ
2

� t
2

1

(t− s)−
αd
β
+α−1

�
Rd
e−

∥x−y∥2
4(t−s) s−

αdγ
β e−

γ∥y∥2
s dyds

=
C1C

γ
2

t
d
2

e−
∥x∥2
t

� t
2

1

(t− s)α−1t
d
2

(t− s)
d
2 s

d+β
2

�
Rd
e

∥x∥2
t

− ∥x−y∥2
4(t−s) − γ∥y∥2

s dyds

≥ C1C
γ
2

t
d
2

e−
∥x∥2
t

� t
2

1

(t− s)α−1t
d
2

(t− s)
d
2 s

d
2
+α

�
Rd
e

∥x∥2
t

− ∥x∥2
t

− ∥y∥2
2(t−s)−

γ∥y∥2
s dyds

≥ C6

t
d
2

e−
∥x∥2
t

� t
2

1

(t− s)α−1

sα
ds

≥ C6

t
d
2

e−
∥x∥2
t

� t
2

1

1

t− s
ds

and hence

u(t, x) ≥ C6

t
d
2

e−
∥x∥2
t ln

(
2− 2

t

)
.

Using this and (4.8), we obtain that

F (t) ≥ C7

t
d
2

ln

(
2− 2

t

)
. (4.13)

Now,

t
d
2
γt1−αF (t) =

1

2
t
d
2
γt1−αF (t) +

1

2
t
d
2
γt1−αF (t)

≥ C7

2

t
d
2
γt1−α

t
d
2

ln

(
2− 2

t

)
+
C5

2

� t

0

s
d
2
γF γ(s)ds,

where (4.13) yields the bound for the �rst term and the second term comes from
(4.9). The critical value of γ yields

t
d
2
γt1−αF (t) ≥ C7

2
t ln

(
2− 2

t

)
+
C5

2

� t

0

s
d
2
γF γ(s)ds.

De�ning the r.h.s. of this expression as the new f(t), t > 1, we proceed as before
but using

f(t) ≥ C8t ln

(
2− 2

t

)
and

f ′(t) ≥ C9t
d
2
γF γ(t)
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instead of (4.10) and (4.11), respectively, with C8 =
C7

2
and C9 =

C5

2
. The resulting

expression, instead of (4.12), is

C1−γ
8

γ − 1
t1−γ ln1−γ

(
2− 2

t

)
≥ C9

� T

t

s−
d
2
γ(γ−1)−(1−α)γds

or, in this case,
C1−γ

8

γ − 1
t1−γ ln1−γ

(
2− 2

t

)
≥ C9

� T

t

s−γds.

This implies, as T → ∞, that

C1−γ
8 ln1−γ

(
2− 2

t

)
≥ C9,

which is a contradiction whenever the initial condition is su�ciently large at the
point y0.

So far we note that in this proof we do not require that u satis�es (4.1). Hence,
any positive mild solution u can only be local under the assumptions of Theorem
4.0.1. In this context, let

T̃ = sup
{
T > 0 : u ∈ C([0, T ];Lp(Rd)) ∩ L∞((0, T )× Rd)

is a positive mild solution of (4.1)} .

Previous work implies that T̃ < +∞. Suppose that limt→T̃−∥u(t)∥∞ < +∞. Since
u0 ∈ L∞(Rd), it follows that there exists M > 0 such that ∥u(t)∥∞ ≤ M for all

t ∈ [0, T̃ ). We choose a sequence tn → T̃ as n → ∞, with tn < T̃ for all n ∈ N. We

suppose 1
2
T̃ < tm < tn without loss of generality, with n,m ≥ N for some N ∈ N.

As in the proof of Theorem 3.2.1, we �nd that

∥u(tn)− u(tm)∥p ≲(tn − tm)t
−1
m ∥u0∥p

+Mγ−1

� tm

0

∥Y (tn − s)− Y (tm − s)∥1∥u(s)∥pds

+Mγ−1

� tn

tm

∥Y (tn − s)∥1∥u(s)∥pds.

On the other hand, for any t ∈ [0, T̃ ) we see that

∥u(t)∥p ≤ ∥u0∥p +
Mγ−1

Γ(α)

� t

0

(t− s)α−1∥u(s)∥pds

and Gronwall's inequality ([69, Corollary 2]) yields

∥u(t)∥p ≤ ∥u0∥pEα,1(Mγ−1tα), 0 ≤ t < T̃ .

This shows that ∥u(t)∥p ≤ ∥u0∥pEα,1(Mγ−1T̃α) =: K for all t ∈ [0, T̃ ). Thus,

∥u(tn)− u(tm)∥p ≲(tn − tm)t
−1
m ∥u0∥p

+Mγ−1K

� tm

0

∥Y (tn − s)− Y (tm − s)∥1ds

+Mγ−1K

� tn

tm

∥Y (tn − s)∥1ds.
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The integral over [0, tm] can be estimated, using Theorems 3.1.3 and 3.1.6, as follows:

� tm

0

∥Y (tn − s)− Y (tm − s)∥1ds =
� tm

0

∥Y (tn − tm + s)− Y (s)∥1ds

≤
� ∞

0

∥Y (tn − tm + s)− Y (s)∥1ds

=

� tn−tm

0

∥Y (tn − tm + s)− Y (s)∥1ds+
� ∞

tn−tm
∥Y (tn − tm + s)− Y (s)∥1ds

≤
� tn−tm

0

∥Y (tn − tm + s)∥1ds+
� tn−tm

0

∥Y (s)∥1ds+
� ∞

tn−tm
∥Y (tn − tm + s)− Y (s)∥1ds

≲
� tn−tm

0

(tn − tm + s)α−1ds+

� tn−tm

0

sα−1ds+

� ∞

tn−tm
(tn − tm)s

α−2ds

≲ (tn − tm)
α.

Consequently,

∥u(tn)− u(tm)∥p ≲ (tn − tm)T̃
−1∥u0∥p +Mγ−1K(tn − tm)

α

and thus (u(tn))n∈N represents a Cauchy sequence in Lp(Rd). We de�ne u(T̃ ) :=

limt→T̃− u(t). From [60, Theorem 3.12] it follows that ∥u(T̃ )∥∞ ≤ M and that

u(T̃ ) ≥ 0. Next, as in the proof of [71, Theorem 3.2], we de�ne the operator

Mv(t) := Z(t) ⋆ u0 +

� T̃

0

Y (t− s) ⋆ uγ(s)ds+

� t

T̃

Y (t− s) ⋆ |v(s)|γ−1v(s)ds

on the Banach space

Eτ = C([T̃ , T̃ + τ ];Lp(Rd)) ∩ L∞([T̃ , T̃ + τ)× Rd),

with some τ > 0 and the norm

∥v∥Eτ = sup
t∈[T̃ ,T̃+τ ]

∥v(t)∥p + sup
(t,x)∈[T̃ ,T̃+τ)×Rd

|v(t, x)|.

It is straightforward to see that M : Eτ → Eτ is well de�ned and that Mv(T̃ ) =

u(T̃ ). Besides, for v, w ∈ Eτ we have that

|Mv(t, x)−Mw(t, x)| ≤ ∥Mv(t)−Mw(t)∥∞

≤
� t

T̃

∥Y (t− s)∥1∥|v(s)|γ−1v(s)− |w(s)|γ−1w(s)∥∞ds

≲ (∥v∥Eτ + ∥w∥Eτ )γ−1

� t

T̃

(t− s)α−1∥v(s)− w(s)∥∞ds

≲ (∥v∥Eτ + ∥w∥Eτ )γ−1∥v − w∥Eτ (t− T̃ )α,

and hence

∥Mv(t)−Mw(t)∥∞ ≲ (∥v∥Eτ + ∥w∥Eτ )γ−1∥v − w∥Eτ τα, t ∈ [T̃ , T̃ + τ).
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Similarly,

∥Mv(t)−Mw(t)∥p ≲ (∥v∥Eτ + ∥w∥Eτ )γ−1∥v − w∥Eτ τα, t ∈ [T̃ , T̃ + τ ].

Therefore, there exists C10 > 0 such that

∥Mv −Mw∥Eτ ≤ C10τ
α(∥v∥Eτ + ∥w∥Eτ )γ−1∥v − w∥Eτ , v, w ∈ Eτ . (4.14)

We also �nd that∥∥∥∥∥Z(t) ⋆ u0 +
� T̃

0

Y (t− s) ⋆ uγ(s)ds

∥∥∥∥∥
∞

≤ ∥Z(t) ⋆ u0∥∞ +

� T̃

0

∥Y (t− s)∥1∥uγ(s)∥∞ds

≲ ∥u0∥∞ +Mγ

� T̃

0

(t− s)α−1ds

≲ ∥u0∥∞ +Mγ(tα − (t− T̃ )α)

≲ ∥u0∥∞ +MγT̃α

and that ∥∥∥∥∥Z(t) ⋆ u0 +
� T̃

0

Y (t− s) ⋆ uγ(s)ds

∥∥∥∥∥
p

≲ ∥u0∥p +Mγ−1KT̃α,

that is, there exists C11 > 0 such that∥∥∥∥∥Z(t) ⋆ u0 +
� T̃

0

Y (t− s) ⋆ uγ(s)ds

∥∥∥∥∥
Eτ

≤ C11

(
∥u0∥∞ + ∥u0∥p +Mγ−1(M +K)T̃α

)
.

(4.15)

Let R = 2C11

(
∥u0∥∞ + ∥u0∥p +Mγ−1(M +K)T̃α

)
. If we consider the closed ball

BEτ := {w ∈ Eτ : ∥w∥Eτ ≤ R},

then estimates (4.14), with v = 0, and (4.15) show that M : BEτ → BEτ is a
contraction whenever τ is small enough (see Theorem 3.2.1), thus showing that M
has a unique �xed point w′ ∈ BEτ . Moreover, since u ≥ 0 we obtain that w′ ≥ 0 in
[T̃ , T̃ + τ)×Rd following the same arguments as in the proof of Theorem 4.2.2, but
one must now use the fact that

vn(t) = Z(t)⋆

(
u0 +

1

n

)
+

� T̃

0

Y (t−s)⋆
(
u+

1

n

)γ
(s)ds+

� t

T̃

Y (t−s)⋆gn(vn(s))ds,

for all n ∈ N and vn ∈ L∞(T̃ , T̃ + τ) × Rd. However, this leads to a contradiction

with the de�nition of T̃ , and therefore limt→T̃−∥u(t)∥∞ = +∞.

□
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The �nal result of this section deals with the case γ > 1 + β
d
. For this purpose,

as in Section 4.2, we set

κ =

{
d
β
, d > β,

1, otherwise
.

We also de�ne Hβ
2 (Rd) := C∞

0 (Rd)
∥·∥Ψβ,L2 , with the closure being respect to the

graph norm ∥·∥2Ψβ ,L2
= ∥·∥22 + ∥Ψβ(−i∇)(·)∥22.

Theorem 4.3.1. Let α ∈ (0, 1) and β ∈ (0, 2). Assume the hypothesis (H1) holds.

Suppose that γ > 1+ β
d
, that max

(
1, κ, d(γ−1)

β

)
< p <∞ and that 1 = p′ < d

β
(γ− 1)

whenever d < β, or d
β
< p′ < d

β
(γ − 1) whenever d ≥ β. If u0 ∈ L1(Rd) ∩Hβ

2 (Rd) ∩
L∞(Rd) is su�ciently small and non-negative, then there exists a global solution u
to (4.1) in the sense of De�nition 4.0.1 and the optimal time decay estimate

∥u(t)∥1 + t
αd
β

(
1
p′−

1
p

)
∥u(t)∥p + t

αd
βp′ ∥u(t)∥∞ ≲ (∥u0∥1 + ∥u0∥p + ∥u0∥∞)

is true for all t ≥ 1.

Remark 4.3.1. Whenever d ≤ β, the existence of parameter p′ follows from the
fact that γ > 1+ β

d
. However, in the case d > β one can not generally guarantee the

existence of p′.

Proof. We consider the Banach space

E := C([0,∞);Lp(Rd) ∩ L1(Rd)) ∩ L∞((0,∞);L∞(Rd)),

with the norm

∥v∥E := sup
t≥0

(
⟨t⟩

αd
β

(
1
p′−

1
p

)
∥v(t, ·)∥p + ∥v(t, ·)∥1

)
+ sup

t>0
{t}

αd
βp ⟨t⟩

αd
βp′ ∥v(t, ·)∥∞ ,

where ⟨t⟩ :=
√
1 + t2 and {t} :=

t√
1 + t2

. We de�ne on E the operator

M(v)(t, x) :=

�
Rd
Z(t, x− y)u0(y)dy +

� t

0

�
Rd
Y (t− s, x− y)|v(s, y)|γ−1v(s, y)dyds

and similar arguments as in Sections 3.2 and 3.3 show that

M(v) ∈ C([0,∞);Lp(Rd) ∩ L1(Rd))

and that
∥Z(t, ·) ⋆ u0∥∞ ≤ ∥Z(t, ·)∥1 ∥u0∥∞ = ∥u0∥∞, t > 0.

For 0 < t ≤ 1 we have that∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
∞

≤
� t

0

∥Y (t− s, ·)∥1∥|v(s, ·)|γ−1v(s, ·)∥∞ds

≲ sup
(t,x)∈[0,1]×Rd

|v(t, x)|γ
� t

0

(t− s)α−1ds

≲ sup
(t,x)∈[0,1]×Rd

|v(t, x)|γ
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and for t > 1 we obtain (see Section 3.3)∥∥∥∥� t

0

Y (t− s, ·) ⋆ |v(s, ·)|γ−1v(s, ·)ds
∥∥∥∥
∞

≤
� t

0

∥Y (t− s, ·)∥ p′
p′−1

∥|v(s, ·)|γ−1v(s, ·)∥p′ds

≲ ∥v∥γE
� t

0

(t− s)
− αd
βp′+α−1

s−
αd
βp

(γ−1)⟨s⟩−
αd
β
(γ−1)

(
1
p′−

1
p

)
ds

≲ ∥v∥γEt
− αd
βp′

≤ ∥v∥γE.

This proves that
M(v) ∈ L∞((0,∞);L∞(Rd)).

Besides, as in Section 3.3 one �nds that

∥Z ⋆ u0∥E ≤ C1 (∥u0∥1 + ∥u0∥p + ∥u0∥∞)

and that the operatorM is a contraction in the closed ballBR = {v ∈ E : ∥v∥E ≤ R}
of radius R = 2C1 (∥u0∥1 + ∥u0∥p + ∥u0∥∞). Consequently there exists a �xed point
ũ which is unique in E because of Gronwall's inequality ([69, Corollary 2]).

Let T > 0. We de�ne the Volterra equation

u(t) = u0 + gα ∗ |ũ|γ−1ũ(t) + gα ∗ Au(t), 0 ≤ t ≤ T,

and by proceeding as in Section 3.4, since u0 ∈ Hβ
2 (Rd), we �nd that there exists

a unique strong solution u ∈ L2([0, T ];H
β
2 (Rd)), and it satis�es the variation of

parameters formula

u(t) =
d

dt

� t

0

S(s)
(
u0 + gα ∗ |ũ|γ−1ũ

)
(t− s)ds.

On the other hand, similar arguments as in Lemma 3.4.1 show that the �xed point
ũ satis�es

ũ(t) =
d

dt

� t

0

S(s)
(
u0 + gα ∗ |ũ|γ−1ũ

)
(t− s)ds

and therefore ũ = u. This holds for any T > 0 which implies that u is global.

Remark 4.3.2. Since u0 ∈ L∞(Rd), Theorem 4.2.2 guarantees the positivity of the
global solution u on [0, T ) for some T > 0.
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