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Introduction

Fractional calculus is the part of mathematical analysis that studies derivatives
and integrals of any arbitrary order, real or complex. We usually refer to it when
we want to describe evolution problems with memory. The first known historical
record where a fractional derivative is mentioned, can be found in a letter written
to Guillaume de ’'Hopital (1661—1704) by Gottfried Wilhelm Leibniz (1646—1716)
in 1695. Long after, the 19th and 20th centuries would be the witnesses of just how
important is this branch of mathematics.

Researchers from various areas has been motivated by the increasing use of frac-
tional calculus in the mathematical modeling of processes in health sciences, natural
sciences, economy and engineering (see, e.g. [11], [12], [42] and [48]). This calculus
is more reliable in predicting the evolution of some phenomena or processes, such as
particle motion, conservation of mass, propagation of acoustic waves and anomalous
diffusion in complex media. In this thesis we are particularly interested in the later.

The non-local nature of a fractional derivative when its order is non-integer,
introduces memory into the system. Unlike a derivative of integer order at a point,
a derivative of non-integer order depends on all values of the function, even those
far away from the point. Numerous experiments in some media have demonstrated
that the mean squared displacement (MSD) of a particle is directly proportional to
a power of time. The exponent of such power is the order of the derivative in time
for the corresponding evolution equation. For instance, an order between zero and
one may model an anomalous diffusion process (see, e.g. [18], [19]).

On the other hand, the diffusion term classically represented by the Laplacian
operator can be replaced by a pseudo-differential operator, which is an extension of
the concept of differential operator acting on the spatial variable. The Laplacian
operator has been studied for long time due to the Gaussian laws governing some
processes of heat conduction, but currently others singular integral operators can be
used as a natural extension to non-Gaussian laws. The theory of pseudo-differential
operators arose in the mid 1960s, with Lars Valter Hérmander (1931—2012) being
the foremost contributor to it.

Following this path, in this thesis we have investigated the Cauchy problem

O (u — ug)(t, ) + Va(w, —iV)u(t,z) = f(t,z,u), t>0, ve&R
u(t, z)|i=0 = uo(x), = €RY

(1)
as a generalization of non-Gaussian diffusions that include memory, considering a
non-regular class of solutions uw and a probabilistic interpretation of the operator
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R? is the d-dimensional Euclidean space, 9% denotes the Riemann—Liouville frac-
tional derivative of order a € (0, 1) in the time variable ¢t and Vg(x, —iV) stands for a
singular integral operator of constant order § € (0,2). The notation 9 (u — ug)(t, x)
is understood as Ofu(t, z) — 07 (1) X ug(x) and the function ugy stands for the initial
data in a certain Lebesgue space. The function f is proportional to |u(t, z)|~tu(t, x),
v > 1.

Our time derivative is also called the Caputo fractional derivative, for instance,
in the sense of [35, Section 2.4] with 0 < a < 1. However, other authors may require
smoothness conditions on the function to define the Caputo derivative (see, e.g. |55,
Sub-section 2.4.1]). The symbol associated with the operator ¥s(z, —iV) is of the
type Lévy-Khintchine and the corresponding stochastic process is called a localised
Feller-Courrége process. Therefore, it makes sense to use the notation Ug(z, —iV)
for the associated generator (see, e.g. |38, Chapter 6, Appendices C and D]).

Problems like (1) can describe, for instance, a stable jump-diffusion process which
comes from stochastic control theory with coefficients depending on the position (see,
e.g. |37, Section 3]). In this case, the value § is called the index of stability of the
random process in the sense of a stable distribution (see, e.g. [62, Definition 1.1.1 and
Theorem 1.1.2]). Stable distributions appear in the analysis of Markov processes,
specially those with a high sensitivity dependence between random variables, such
as telecommunications, finance, epidemiology or diffusion. In a suitable setting,

the Green function of the Cauchy problem 8_1; + Ug(x, —iV)u = 0 is non-Gaussian

and it is considered as the transition probability density of the corresponding stable
non-Gaussian process |39, Chapter 7|.

Similar to the case of Gaussian processes, which have been widely studied (see,
e.g. |2], [21], [24], [27], [28]), the general objective of this thesis is to investigate the
existence of solutions to (1), their qualitative properties, asymptotic behaviour and
blow-up phenomena, developing methods of non-linear analysis in Banach spaces.

For results on the existence of solutions, we have studied the operator Vg(x, —iV)
with variable coefficients and with constant coefficients separately. This is why the
case with variable coefficients only admits local solutions. In both cases, we apply
the representation of solutions with sub-Markovian semigroups and Mittag-LefHler
functions, as well as principles of fixed-point and strong solutions in the sense of
Jan Priiss (1951—2018). Our methods also illustrate the importance of defining
appropriate spaces of functions in evolutions of non-linear diffusions, beyond the
classical sense.

In Chapter 1, we give the standard definitions and notations which are used in
this thesis, as well as the necessary theory on fractional calculus, Mittag-Leffler func-
tions, multipliers and Volterra equations. In the theory of Mittag-Leffler functions,
we also prove a result on Gronwall’s inequalities including singularities. This result
is stated in Lemma 1.2.1.

In Chapter 2, we investigate solutions to (1) for the case when Wg(x, —iV) has
variable coefficients. In order to adapt the theory of sub-Markovian semigroups
and Dirichlet operators as a tool for locally solving the problem (1), the analytic
properties of the corresponding symbol associated are examined. A representation
for the solutions is given by exploiting the Fourier analysis, strongly continuous




semigroups and Volterra equations. The main results that summarize our method
for variable coefficients are stated in Theorems 2.3.7 and 2.4.2.

Chapter 3 deals with the solvability of (1) when the operator Ws(z, —iV) has
constant coefficients. We start studying the two fundamental solutions associated
with the evolutionary problem, whose estimates for the L,-norm are found to obtain
three main results concerning mild and global solutions. The existence and unique-
ness of a mild solution is based on the conditions required in some parameters, one
of which is the order of stability of the stochastic process. The existence and unique-
ness of a global solution is found for the case of small initial conditions and another
for non-negative initial conditions. In addition, the chapter includes the asymptotic
behaviour of global solutions as a linear combination of the fundamental solutions
with L,-decay. The main results of this chapter are stated in Theorems 3.2.1, 3.3.1,
3.4.1 and 3.5.1.

In the last chapter, we show that the non-linearity of (1) leads to the blow-up
of positive solutions in a finite time. For instance, when the operator Vg(x, —iV)
becomes the negative Laplacian (—A), all positive solutions to the Cauchy problem

Oy u(t,z) + (—=A)u(t,r) = u(t,z)?, t>0, ve€R
U(t, x)|t:0 = UU('I) > 07 YIS Rd7

blow-up in a finite time under some considerations on the parameter v. This fact was
investigated by Fujita (1928—) in 1966 (|22]) and since then, many other researchers
have explored blow-up phenomena (see, e.g. [36], [41], [51], [67]). Following the
analysis of this phenomenon, Chapter 4 is devoted to the question of the existence
of Fujita-type critical exponents. The main result of this chapter is Theorem 4.0.1.
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Chapter 1

Preliminaries

In this chapter we give the basic notations and definitions which we need throughout
this thesis. As usual, N, R and C denote the set of natural numbers, real numbers
and complex numbers, respectively. The dimension of the euclidean space is d € N.
For a real number a we denote by [a] the maximal integer not exceeding it.

Let Ny be the set NU {0}. A multi-index § = (6, -+ ,d4) is an element of Ng

whose order is |§| = 0, + - -+ + d4. The differential operator of order 4 is given by
5
P’ = % and we understand 0°f = f whenever |§| = 0. For a vector
Oxi' - - Oxf!
z € RY we define 20 = 29 --- 2% and |z|° = |21|% - - |24/%. The usual norms are
|z|la = |z1] + - -+ + |z4| and the standard Euclidean norm |[z| = /23 + -+ + 22
We recall that all norms are equivalent in R?.

The positive half-line is given by R, = [0,00). The convolution with a scalar-
valued function, on R, or R, is denoted by * and the usual convolution with respect
to the spatial variable is denoted by *. The Euler Gamma function is I'(z) :=
J° s*'e *ds and the Beta function is defined by B(z,y) := fol 711 — s)¥~1ds,
Rez,Rey > 0. The relation between them is B(z,y) = Féfgi;%) (|6, Chapter 1]).

If (Q,%, ) is an arbitrary measure space and 1 < p < oo, we denote by
L,(Q,%, 1) the Lebesgue space (of equivalence classes) of measurable functions

f Q2 — R such that

1= ([ r@Puan) <o 1<p <o

and
| flloe := ess sup|f(x)| < oo.
e

For any 1 < p < oo the normed space (L,(€2, X, i), ||-||,) is Banach (|60, Theorem
3.11]) and for p = 2 is Hilbert. On this last case, we denote by (-, -), the usual inner
product.

If (X,|-]]x) is an arbitrary Banach space and 1 < p < oo, we denote by
L,(Q,%, 11; X) the Bochner space (of equivalence classes) of Bochner-measurable
functions f : Q@ — X such that || f||x lies in L,(€2, X, ). These spaces of Bochner



are Banach endowed with the norm

1= ([ 1@ utan ). 1p<o0,
and for L. (2,3, u; X) the norm is given by
[ lloc == ess sup|[f(z)]|x-
z€eQ

We say that f is integrable, in the sense of Lebesgue or Bochner, whenever || f||x
belongs to L1(£2,%, ). When X is the Lebesgue o-algebra and p is the Lebesgue
measure, we write L,(€2) or L,(€2; X) for the corresponding Lebesgue or Bochner
space, respectively. For a locally compact space K, its Borel o-algebra will be
denoted by B(K).

If J C R is non-empty, C(J; X) is the space of continuous functions f: J — X
and L,(J; X) is the Bochner space, 1 < p < oo. For f € C([a,b]; X), its Riemann
integral in the usual way coincides with the Bochner integral (|29, Lemma 2.3.24,
Definition 2.3.25]).

By C*(R?) we denote the set of real-valued functions on R? which are arbitrarily
differentiable. As usual, C5°(R?) C C*°(RY) is the set of the test functions and it
is a dense subspace of L,(R%) for all 1 < p < oco. The space of bounded continuous
functions real-valued on R? is denoted by Cy(R?). A function f : R? — R vanishes
at infinity if for any € > 0 there exists a compact set K C R such that

If(z)] <€, zeRY\K.

The set of these functions is denoted by Cio(R?) and C°(R?) is dense in it with the
usual norm ||| (|60, Theorem 3.17], [59, Ejercicio 6.1]). Clearly, C,(R?) C Cy(R?).

We understand the above notions regarding non-negative measures, however,
sometimes we will need to use signed measures on a measurable space (€2, ), that
is, a set function pu : ¥ — (—o00,00] (or [—00,0)), such that u(@) = 0 and p is
countably additive. By Jordan’s decomposition theorem it is known that p = 1 —pa,
where pq and ps are mutually singular, non-negative and unique. In this case, we
define ||u|| := 1 () + p2(Q) = |u|(Q) as the total variation of p. The set of signed
measures on {2 is denoted by M (€2) and it is a linear space with the usual operations.
Whenever ||p|| < oo we say that p is bounded.

If K is a locally compact space, we define M,(K) as the set of bounded signed
measures on K. If (i,)nen is a sequence in My (K) and p € My(K), we say that
(t4n)nen converges in norm to g if and only if

lim |z, — pfl =0
n—oo
and we say that (u,)nen converges weakly to p if for all function f € Cy(K) we have
im [ = [ fu

It is easy to see that norm convergence implies weak convergence. Besides, (M, (K); ||-||)
is a normed linear space (|60, Sections 6.5 and 6.6]).




1.1. FRACTIONAL INTEGRALS AND DERIVATIVES

In what follows we use the notations f < g and f < ¢g in D, which means that
there exists constants C,C7,Cy > 0 such that Chg < f < Csg and f < Cg in D,
respectively. Such constants may change line by line. We say that f(z) and g(x)

are asymptotically equivalent as x — oo, if the quotient “;(—i) tends to unity. In this
case, our notation is f(z) ~ g(z) (x — o0) (see [14]).

As a linear operator A on a Banach space X we understand a linear mapping
whose domain D(A) is a linear subspace of X and its range Ran(A) is contained in
X. We say that A : D(A) — X is continuous (or bounded) if ||A(v)||x < C||v||x for
all v € D(A), that is, the continuity of A is satisfied when D(A) carries the topology
induced by X. The family of continuous linear operators 7' : X — X is denoted by

B(X) and ||T|gx) = sup ”HT;‘)‘”X is the usual operator norm, sometimes shortly
veX\{0}
denoted by ||T|| if no ambiguity arises.

We say that A is invertible if there is a bounded operator A~ such that A~ :
X — D(A), AA™" = Iy and A™'A = Ip(a), where Ix and Ips) is the identity
on X and D(A), respectively. The resolvent of A is the set p(A) = {\ € C :
(A — A) is invertible}. If A € p(A), then the resolvent operator of A at X is written
as Ra(\) = (A—X)~!'. The spectrum of A, denoted by o(A), is the set of all points
A € C for which (A — \) is not invertible (see, e.g. [26, Chapter 1]).

We complete this review, giving some notions related to sub-Markovian semi-
groups on Cy(RY) and on L,(RY), 1 < p < oo, which are taken from |29, Chapter
4]. For a real or complex Banach space (X, ||-||x), a family of bounded linear op-
erators (73),~, on X is a semigroup of operators, if Ty = Ix and Ty = Ts 0 Ty
holds for all s, > 0. We say that the semigroup (7}),, is strongly continuous if
limy o||Tyx — x||x = 0 for all x € X, and the semigroup is called a contraction
semigroup if ||T;|| < 1 for all £ > 0.

If (T}),~, is a strongly continuous contraction semigroup on (Coo(R?), [||x)
which is positivity preserving, i.e., T;f > 0 whenever f > 0, then it is called a
Feller semigroup (|29, Definition 4.1.4]). If (1}),, is defined on (L,(R%),][,),
1 < p < oo, such that 0 < T, f < 1 almost everywhere whenever 0 < f < 1 almost
everywhere, then it is called a sub-Markovian semigroup (|29, Definition 4.1.6]). The
semigroup (1}),-, is symmetric if for all f, g belonging to Cw(R?) N Ly(RY) or to
L,(R?) N Ly(RY), respectively, we have that (T,f, g)2 = (f, Tig)o.

1.1 Fractional integrals and derivatives

Depending on what we need to model and the conditions we have at our disposal,
many types of fractional derivatives have emerged, including Riemann-Liouville,
Caputo, Caputo-Fabrizio, Marchaud, Griinwald-Letnikov, among others. There are
also several fractional integrals, such as Riemann-Liouville, Hadamard and Atan-
gana—-Baleanu. Unfortunately, in the literature there are different notations and
definitions for some of them. In this thesis, we employ the Riemann-Liouville frac-
tional integral and derivative. We refer to [61, Chapter 2] for the following notions.




1.2. MITTAG-LEFFLER FUNCTIONS

Definition 1.1.1. Let f € Li([0,T]). The Riemann—Liouville integral of order
¥ > 0 is defined as

- t (t o 8)19—1
JUf(t) ._/0 Tﬁ)f(s)ds, t>0.

Since f € Ly([0,T]), this integral exists almost everywhere and it has the semi-

group property

JO g0 = Joitdz 9, 9y > 0.

Further, we set J°f := f.
It is very common to use a class of scalar kernels given by

_1 49-1
gﬁ(t) :: Fw)t , t>0,
0, t <0,

to denote
JUF) = (go* f)(t), t>0.
On (0,00) and for a € (0,1) we have that

Ja * J1—a = L.

Definition 1.1.2. Let o € (0,1) and f € L1([0,T]), such that the first derivative
of J17¢f ewists almost everywhere. The Riemann—Liouville derivative of order o is

defined as

o Lo d d 11—«
O F = gan D) = SN0,
If f is absolutely continuous, this derivative exists almost everywhere (|61, Lemma

2.2]).
From these definitions and the semigroup property, it follows that

I f =1

for all f € L1([0,7]) and 0 < a < 1. The equality J*0*f = [ requires stronger
assumptions (see [61, Theorem 2.4]).

1.2 Mittag-Lefller functions

In this section we review some analytical properties of the Mittag-Leffler functions
and their connection with the densities of stable laws (see e.g., [44] and [66]). These
functions are so named from the Swedish mathematician Gosta Mittag-Leffler (1846-
1927) who introduced them at the beginning of the century XX (1903, 1904, 1905).

In the present thesis we work with the Mittag-Leffler function of two real param-
eters a,, ) > 0 (|7, Chapter 18|), given by

ZFka+19 zet

k=0

10



1.2. MITTAG-LEFFLER FUNCTIONS

However, in the literature we can find a generalization of this function with three
complex parameters, as well as its relation with the Mellin-Barnes integral and the
H-Function (also called Fox’s H-function). See e.g., [46, Definition 1.4].

It is also known that E, 4, o, > 0, is an entire function. Whenever ¥ = 1,

o0 k
E.(z) = That 1)’ z € C,
k=0
is the standard Mittag-Leffler function and E,(—x) is completely monotonic for
x> 01if 0 < o < 1. The latter is thanks to the work of the American mathematician
Harry Pollard (1919-1985).

The importance of these functions is because they can be defined for any operator
that generates a strongly continuous semigroup in a Banach space, using Zolotarev’s
formula (or Zolotarev-Pollard formula), in terms of Green functions or strongly con-
tinuous semigroups; see [40, Section 8.1]. This representation plays a fundamental
role for obtaining estimates of the Green functions in evolution equations with frac-
tional time, as we will see in Chapters 2 and 3. In particular, any bounded operator
on a Banach space generates an uniformly (hence strongly) continuous semigroup
(|52, Section 1.1 Theorem 1.1]).

On the other hand, the standard Mittag-Leffler function E, has become a useful
tool to obtain Gronwall type inequalities with singularities. This is particularly
important in this thesis for analysing uniqueness of solutions. For this reason, we
have derived the following inequality including a singularity.

Lemma 1.2.1. Let o € (0,1) and ¥ > 0 such that o« — 19 > 0. Let g(t) a non-
negative function locally bounded on t € [0,T) with some T > 0. Suppose that f(t)
is non-negative and locally bounded on [0,T) such that

fo <o +c [ (= 515 f(s)ds

for allt € [0,T), with some positive constant C. Then

[e.o]

Zan(t - 8)"‘1_("_1)19_13_‘99(3)] ds, 0<t<T,

n=1

ro <o+ [ t

where

n—1
INa)l'(k(a — 0
o = o ] Dl)T(k(a —0)
Pl L((k+ 1)a — kv)
Proof. The case ¥ = 0 is straightforward from |69, Theorem 1|. For the case ¥ > 0
we require some adjustments in its proof. First, we define the operator B given by

Bo(t) = C’/Ot(t —8)*LsV¢(s)ds, t >0,

for locally bounded functions ¢. By construction, the operator B is linear and
B¢, < Bgy whenever ¢ < ¢9. Therefore, we have that

[y

ft)y< )y BYg(t)+B"f(t), n>1 (1.1)

3

i

11



1.2. MITTAG-LEFFLER FUNCTIONS

Next, we prove that

B"f(t) < anljl Ilj(((olgi(lf)(z : ;339)) /0 (t — s)re-(=DI=1=0 £(5)ds (1.2)

is true for all » € N by induction. The case n = 1 follows straightforwardly from
the definition of B. Now, we suppose that (1.2) is true for N € N and applying B
we obtain

B(B"f)(#)
= C/O (t —s)*ts7" BN f(s)ds

< o+l 7 11:(((02105)(3 : 239)) / (t —s)> sV l/s(s — T)Na(Nl)ﬁlTﬁf(T)dT} ds
k=1 0 0
— N+ k__l 11:((3{)2(];)(3 : Z)% /0 [/T (t—s)*ts7(s — T)N‘”_(N—l)ﬂ—lds} 7 f(7)dr,

where the last line comes from the Fubini’s theorem. Besides, the integral in the
square brackets can be estimated with the substitution s = 7+ z(t — 7) as follows.

/t(t — S)a—ls—ﬂ(s _ T)Na—(N—l)ﬂ—ldS
= /0 (t—71)(1 = 2) M7+ 2(t—7)""(2(t - T))Na*(Nfl)ﬂﬂ(t _r)dz
< /0 (t=7)(1 = 2)* Mzt — 7)) P (2(t — 7))V V=001 _ 1)gz

1
— (t . T)(N—i—l)a—Nﬁ—l/ (1 o Z)a—lzN(a—ﬁ)—le
0

= (t— T)(NJrl)afNﬁfl [(a)L(N(a —9))
I'(N+1)a—N9)

Consequently,

B (BNf) (t) < CN+1 H Ilj(((o;f)i“fsz : ;339)) /0 (t o T)(NJrl)afNﬁfleﬁf(T)dT

k=1

which proves the inductive step in (1.2).

Finally, since % < 1 for k large enough, we have that

lim B"f(t) =0

n—oo

and the expression (1.1) can be written as

f(t) <> Bg(t).

The proof is complete. O

12



1.3. MULTIPLIERS

1.3 Multipliers

We start this section defining the Schwartz space given by
S(RY) == {v e C®°RY) : ||v||(ng < oo for all N € Ny, § € Ni},

where

0]l (v.8) := sup|0®v(a)|(1 + [l])™.
rER4

On this space we define the Fourier transform as
06 = F)©) = [ e, ve SE,
Rd
and the inverse Fourier transform as

F Hw)(z) = (er)d [Rd emtw(€)de, w e S(RY).

Sometimes we write F,,,¢(v)(§) and ]—"g:m(w)(x) for denoting the Fourier transform
and its inverse, respectively.

The family of norms |[|-||(v,s) defines a Fréchet topology on S(R?) (|20, Proposition
8.2]) and F is an homeomorphism into itself with that topology, that is, F : S(R?) —
S(R?) is a bijective mapping, where both F and F~! are continuous (|29, Theorem
3.1.7]). We want to point out that in the literature there are some definitions of
the Fourier transform which differ in the factor 27, however this does not affect our
results.

According to our definition and (|29, Remark 3.1.11]), we have that

</U\7 r&}> 2

for all v,w € S(RY), which extends to all Ly(R?) by density. In particular, by the
Plancherel’s theorem ([29, Theorem 3.2.18 |),

1

Jv]|3 = WWH%’ v € Ly(RY).

Having these properties in mind, we can introduce some function spaces such as the
Bessel potential Hi'(R?), which is defined as the completion of C§°(R?) with respect
d

to the norm )
= 1+ 1-117)
(2m)>

If m is a non-negative integer number then the classical Sobolev space W3*(R¢) and
HI'(R?) are isomorphic (|29, Theorem 3.11.10]).

In a similar way, using a continuous negative definite function 1 : R — C, we
can define the 1-Bessel potential spaces

||U||H5" =

HY?(RY) := {v € Ly(RY) : ||v|| go2 < 00}

13



1.3. MULTIPLIERS

endowed with the norm

L@+ e al,.

)2

[0l o2 :=

In this thesis is particularly important the theory of the continuous negative definite
functions, hence we have taken the following notions from [29, Sections 3.6 and 3.10].

Definition 1.3.1. The function v : R? — C is called a continuous negative definite
function if ¢ is continuous, ¥(0) > 0 and & — e7™©) is positive definite for all
t>0.

A typical example of continuous negative definite functions is
R?> & [€]I* e R

for any s € (0,1] (|29, Example 3.9.17]).
Nevertheless, the following lemma is often useful when dealing with lesser known
functions ([29, Lemma 3.6.8 and Theorem 3.6.11]).

Lemma 1.3.1. The function 1 : R? — C is negative definite if and only if
$(0) >0,
(&) = (=€) and
for any k €N, for any &',--- ¥ € R? and z,,--- , 2, € C,

k k
sz = 0 implies Z W(E =z <0
=1

ji=1

As we have seen in the definition of the space H¥2(R?), the function |¢| acts on
v as a pointwise multiplier.

In general terms, a function g is called a pointwise multiplier from a space S;
to another space Ss, if for every function v € S; the product gv € S;. Other
definitions also require that the linear mapping v — gv is bounded. Due to the
algebraic properties of the pointwise multipliers, its use has expanded to the context
of linear operators giving rise to the multiplier operators.

A multiplier operator is a linear operator defined on a functions space which
changes the frequency spectrum of the function via the Fourier transform. In fact,
for a continuous negative definite function v, we can define a linear operator A given
by

v AQ) = F (D)

on a suitable domain of functions, for instance C§°(R?) C S(R?). The natural next
step is to study its possible extensions.

The role of these type of multipliers have been investigated widely as a part
of Fourier Analysis (see e.g., [5] and [58]). Thereby, we arrive at the theory of
pseudo-differential operators with negative definite symbols (|30]) and the theory
of Sobolev multipliers ([47]). As we will see later, we find that in the literature
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1.4. VOLTERRA EQUATIONS

the term multiplier often refers to the symbol associated with the corresponding
linear operator that generates a strongly continuous contraction semigroup on some
Banach space.

For instance, by the theorem of Hille-Yosida (|29, Theorem 4.1.33]) we know that
a linear operator A : D(A) — X, on a Banach space (X, ||-||x), is the generator of a
strongly continuous contraction semigroup (7}),-,, if and only if D(A) is dense in X,
A is dissipative and Ran(A — \) = X for some A\ > 0. Therefore, the properties of
the pseudo-differential operator A, the semigroup (7}),, and the resolvent operator
Ra()\) at A\, X € p(A), are determined by the symbol associated with A (see, e.g.
[31, Chapter 6]).

1.4 Volterra equations

Here, we present the necessary background on the Volterra integral equations in the
sense of Priiss ([57]), of the scalar type

u(t) = f(t) + /Ot k(t — s)Au(s)ds, te€[0,T], (1.3)

where A is a closed linear unbounded operator defined on a Banach space X, with
dense domain D(A) C X. The scalar function k € Ly j,.(R") is called the kernel of
the convolution k£ % Au. The unknown function v and the forcing term f belong to
the space C([0,T7]; X).

The notation Au(s) is understood as A (u(s)) and thus Au can be considered as
a function on [0, 7).

We recall that an operator A : D(A) — X is closed if its graph is closed in X x X
and it is closable if it has a closed extension (|29, Definition 2.7.3, Lemma 2.7.12,
Definition 2.7.13 |). When A is closed, the domain of A equipped with the graph
norm |-||4 := |||lx + [|A(")||x is a Banach space, which is usually denoted by X4
(see |57, Chapter 1]).

The term fg k(t — s)Au(s)ds is understood in the sense of Bochner, that is, the
integral is an element of X if and only if fg k(t — s)||Au(s)||xds < oo (|25, Theorem
3.7.4]). If k = gy with ¥ > 0 as in Section 1.1, the integral exists almost everywhere
whenever || Au(-)||x is locally integrable on RT. In the case of X = L,(R%), 1 <p <

0o, we have that <f0t go(t — s)Au(s)ds) (x) = fot go(t — s)Au(s)(x)ds.

If u(t) € D(A) for all t € [0,T], u and Au belong to C([0,T]; X), then it holds
ST u(tydt € D(A) and A ( I u(t)dt) = [T Au(t)dt (|29, Lemma 2.3.24 C.]).

We say that a function v € C([0,T]; X) is a strong solution of (1.3) if u €
C([0,7]; X4) and it satisfies (1.3). We say that w is a mild solution of (1.3) if
kxue C(0,T]; X4) and u(t) = f(t) + A(k*u)(t) for all t € [0,T]. Every strong
solution of (1.3) is a mild solution (|57, Definition 1.1]).

On the other hand, it is known that the pair of kernels (g1_4, ga), 0 < o < 1, are
of type (PC), i.e., they satisfy the following condition (see [56]):

91-a € L1 0.(RT) is non-negative and non-increasing, the kernel g, € Ly jo.(R™)
and (g1_a * go) = 1 in (0, 00).

15



1.4. VOLTERRA EQUATIONS

In fact, g, is completely positive ([57, Definition 4.5]). The class of completely pos-
itive kernels and its properties are very useful for applying subordination principles
and obtaining strong solution to (1.3). For instance, there exists a unique scalar
propagation function w(t,7), t,7 > 0, associated with the completely positive func-
tion g,. Besides, associated with w we have the so-called relazation function s(t, 1),
t,7 > 0, which is the solution of the scalar Volterra equation, fixing 7,

s(t, )+ 7 (gaxs(t, 7)) (t) =1, t>0.

The precise relation between w and s and their properties, can be found in |57,
Section 4.5] and [56, Sections 2 and 3].

The property (PC), together with the previous abstract notions, allows that the
problem (1) can be rewritten as a Volterra equation of the form (1.3), therefore one
has to choose a suitable Banach space X for finding strong solutions in accordance
with the particular structure of the evolution problem. This theory is illustrated on
various sections of this thesis.
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Chapter 2

The semi-linear problem with
variable coefficients

This chapter deals with the solvability of the semi-linear Cauchy problem

O (u — ug)(t, ) + Va(w, —iV)u(t,z) = Mu(t, )" u(t,z), t>0, xR

u(t,@)lizo = o), @ € R (2.1)

Here, v > 1 and A € R are parameters of the non-linear term. The symbol of the
operator Ws(z, —iV) is a measurable function on R? x R? given by

(€)= el (x H%\) 2.9)

such that
Ug(x, —iV)v(z) = F L [(x, ) (Fu)(€)], v € C(RY).

The function w, is real-valued, defined on R? x S~ by

wy(z,0) = /Sdlw P u(x,dn), 60€S (2.3)

where 0 = Hg_H and S denotes the unit (d — 1)-sphere contained in R

Since w,, is defined on R x S?™!, we need first to collect some elementary concepts
that are used for the analysis of functions on S?!. Besides, in Section 2.1 we
recall the existing relationship between multivariate stable distributions and Borel
measures defined on S?'. Other properties of these measures are addressed in
Sections 2.2 and 2.3, some of them very useful for obtaining solutions to (2.1) in the
last section of this chapter.

In what follows, we consider S?! as a Hausdorff topological space with the
subspace topology induced by R?. Thereby, S¢! is a (d — 1)-manifold and it is
endowed with a C'* atlas, that is, a collection of homeomorphisms or real charts
¢ : U — R pairwise C*-compatible, whose domains are open sets in S?! that
cover S (see [50, Chapter I Definition 1.22]). For simplicity we assume that the
collection has two charts, ¢; and ¢,, with domains U; = S4°1\ (0,0,---,0,1) and
U, =S4 1\ (0,0,---,0,—1), respectively.
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These charts have the form

Uy 30— ¢1(0) = (1 fled’ e 19i;d) e R,
Us 30— 6:(0) = (1 LEY 19i_éd) e R
and their inverses are, respectively,
RS = (i T ) €O
.

We see that {Uy, U} is the standard open covering of S¢~! and the transition func-
tions, ¢y 0 ¢; 1 and ¢, o ¢, !, are smooth on its domain of definition. By the com-
pactness of S¢~!, there exists a smooth partition of unity on S%! given by {v1, 1},
which is subordinate to the covering {Uy, Us} (see, e.g. [15, Lemma 7]). This means
that v; € C>(S*!) and supp v; C U; is a compact set, j = 1, 2.

We say that a function h defined on S¢~! belongs to Ly(S*!) if

(vih) o 7" € Ly(RY)

for j € {1,2}. Besides, we equip Ly(S?"!) with the norm

1

_ _ 2
llzsisery o= (1012) 0 67 1 yasy + 2h) © 65 )

If we change the collection {U;, ¢;,v;} we obtain an equivalent norm.
In this way, we suppose that u(x,dn) is a transition kernel on R? x B(S41) in
the sense of |29, Definition 2.3.19], that is, for every fixed A € B(S*™!) the function

RY Sz p(z, A) € [0, 00|
is measurable, and for every fixed x € R? the set function
B 5 A p(z, A) €0, 00

is a centrally symmetric finite (non-negative) Borel measure on S?~!. All these
measures are called spectral measures (see, e.g. [40, Section 1.8], [37]). As we
show below, from the properties of these spectral measures one can derive analogous
properties for the function w), given in (2.3).

Whenever we say that w,(x,) is a continuous function on S for fixed x, we
understood the continuity (or C*°) in the natural way with the structure of atlas
introduced above (see [15, Definition 4]).
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2.1. SPECTRAL MEASURES

2.1 Spectral measures

A spectral measure on S?! arises from processes involving multivariate stable dis-
tributions, in our particular case (-stable because of the probabilistic interpretation
of the operator —¥s(z, —iV). We refer to [62, Chapter 2| and [54] for such notions
and some examples.

The spectral measure is a data-structure containing the correlation structure of
a stable distribution on R¢. For a symmetric 3-stable random vector in R?, exis-
tence and uniqueness of its characteristic function and the corresponding symmetric
spectral measure is proved in |62, Theorem 2.4.3]|.

In order to study the properties of the spectral measures associated with the
transition kernel p, we consider the map, which we again denote by pu,

RY >z — p(z) € M(ST1)

including the usual topology of (R% ||-||) and (My(S*1);]-]])-

Next, we show two lemmata in order to set conditions on the transition kernel p
that can be inherited by w,.

For the first lemma we introduce the notion of density of the measure p(x), for
every r € RY, that is, the measure can be formulated as u(z,dn) = o(x,n)dn, where
o(x,-) is a continuous function on S !. Additionally, it is worth clarifying that for
the differentiation of a function on S%~* we understand the order as § € NZ !, since
S? 1 is a (d — 1)-dimensional manifold. For the derivatives of functions on S, we
think of them as directional derivatives along differentiable curves on S

Lemma 2.1.1. Let N € N. Suppose that the map R? > z — p(x) € M(S* 1)
fulfills:

(i) w(x,dn) = o(x,n)dn with o(x,-) a continuous and non-negative function on
St for all x € R?, whose upper bound is uniform in x.

(i) The functions

|9]

Rl L ACR K CHIN | )
n=1

are continuous and bounded, for all € R, 6 e NI' 1 < |§| < N, k € {1,2}
and j, € {1,--- ,d}, with bounds that are uniform in x.

Then the function w, given by (2.3) is N-times continuously differentiable in the
second variable and it satisfies the condition

sup {192, Vgorony < 9] < N} < o0
[AS

Proof. We fix x € R?. The continuity of § — w,(z,0) on S*! is straightforward
since this space is compact and o(z, -) is continuous on it, besides the upper bound
is uniform in z.
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2.1. SPECTRAL MEASURES

For the differentiability we use the structure of atlas that was previously intro-
duced. By definition, w,(z,-) € C™(S*!) at the point § € Uy if and only if the
function

wlt(x? ) © ¢l:1
is of class C™(R?!) at the point z = ¢, (). Without loss of generality we put k = 1.
The partial derivative of this function w.r.t. z;, 7 =1,--- ,d — 1, is given by

9 1
7z (wulz, ) 0 d1") (2)

= /. lazjlsbl (2) -0l (=, dn)

/ Bl () -1l (617 (2) - ) 567 () - )

/ 8197 (2) -l (97 (2) ) [;(liﬁ)—aﬁ(lfﬁ)]u(dm
(HHZHz) [ 86l 66 g )
- () [ e @6 ) ) ),

The continuity of the integrals as functions of z, which comes from the hypothesis
(i), proves the continuity of this derivative. Finally, the uniform boundedness in x
and similar arguments leads to the desired condition. O]

Corollary 2.1.1. Under the assumption of Lemma 2.1.1 part (i), the symbol v given
in (2.2) is a negative definite function.

Proof. According to |30, Definition 2.3.1], we only need to show that the function

RYS € o (n,€) = €]/, ( H€||) R

is negative definite for each z € R%. For this purpose, from (2.3) together with the
representation given in [37, Formula (1.9)], we see that

1)~ Lol !
wu | T ) = = o) sl dn)
“( €11 s | [I€]
Y i<€y) dllyll -
— e gl (1’ dn)
/ /gd 1 ( €N+ Tyl%) Tyle"
with n = Hy—” and the measure fi(x,-) is proportional to p(z,-) ([37, Formula (1.4)]).

Thus we o l%

fy> i(€,y) dllyll -
U(x, &) = / / < — "5V —=—Ji(x, dn).
s T TH P fyres )

Let NEN, z1,--- ,2y € Cand &, -+ ,&v € RY, such that

N
Z Zj = 0.
j=1
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2.1. SPECTRAL MEASURES

It follows that

N

Z ngllp(x? gj - Sl)

4l=1

[ (e 5wz )
1+|ryu2 Tyl

N
[ L o z A, an
sd-1 Yy

//Sdl

The proof is completed by Lemma 1.3.1. O

Zze&

In the sequel we suppose that the hypotheses of Lemma 2.1.1 part (i) hold
throughout this thesis without further reminder.

Lemma 2.1.2. Let N € N. Suppose that the map R? > x — p(z) € M(S41)
fulfills:

(i) ®u(x) is a measure (not necessarily positive) on S¥1 for all z € R and for
all § € N&, |§| < N, with the uniformly bounded total variation.

(1) The maps RY > x — Pu(xr) € M(S41) are continuous for all |6| < N.

Then the function w, given by (2.3) is N-times continuously differentiable in the
first variable and it satisfies the condition

sup {]|0°wu (-, 0)|| e : [6] < N} < o0,
fesd-1

Proof. We fix 6 € S, The continuity of w,(-,0) follows from the continuity of the
map g and the properties of the space M,(S?!) (see Chapter 1). Indeed, for an
arbitrary (z,)neny — 7 in R? we have that

lim w,(z,,0) = lim 10 - 1| 1z, dn)

n—00 n—00 fgd—1

= /S“W ol lim gy, dn)

= /SHI@ |’ p(z, dn)
= w,(z,0).
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2.2. SOME PROPERTIES OF THE OPERATOR —V4(z, —iV)

For the derivative w.r.t. z; at the point z, j € {1,2,--- ,d}, we consider (hy)nen — 0
in R and e; = (0,-- -, 1 ,---,0). Therefore,

jth position

Ow (79) . 1
ng (z) = nh_>no10 h_n[wu@ + hnej, 0) — wy(z, 0)]

!
= lim — /Sd_IIQ |’ [ + hae;, dn) — p(z, dn)]

n

1
- /Sdl 0 n|” lim 5= [pu(x + ejhn, dn) — po(x, dn)]

o
— 8
/SM!G ul axj(x,dn)-

The continuity of this derivative is proved by repeating the arguments in the case
of w,. Using the same reasoning we find the existence and continuity of the others
derivatives up to order N. Finally, uniform boundedness of the total variation of
each measure 9°p(x), for all |6 < N and z € RY, yields the desired condition. [

An open problem for future research could be the study of [-stable random
diffusion processes, whose corresponding spectral measure guarantees the hypothesis
of the previous lemmata.

2.2 Some properties of the operator —Vs(z, —iV)

In this section, we show some properties of the operator —Wg(x, —iV) in terms
of the transition kernel p. For this purpose, we analyse the symbol ¥(x,§) =

1€11Pw, (m,@) given by (2.2), as a product between the symbols [|-||® and w,.
Since 3 € (0,2), we know that [|-||? is a continuous negative definite function (see
Section 1.3) and we can define the operator associated with —||-||® in the form

To(w) == —FLIENIP(Fu)(©)], v € G (RY). (2.4)

From [29, Example 4.6.29] we have that (T, C5°(R?)) maps from C°(R?) into L,(R?)
for any 1 < p < oco. By choosing p = 2, together with Plancherel’s theorem and
(2.4), it follows that

T : O (RY) — Ly(RY)

is a linear operator well defined and

F(Tv) = =[P F(v).
Now, we define the operator associated with the symbol w, given by
Ov(z) = Fe, {wu (x, ﬁ) (]—"v)(f)} v € CP(RY). (2.5)

Our goal is to show that © is bounded under suitable conditions on w,, and therefore
it can be extended to all of Ly(R?). With this extension, which is again denoted by
O, we obtain that

—\I/5<£IZ', —ZV) =007
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2.2. SOME PROPERTIES OF THE OPERATOR —V4(z, —iV)

maps from C{°(R?) into Lo(R?). Finally, we want to show that —Wg(z, —iV) is
closable, again, under suitable conditions on w,,.

We prove the boundedness of © : C°(RY) — Ly(RY) by using a result stated in
[47, Theorem 16.3.2.]. First, we define on R¢"! the function

¢(2) = (L+[1=l")"

with some integer number [ > %, thus we get

1
/RdlCQ( )dz<oo (2.6)

For every fixed z € R? we need that w,(z,-) € Ly(S?1). Here, we observe that the
continuity of w,(z,-) on S*! and the nature of the collection {Uj;, ¢;,v;}, j = 1,2,
as mentioned at the beginning of the chapter, yield

-

_ _ 2
oo, Moy = (10102, 1) © 6 sy + 1 (o, 1) © 65 e ry)* < 00

As in [47, Sub-section 16.3.1], we introduce the norm

1

bl = ([ C@FmEPE) " he Cr@e,

and we define the space H(R%!) as the completion of C§°(R*™!) in this norm.

Remark 2.2.1. Due to our choice of the function ( and conditions on [, the space
H (R is that of Bessel potentials H3'(RY™) which is isomorphic to the Sobolev
space WZH(RI™Y) (see Section 1.3).

We also define the space of functions w on R? x St given by

He(R* x S71 o= {w : |wl|g, < oo},

ol = ( [ Jwte. s 1||H<dx)

e, )58 e = (I 0nee, ) 0 617 I, + N0, ) o 65V 1, )

where

and

Since (2.6) holds, it is known that the space H(R%™1) is an algebra in the sense that
1hhalle < ellballne bzl P he € He(RTH).

The proof of this statement is similar to that of [53, Lemma 1].
Now, we suppose that w,(x,-) € C*(S%) for every z € R? and that

ko= sup {[|0°w, (2, )| 1o (sa-1) ¢ 6] < 20} < oo (2.7)

xER4
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2.2. SOME PROPERTIES OF THE OPERATOR —V4(z, —iV)

According to this assumption, it follows that
9 (o) 0 657) ()] < &

forall v € RY, z e R¥ L and |§| < 21, 5 =1,2.

Let g; € C§°(U,) such that g;v; = v;, 7 = 1,2. We note that the support
of gjw,(x,-) o (bj_l and its derivatives up to order 2[, is a compact set in R% 1.
Therefore,

O (gywulw,) 0 ¢;") € La(R™)

and

Z H86 (gjwn(z,) 0 ﬁbj_l) HLz(RdJ) < kj,

j6l<2t

with some constant k; > 0 which depends on % and an upper bound for all ° (gj o gzﬁ;l),
|| < 20. This and Remark 2.2.1 show that g;w,(z,-) o ¢j_1 € H (R4 for every
r € R? and that

lgjon(@,-) 0 ¢7 I, < ¢ G =1,2. (2.8)

We are in position now to prove that the map
He(R% x S¥1) 5w — w,w € He(R* x ST1)

is bounded. Indeed, let w € H:(R? x S41). Since H(R%') is an algebra because
of condition (2.6), it follows that

el = / o), ) | de
_ Z / Nws) (@, ) 0 653 d
_ Z [ g ta, e, ) 005 o
- Z / Mgz, ) o 67" (), ) o 67" |3, de

2
<Y [ o) o 07 I lmw)(e, ) 0 65 e
j=1 /&

2
<> [ e o6 da
j=1

< Fmax(c, & / Zn (vyw)(z,) 0 6|, da
\—,_/

_K/ oz, sS4 |2, da

= KHwHH@
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2.2. SOME PROPERTIES OF THE OPERATOR —V4(z, —iV)

where ¢; and ¢y come from (2.8).
This implies that © : Ly(R?) — Ly(R?), given by (2.5), is bounded ([47, Theorem
16.3.2.]) and that the composition with the operator in (2.4), i.e

—Wy(x, —iV) : C°(RY) — Ly(RY)

v s o (e €)(F0)E)] (29)

is well defined.

Next, we show that A := —WUz(z, —iV) is closable using |29, Lemma 2.7.12|. For
this purpose, let (v,)nen be a sequence in C3°(R?) converging in Ly(RY) to zero,
such that (Av,), .y converges in Ly(R?) to some ¢ € Ly(R?). Let ¢ € C5°(RY) be
arbitrary. We have that

(—Av,, ¢), = —Av,(z)p(x)dx

R4

- [ [ e ev0m@e] otoie

_/ { / wih(, €) {/Rd vn(y)dy} dg} é(z)dx

e (, E)va(y)d(a)dydEdz

Re J R4 Rd

:(2 / /R wf/Rd G (x, €)p(a)d de S dy

v
::g

- g LW { e <§>d§}

Let m € N such that m > @. We suppose now that the symbol w, and its

derivatives of order up to m w.r.t. = are uniformly bounded on S?!, that is,

ke == sup {||0°w,(,0)|| 1. (ra) : |6] < m} < oo (2.10)
fesd—1

Denoting by B; the ball in R? of radius 1 centered at the origin, we observe that

[ Jsteras= [ o@rass [ loteras =+t

ns [ ([ veelowi)
<[ (/. kensuﬂwu)wx)?ds

< (kelloll)? [ 11€1*d¢ < oo

By

and that
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2.2. SOME PROPERTIES OF THE OPERATOR —V4(z, —iV)

Here, we may also use the constant k instead of k.. For the integral I, we note that

i69(6) = [ el o), G =10 d

- [ % vt oot

.0
__ /R 7 Gy W@ E)0(a)) do
B we [(OV(2,€) 0¢(z)
== [or (PP s s a

and thus we obtain
(. €) 9¢(x)
glls©l < [ (2529 o+ vt | %2 ) a

< el (1ot + |222] )
< kellEl7 16wy

Similarly, it can be shown that

1E1™19(E)] < KellEN®[[ollwy

where the constant K, depends on m, d and k.. Therefore,

2 —2m
I < (K| 0llwp) / J€[125-2mdg
R4\ By

2 [ omd—
< (K|l 6lwre) / €[22 g e

which is finite because we chose m > @. This proves that g € Ly(R?) and it must
be the Fourier transform of F~!(g) from Plancherel’s theorem. Consequently,

(v )y = [ 0 F @) )y
R
and Hélder’s inequality yields

[{Avn, @)s] < llvall2l 7 (9)ll2
S llvnll2llgll-

Taking the limit n — oo we obtain that

<907 ¢>2 = 0

holds for all ¢ € C§°(R?). The hypothesis ¢ € Ly(R?) and the density of Cg°(R?)
in Ly(R?) show that ¢ = 0 and hence A = —Wg(z, —iV) given by (2.9) is closable.
From [29, Theorem 2.7.14] we define the domain of its closure as

D(A) := T aad)
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2.3. SUB-MARKOVIAN SEMIGROUP IN Ly(R%)

with respect to the graph norm

-l aszo@ay = [Ill2 + 1AC)2-
Therefore, we have proved the following result.

Theorem 2.2.1. Let § € (0,2), I,m € N such that | > % and m > @. Suppose

that the transition kernel p satisfies the assumptions of Lemma 2.1.1 and Lemma
2.1.2 with the integer number N = 21 and N = m, respectively. Then the conditions
(2.7) and (2.10) hold, the linear operator —Vs(x, —iV) defined by (2.9) maps from
Cs°(RY) into Lo(R?) and it is closable.

Remark 2.2.2. We want to point out the case where we fiz vy € R, which leads to
the symbol ||€]|Pw,.(0) = ||¢]|Pw, (w0, 0) independent of x. The corresponding operator
—Wg(xo, —iV), freezing the coefficients at xo, will be denoted by —Vz(—iV). This
sttuation is particularly exploited in the next chapters.

2.3 Sub-Markovian semigroup in Ly(R?)

In this section we study other conditions on the transition kernel p, which defines
the symbol ¥(z, &) = ||€||Pw, (x, ||§_||> given in (2.2), such that (2.1) is solvable in
the strong sense of Priiss. For instance, as in [30, Corollary 2.6.7], for a large enough
A > 0 it is known that the operator

Az = —Vg(x, —iV) — )

is a Dirichlet operator and generates a sub-Markovian semigroup on the Banach
space Ly(R?), whose domain is the ¢-Bessel potential space

HY2(RY) := {v € Ly(RY) : ||lv||gv2 < 00}

introduced in Section 1.3 with the negative definite function R? > ¢ — [|£]|° € R.
Thereby, the norm of this space is

1
272

V]| ez = (L4 [117) 2],

Similarly, for all s > 0,
HY*(RY) := {v € Ly(R?) : ||v]| s < 00}

and
1

(2m)3

It is clear that HVO(R?) = Ly(R?) and that ||| gw.s < |||l ge.ssr, 5,7 > 0.

follgee = — || 1+ I17) 9]

Remark 2.3.1. The space S(R?) is dense in (HY*(RY),||"||gv.s), s > 0. (see, e.g.,
[50, Proposition 3.3.14]).
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2.3. SUB-MARKOVIAN SEMIGROUP IN Ly(R%)

Remark 2.3.2. We note that (H"*(R?), |||| zro.s) is a Hilbert space with the inner

# /Rd<1 + [|€17)* D) w(€)dE, for all s > 0.

In order to exploit the theory of sub-Markovian semigroups, together with the
relation between the constants of our estimates, we rewrite

(2, €) = 1€ wu (o, ) + €11 [wp(z, 0) — wy(wo, 0)] =: 91(8) + va(2, €),

with 0§ = Hg—” and a suitable fixed 7 € R?. We denote by P; the operator associated

with the symbol ¢;, j € {1,2}, and thus

product (v, W) e, =

Now, we investigate the behaviour of the symbols v; and v separately according
to the following assumptions (C;)-(Cs).

(C1) p(x) — p(zo) > 0 for all z € RY and the density of u(xg) is strictly positive.

(C3) The function RY > x — u(z) € M(S? 1) belongs to C™(R?) and there exist
functions @5 € Li(R?), independent of 6, such that

|, 0)] < ps(x)
for all § € N¢, [5| < m and m = [g] v d o4

To establish the last assumption, we use the fact that the norms ||-|| and ||-||4 in R?
are equivalent. Besides, we define the number

ey
neRN{0} 7114

and the maps

1
— 2 [6]
NO 3 ko §<k) T (2ﬂ.)d1—\(i) Z|6|§d+k+lc H(ID5H1 ) (211)

(C3) We assume:
i) ¢ ([%] —i—3> <y <A
(i) =A% +2Xco < (o — 5(0))? < Aeo — (1))
Remark 2.3.3. (a) Assumption (C1) and definition of w, in (2.3) imply that
wy(z,0) —wu(z,6) >0
for all z € R, 0 € S, and that there ewist constants co,c; > 0 such that

co < wu(wo,0) <1, forall € ST
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As we will see later, the strict positivity of co is essential in this section.
(b) Assumption (Cs) yields

[0202(x, )] < @s(@) €17, 6] < m.

In particular, the Fourier transform of wo(x, &) in the variable x, i.e.,

Ua(0,€) = Fooan(ts(- ) (0,€), m R,

exists.
(¢) It is remarkable that a large enough X is sufficient to satisfy assumption (Cs) and

thus the assumption can be reduced to < ([%} + 3> < ¢g. However, as we will see in

one of the main results of this chapter (Theorem 2.4.2), as A increases, the existence
time of the local solution could decrease.

Lemma 2.3.1. Under assumptions (C1)-(C2), Piv € Ly(R?) and Pyv € Lo(R?) for
all v € S(RY), respectively.

Proof. Let v € S(R?). From Section 1.3 we know that v € S(R?) and Remark
2.3.3(a) implies that

/ [ (€)0(6) 2 de = / €01 (0, 0)5(6)| de

< [ e e < o

This shows that Piv = F1[117] € Ly(R?). For the operator P»(z), by definition we
have that

Pro(n) = / (o)

:/ 6{ 1) / ¢Sy (2, )(€)dE | da

ey (2, €)0(€)dd€

Rd

Rd
o /R Taln — € E(E)E
From assumption (Cs) it follows that

a2 (n, €)1 < sl l1€]1”

and

(1 + cllnlla)* [22(, )] < 11”3 sl

[o]<k

for any k£ < m. Therefore,

Ga(m &) < (1+ Inl2) 2 1€l” S sl

6]<k
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This estimate and the Minkowski’s integral inequality yield

1Pl < ﬁ < / d ( | a0 =€.9) 6<g>|czg)2azn)é
(2m)d /R (/ 21— € )L )\2dn)éd§

Z|6|§d+1c sl (d+1) : 1P
< st / /Rd(lﬂln 6P dn) " lel 1

Z|6|§d+1 s 9y — 41 : B~
e R IS L T ) WKL

/ l€[1%13(6) .

But this integral is finite because v € S(RY). O

B Z\§|§d+1 sl
N (2m)

Lemma 2.3.2. Let s > 0. Under the assumption (Cy),

co ([[l1Frsesr = 0l Fres) < (Proso) o < et ([0l Fwess = [0]50.0)
and
co (1l Frose = 200l o + [0lle) < NPlFrws < € (101002 = 200l F0men + 01700
hold for all v,w € S(RY).

Proof. By using Remark 2.3.2 the proof is almost identical to the proof of |30,
Proposition 2.3.6]. O

Lemma 2.3.3. Under the assumption (C2) and the map < in (2.11), the estimates

[NIE

[{Pov, w) o] < () wll o ([0lF0nee = 201 Froner + 01 70)

and

[NIES

1Pov| o < (k) ([0l Fvise = 20l Frwmss + [0l o)
for al0<k<m—d—1, v,w e S(R?) hold.
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Proof. Let v,w € S(R?). From the proof of Lemma 2.3.1 we obtain

[(Pov, w) pro.s |

< G L+ Il VP13l

< ot |, e L, 50— & 110 1de] L+ Il 1ataan

ZI6|Sd+k+1 sl
= (27)2d

x / d [ / (g ngwf)\ds] (1 + [l () dn

- Z\6|§d+k+1 CngOng
o (271-)2d

d+1 B8 % .
“Jo [/ @+ n= 6 () (4 P ey
x (14 [|€]1%)2 [l€l1° o(e) | de.

We write

_d41_ d41
4 4

(4l —€?)"7 = (1 +n—¢?)

and we use the fact that

14 [l _, "
T e naT e =% MR

Holder’s inequality in the square brackets brings

|<P207w>Hw»k’

k Z\§|§d+k+1 !5 |2
(2)2d

x (L4l = €1P) "2 (1 + ) @) 2
(L )

Again Holder and Young’s inequality for convolutions produce

<2

1
2

(1+ [I€lIP)2 €11 oce) | de.

|<sz,w>Hw»k|

k a
22 w2l l)
(27)d Z C|6||905||1Ti12)||w||w7k (ol sre = M0l oo + [0]F0)
6] <d+k+1 2

NG

<

This proves the first estimate.
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For the second one, previous arguments show that

| Pov || g s

< oo (/ el ([ et - r<>|d5)2dn)

N[

< oz [ (L o g ora« i) o
Z|6|<d+k+1 C‘ s ll1 ( (d+k+1) B\k )% 81~
< St L 0 [ (L 0 el S ) el
Z|§|<d+k:+1 C‘ sl
(2m)

- Lt ol AL
</ (/ (=" (G amtam) d”)
X (1+ [1€l1°) 2 11€1%18(€) g

& Z\5|<d+k+1 sl
(27)%

<2

| a+ i

< 00

whenever v € S(R?). Applying the density of this space in H¥*(R?) in the first
estimate, we obtain the second one. O

Remark 2.3.4. Lemma 2.3.2 and Lemma 2.3.3 show that || Pv|| gv.s < c1||v]| gos+2
and that ||Pyv| gur < <(k)||v]|gossz for all v € S(R?Y). Hence, from Remark 2.3.1,
we can extend these results for all v € HY**2(RY) and v € HY*2(R?) with the
corresponding values of s and k.

Lemma 2.3.4. Under the assumptions (C1)-(C2) and the map ¢ in (2.11), the esti-
mates,

[{(Pyv, w) go.s
for all s >0, v,w € H»**Y(R?), and

< c||vll ges ||w|| g+

[(Pov, w) o | < e(R)[oll gosrllwll o we
for all0 <k <m—d-2, v,we H"*(R?) hold.

Proof. The first estimate is obtained as in the proof of [30, Proposition 2.3.20],
together with Remark 2.3.2, for all v,w € S(R?).
The density of S(RY) in (H"*™(R?), |||| gro.s+1) allows to extend the linear map-
pings
S(RY) 3w (P, w)ge. €R

to H*T1(RY), fixing v € S(R?), and
S(RY) 3 v = (Pw,w)pv: €R
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to HY=T1(RY), fixing w € HY*T(RY).
For the second estimate we use previous arguments and we obtain

[ (Pov, w) pro.r |

ZI6|Sd+k+2 sl
= (2)2d

</ [ [ ln—ap) o IWW)’“\@(U)WU] (1 + €17 Ia(6)lde

- Z\6|§d+k+2 CngOng
o (27T)2d

Capp (L)Y (L )7 o
1 — 2 2 2 R L P L L 1 B ) d
% /Rd [/Rd ( +ln =&l ) (1 + InlI? 1+ |[€]8 (L +[[nll”) =" [@(n)|dn

x (1+ [1€]1%) 5 [5(8)|de..
As before,

L+ €)1
(L4 llE =)+ nll”) —

and thus it follows that

|(Pv, w) o x| <

V225 w3l (1)
oy 2 sy Tl ol
|6|<d+k+2 2

Again, the result can be extended to (H¥*™(R?), [|-|| gv.x+1) by a density argument.
O

Theorem 2.3.1. Under the assumptions (C1)-(Cz) the operator Vg(x, —iV) satisfies

. ¢
(e, =)ol = (S5 = 500)) lollssss = cllllnes
for allv e HY*(RY) and 0 <k <m —d— 1.

Proof. Let v € H¥*(RY). We find that

2
e R o RO

(2m)¢ Jia

v 3

2

_ % 8 26 206 BVE e (2
(%)d/R;HHsH U+ PR P - )/Rd<1+H£H VHIB(6) de
2 2
= Qéfod /R (L€l oee) e - (2?)d /R A+ 1) o) Pde
2
= Dol nes — ol

2
> HU|!HM+2—00HUHHM) |
&
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From here and Lemma 2.3.3 we have that

Vs (z, =iV)v|| gusr = || Prv + Povl| o
> [P ges — || Pav]| gro-e

C
> vl = collolmer = ()l sven

]

Theorem 2.3.2. Under the assumptions (C1)-(Cs) there ewists a constant cg > 0
such that the operator Ug(x, —iV) + X satisfies

1@ s(z, =iV)o + Molla 2 esl|v] oz
for all v € HY*(RY).
Proof. Let v € H¥?(R%). We have that
|Ws(z, —iV)v + M2 = (Ug(z, —iV)v + Ao, Ug(z, —iV)v + M),
= [[Ws(a, =iV )o]l3 + 2M(Ts(a, —iV)v, 0)2 + X203
= [|(Py + Py)v||2 4 2X((Py + Py)v,v)s + A2|v|)3.

The first term is estimated using Lemmata 2.3.2 and 2.3.3 with £ = s = 0, and
¢ :=¢(0):

I(Py + Po)vll3 = || Proll + 2(Prv, Pyv)s + || Pyvlf3
> [|Proll3 = 2[{Pyv, Prv)s| + || Povll3
> [|[Proll3 = 2] Prlla]| Pavlla + || Pavll3
= (| Proll2 = |1 Pev]|2)*

1 1\ 2
> <00 (IolfFree = 2l0llFres +110113)* = c2 (Il vz = 20/l + ||v||3)2>
= (co = c2)* (vl e = 2l Fen + [J0]I3)

whenever ¢y > ¢o. In a similar way, Lemmata 2.3.2 and 2.3.4 with £k = s = 0, and
cs3 :=1(0), yield

<(P1 + PQ)U,U>2 = <P11) U>2 + <P2U,U>2

> (Pro,v)y — [(Pv,v)s]
2 o (HUHH¢’1 [0]12) = esllvll e
Therefore,
195w, —iV)o + Moll5 > (co = e2)|[v]| 02
+2 [ Meo = e3) = e = )% [0l
+[@y—@f—2xm+xﬂnmg
> (co = c2)[v][ .2
under assumption (Cs). O
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At the beginning of this section we defined the operator
As = =gz, —iV) — A

on the Banach space (H"2(R?), ||-||zv2). Now, we are in a position to prove its
dissipativity and other properties.

Theorem 2.3.3. Under the assumptions (C1)-(Cs) the operator (As, H"*(R?)) is
Lo-dissipative.

Proof. As in the proof of Theorem 2.3.2 we find that

((@5(95, —iV) + 5\> v, V)2
(P + Pa)v,v)a + Aoll3
co ([0l Fea — WII3) — esllollFres + Allvll3

0
(;\ —co)[lvllz + (co = e3)lvll o

(—A5v,v)2 =

v

| \/

for all v € H¥2(R%). Let 7 > 0. Tt follows that

o — Asol3 = 72 Joll3 — 27 (Asv, v)s + | Asvl

> 7%v]3.

Theorem 2.3.4. Under the assumptions (C1)-(Cs) the operator
A5t HY(RY) — Ly(RY)
18 bijective and closed.
Proof. From Lemma 2.3.4 and c3 as in the proof of Theorem 2.3.2, we find that
[(Asv, w)a| < [(Pro,w)a] + [{Pev, w)a] + Al{v, w)e|

< erlloll o lwllroa + esl[vllgeallwll o + Moll o [w] e

= (c1 + 3+ N[ ol] o

|| o
and from the proof of Theorem 2.3.3 we see that

(A5, 0)2] = (A = co)[[v]l3 + (co — es)llvlFres

>
> (CO - C3)||U||Hw 1

for all v,w € H¥!(R?). Therefore, the existence of the unique v € H¥'(R?) such
that

AS\U = f7 f € LQ(Rd)7

comes from |29, Theorem 2.7.41] and the proof of [30, Theorem 2.3.27|. But this
function v belongs to HY?(R?) under the same arguments as in the proof of [30,
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Theorem 2.3.28|, using Theorem 2.3.2 instead of [30, Theorem 2.3.13|. This proves
the first statement.
Let 7 > 0. We note that

As — 7= =gz, —iV) — (A +7)

and assumption Cs is also true for A+ instead of X. Hence, (A5 —7) is also bijective
for all 7> 0 and (A;, HY¥*(R?)) is closed by [29, Lemma 4.1.26]. O

Theorem 2.3.5. Under the assumptions (C1)-(Cs) the operator
Az s HY2(RY) — Ly(RY)
generales a strongly continuous contraction semigroup (Ty);>o on La(R?).

Proof. Follows from Theorems 2.3.3 and 2.3.4, together with Theorem of Hille and
Yosida (|29, Theorem 4.1.33]). O

Theorem 2.3.6. Under the assumptions (C1)-(Cs) the operator

B :HV M (RY) o gol52(RY
v o— A

is closable and its closure (B, D(B)) generates a Feller semigroup (S;)i>o on Coo(RY).

U (RY o H R RY < o (RY)

by the choice of s and k (|30, Formula (2.296)]). We want to point out that these
embeddings are continuous with the corresponding norm on the spaces HY**(R?).

Applying Lemmata 2.3.2 and 2.3.4, with s = k = [%} +2and c5:=1 ([%] + 2),
we find

‘<A5\U’w>Hw,[%]+2 < ’(Pw,w>Hw,[%]+2 +‘<P2U’w>Hw,[%]+2 —l—)\)(v,w)Hw [4]+2
<(a+es+ Mol gl o).
and
450,00 ]| 2 (P00 e = [P0 pgga] #3000 g
2 0 (101 g0 = 101 1) = bl 012
= (o=l g, + = ool gy,

> . 2
> (co =)ol 1.0

jevisH
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for all v, w € H¢’[%]+3(Rd). Once again the existence of the unique v € Hw’[%]JFS(Rd)
such that ]
Aw=f, fenliPm),
comes from [29, Theorem 2.7.41| and similar arguments of the proof of [30, Theorem
2.3.21].
d

But this function v belongs to Hw’[ﬁ]H(Rd) under the same arguments as in the
proof of [30, Theorem 2.3.19|, using Theorem 2.3.1 instead of [30, Theorem 2.3.13|.

Indeed, from Theorem 2.3.1 with k = [%] +2and ¢y =g ([%} + 2), we see that

> Co — \/§C4
2

o8l = THU”Hw,[%}M - CO||UHHw,[%]+2

[Ws(z, —iV)u|

and we note that ¢; > v/2¢4. Therefore ¢y > v/2¢4 by assumption (C3).
Taken together, these results show that

B: Hw’[%]H(Rd) _> Hw,[%]w(Rd)

is bijective. .
Now, as in the proof of Theorem 2.3.4, this procedure also works for A + 7 with
any 7 > 0. That is,
Ran(B — 1) = H*[5172(RY)
for all 7 > 0.

On the other hand, from Corollary 2.1.1 and [29, Theorem 4.5.6] we know that the
operator (—\Ifg(x, —iV), C’go(Rd)) satisfies the positive maximum principle. Since
Cs°(R?) is a dense subspace of H¢’[%]+4(Rd) (|29, Remark 3.10.2 and Theorem
3.10.3]), we have that C$°(R?) is an operator core in the sense of [30, Theorem
2.6.1]. Hence, the operator (B, H¢’[%]+4(Rd)> also satisfies the positive maximum

principle and the assertion follows from [29, Theorem 4.5.3]. O

Theorem 2.3.7. Under the assumptions (C1)-(Cs),
A; r HY?(RY) — Ly(RY)
18 a Dirichlet operator and generates an Lo-sub-Markovian semigroup.

Proof. By Theorem 2.3.5 we know that the operator (A;, H¥?(R?)) generates a
strongly continuous contraction semigroup (7});>o on Lo(R?). Hence, its resolvent
satisfies

— A= b T fd
(T ) f /0 e fds

for all f € Ly(R?) and 7 > 0 (|29, Lemma 4.1.18|). In a similar way, by Theorem
2.3.6,

(r—B)'g= / e "°Ssqds
0

for all g € O (RY) and 7 > 0.
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On the other hand, as it was described above in the proof of Theorem 2.3.6,
(r — B) : BV (®Y) - g lil2re)
is bijective for any 7 > 0. Therefore, by construction it follows that

(r— A3~ (Hw’[%]’Lz(Rd)) = va[%]ﬂ([[gd) c Hw,[g]H(Rd)‘

In particular, this means that (7 — A;)~" leaves the set V := Hw’[%]J“Q(Rd) invariant
for all 7 > 0. Since V C HY?(R?) is dense in Ly(R?), we can conclude that it is a
core operator for (As, HY*(R?)) in the sense of [30, Lemma 3.3.9].

Again, by construction we also have that

(r=B) ' f=(-4)""f, feV,

and therefore
T.f = Sif a.e.

for all f € V. Using this equality and exploiting the fact that (S)i>o is a Feller
semigroup, we find that Aj satisfies the Dirichlet condition

/]Rd (AS\U) (Z‘) ((U — 1)+) (x)dx <0, ve Hw’Q(Rd)7

taking p = 2 in |29, Definition 4.6.7]. Indeed, for f € V' we note that

[ @n@ -0 @i = [ 50w/ 1) @
_ /Rd (Si((f = 1) +min(1, £))) (2) ((f = D) (2)da
- / (S(f = 1)) @) ((f = D) ()da
+ / (Sumin(1, ) @) ((F = ") (@)da.

Since S; is positivity preserving, [29, Lemma 4.6.24 A.] yields

/R (Sulmin(1, £))) () ((F = 1)*) (@) < / (S.(1)) (@) ((f = 1)) (2)de

R4

< / (= 1)) (@)

The result follows from similar arguments as in the proofs of [29, Lemma 4.6.6 and
Theorem 4.6.20] and [29, Lemma 4.6.17]. O
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2.4 Strong solutions

According to the results of the previous section, let (T});>0 the Ly(R%)-sub-Markovian
semigroup generated by (Az, H¥*(R?)) under the assumptions (C)-(Cs).
We define the non-linear operator

M)(t) = Ba( Ast®)ug + a /0 (t— )27 B (A5 (t — 5)°) (mw—lv + :\v> (5)ds

(2.12)
on the Banach space

Yr := C([0,T]; La(R?) N Lo (RY))
with the usual norm, that is,

[ollvz = sup ([[o@@)]l2 + lv(t)]le) -
te[0,7
Due to Pollard-Zolotarev’s formula (see, e.g. [40, Formulas (8.5) and (8.6)]) and

the fact that 0 < a < 1, the extended definition of the Mittag-Leffler functions to
operators like A; yields

1 oo
Ea(A;tO‘):—/ Tyorr ™ "2 Go(1, 7o )dr
@ Jo
and | oo
El(As(t —5)%) = —/ T(t_s)arr*iGa(l,r*é)dr.
& Jo
Besides,
/ r’l’éGa(l,r’é)dr =«
0
and

b 1 1 1
r oaGo(l,r a)dr = —,
[, G

due to the Mellin transform of G, and the Zolotarev’s formula (see [40, Proposition
8.1.1]). Therefore, we can show the following result of fixed point.

Theorem 2.4.1. Let o € (0,1) and 5 € (0,2). Assume the hypothesis of Theorem
2.5.7 holds. Let X\ € R and v > 1. If ug € Ly(RY) N Loo(R?), then for some
0 < T* < T the operator M defined by (2.12) has a unique fized point in Y.

Proof. Whenever (T});>0 is a sub-Markovian semigroup on L,(R%), 1 < p < oo, it is
well known that
1T ()llp < [vllp,

for all v € L,(R?) and that
Ti(v)] < |v]

and
173 ()]0 < lvloo
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hold for all v € L,(R%) N Lo (R?). Taking p = 2, we can conclude that the operator
M is well defined. Indeed,

IMEOI < ol + [ (¢ = 5 s (W o)l + Sos)lz) ds
< ok + g ot (1A +X) < o0
and

IM(©) (1)l < lolloc + / (t- >ﬁ (IMle(s) 1% + Allos) 1 ) ds

< luolloe + —m— oyt (NIl 3"+ X) < oo

1
al'(a)
We note that M(v)(0) = uo and that the continuity of ¢ — E,(A5t*)ug in [0,7]
follows from the strong continuity of (73):>¢ and the continuity of (1)*, 0 < o < 1.
Besides,

[ Ea(A5()*)uollvy < lluollz + l[uolloe = lluoll Lymaynro @a)- (2.13)
The continuity of

t'—>/ oL (As(t — 5)°) (A|v|v-1v+ﬁv) (s)ds

at t = 0 is straightforward. For the continuity in (0,7, let 0 < ¢ty < t < T without
loss of generality. We see that

t
/ B (A3 (Ao + Ao (- )ds
0

to B
_ / B (Axs®) (Moo + A (to — 5)ds
0

to

S~

s* T E! (Azs%) ()\]v|7_lv(t — ) = Moot — s) + Mot — s) — Aty — s)) ds

t
+ / s* LB (AssY) <)\|fu\7*1v + )\v) (t — s)ds

to

_)\/0 0 s EL(Ags®) (Jo] Mot — s) — [v] Mot — s)) ds
4 X/O "R (Ass®) (0t — 8) — vlte — 5)) ds

t
- / s* ! (Azs%) <)\|v|7_lv - /\v> (t — s)ds

to

and using the property

[lal®a =[] < Ja —bl(lal®+ o) S [a—0b[(lal + [0])°, a,beR,c>0, (2.14)
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t
/ B (Axs®) (Moo + 3 (1 — s)ds
0

to _
_/ B (Ass )<A|v|7_1v+/\v> (ty — s)ds

<|A|/ o |oPto(t - s) — o] Molte — s)] ds
t ~
+)\/ a- 1|v(t—s)—v(t0—s)|ds+/ so1 <|/\||v|7_1|v|—|—)\|v|) (t — s)ds
0 to
to
§|)\|/ @1 lu(t — s) — v(to — $)| (|v|7_1(t —3s)+ |v|7_1(t0 — s)) ds
o t )
+)\/ so 1 |v(t—s)—v(t0—s)|ds—|—/ so1 <|/\||v|7_1|v|+)\|v|) (t — s)ds.
0 to
This shows that

to ~
- / s TE! (Azs”) ()\|v|”_lv + )\v) (to — s)ds
0

t
/ B (A55%) (Al 4+ Jo) (¢ — )ds
0

o

to
S,IAI/0 2ot — s) = v(to — )|l (013" + [[0ll3") ds
~ tO
R A R R CE N
0 ) . 1
+ (IR + Alel,) [ s*1ds =0

to

whenever t — tg.
The continuity with respect to the norm ||| is proved in a similar way.
For all v, w € Y we also find that

IM(0)(£) = M(w) (1)
<\ / )" o(s) — w(s) | (10135 + llwlb) ds

3 [ =0 ol i)l s
< o= wlly, 7 [N (ol + el ) + ]
and the estimate
IM()(#) = M(w)(t) oo £ T* max(|A|, A) o = wlly,. (I0]3," + wl}, " +1)
holds. Similarly, we obtain

IM()(t) = M(w)(B)]]2 T max((A],A) [[v = wlly,, (lo]l5," + [lwl3," +1)
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2.4. STRONG SOLUTIONS

which yields
[M(v) = M(w)lly, < CT* max(|A[, A) v = wlly, (o3, + wli," +1). (2.15)
Let T* € (0,T) and R = 2||ug||1,(re)nr. ra)- We define the closed ball on Y7- by
By, = {v € Yr: Il < R).

Using estimates (2.13) and (2.15), with w = 0, it follows that
M@y < ol sz sy + ) maas(M. 5 fely,. (ol +1)

For all v € By, we see that

M)l < 5+ C ) max(AL VR (R +1)

and therefore
M)y <R

for sufficiently small 7™ such that

C(T*)* max(|]A, VR (R +1) <

ol %

From (2.15) we can also derive that a sufficiently small 7™ yields
C(T*)* max(|\|, \) (2R '+1) <1

for all v,w € By.,... This shows that M is a contraction as an operator By... — By...
if T is chosen small enough. Now, the existence of the unique fixed point u € By,.,
follows from the Banach contraction principle.

The uniqueness of @ in Y7« is proved as follows. We suppose that there exists
another fixed point v of M in the Banach space Yr. The previous analysis leads to

IME)O-M@ N < (13 (5" + 115" +3) [ = o) = o)l

which is equivalent to

Jot6) = ) S (1N (ol + 1157) + 3) [ =7 o) = i)l s

by definition of fixed point. The Gronwall’s inequality given in Lemma 1.2.1, with
¥ = 0, shows that v(t) = a(t) for all t € [0, T*]. O

Next, our aim is to prove that @ satisfies (2.1) in [0,77*]. For this purpose, we
already know that the operator (As, HY*(R?)) has the following properties: it is Lo-
dissipative, it is closed, its domain is a dense subspace of Ly(R?) and it generates an
Lo-sub-Markovian semigroup (Theorems 2.3.3, 2.3.4 and 2.3.7). Moreover, (0,00) C
p(A5) (|29, Lemma 4.1.18]), hence (—o00,0) C p(—Aj).
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2.4. STRONG SOLUTIONS

Let v € H¥?(R?) and denote X = Ly(R?). The dissipativity of A5 and the fact
that any 7 > 0 belongs to p(A;), yield

Ir(r = A5) 77 = Aj)vllx = rlvllx

< [[(r = A vlx

which implies that
|7(7 — A5) MlBx) <1

for all 7 > 0.
We also recall that in the proof of Theorem 2.3.4 we found that

—As  H?(RY) — X

is bijective. That is, —Aj is a sectorial operator in the sense of [57, Section 8.1].
In addition, the operator —Aj belongs to the class BIP(X) and 0_4; = 7 ([57,
Definition 8.1 and Section 8.7 ¢)(ii)]). Hence, it satisfies [57, Theorem 8.7 part (i)]
with (,LLAi = 0.
On the other hand, the Laplace-transform of g,(t) = B >0, s Jal(s) = s,

I'(a)’
Re(s) > 0 (|57, Example 2.1]). This yields

lim g, (s)| < oc.

$§—00
The kernel g, is also l-regular ([57, Definition 3.4 and Proposition 3.3]) and 6,-
sectorial with 0, = af (|57, Definition 3.2]). Therefore, 6, + 6_4 < 7 because
0 < a < 1. This shows that g, satisfies [57, Theorem 8.7 parts (ii), (iv) and (v)],
with w, = 0.

We recall that X, denotes the space H"*(R?) equipped with the graph norm
[la; = IIFx + [[A5()llx. In fact, norms [|-[|gw2 and [|-||la; are equivalent. Let
Uy € XA/.\.

Taken together, since X belongs to the class HT (see [57, definition in page 216,
a characterization in page 217 and page 234]), above arguments allow to consider
the Volterra equations

u(t) - / galt — ) Asu(s)ds = (ga % 9) (1), ¢ € [0,T7],

and .
u(t) o / gO‘(t - S)AS\U(S)CZS = Uy, S [07T*]7
0

where g(t)(x) == Aa|"Ya(t, z) + Ma(t, z).

Since @ € C([0,T*]; X N Loo(RY)), it follows that g € Lo([0,77]; X) and that
ga*g € Lo(]0,T7]; X). Consequently, [57, Theorem 8.7 parts (a) and (b)] imply that
these equations have a strong solution u; and wus, respectively. Therefore,

u(t) — /Ot Golt — s)Asu(s)ds = up+ (ga *x g) (t), t€[0,17], (2.16)

has a unique a.e. strong solution u := u; + us belonging to Ls([0, T%]; XAX)‘
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2.4. STRONG SOLUTIONS

However, the equation (2.16) is equivalent to the Cauchy problem
OF (u—uo)(t) — Azu(t) = g(t), 0<t<T",
u(t)]=o = uo,

where we have put u(t) = u(t, -) for simplicity.
Besides, the equation in (2.17) can be written in the form

u(t) = ug + J* (Asu(t) +g(t), 0<t<T7,
and Aj has Yosida approximation (|29, Theorem 4.1.29]) given by
Api=TA5 (1 = AT = TAR., T >0,

(2.17)

with the following properties.
(Py) : A, is bounded on Ly(R?) and the semigroup (e"7);>0

is a strongly continuous contraction semigroup, for all 7 > 0.
(P) : lim ||A,f — A5 fll2 = 0 for all f € D(Ay).
T—00

(Ps) : Tyf i= 5 f = lim e f for all f € Ly(RY),t > 0.
T—00

Consequently,
u(t) = uo + J*Aru(t) + J(A5 — A )u(t) + J%g(t)
=g+ A, JJ(t) + J* (A5 — A)u(t) + J%g(2).

By replacing u in the second term of the r.h.s. of the last equality and using the
semigroup property of the fractional integral J¢, we find that

A JU(t) = ApJ%ug(t) + A T2 Au(t) + A (A5 — Au(t) + A J*g(t)
= A, J%g(t) + A2 u(t) + A, T (A5 — Ap)u(t) + A, J**g(t).
Repeating this procedure recursively k-times, we obtain
k k
u(t) = (AT (ug + J%g) (£) + Y (A )" T (A5 — A-Jult) + (AT u(t),
m=0 m=0

where the last term has the form
(ATJa)k+1u(t) — AerlJO‘kJrau(t)
t t— S)Ock—i-a—l
= Al / U s,
T Jo D(ak+a) u(s)ds
The fact that u € Ly([0,7*]; X4;) and Hélder’s inequality imply that

t
a\k+1 < k+1 (—
(AT u(t)], < ||AT||B<X>/O T(ak + a)

. t (t o S)ak+a—1
<Aty | S s

1 1
t(t—g 2(ak4a—1) 2 s 2
<l ([ “horerar ) ([ 1uo,a)

— A ], (0 s ) {20k+20-1
B(X) AT (ak 4+ ) (2ak + 2a0 — 1)

_ J\ak+a—1
L )T u(s) ads
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for some k large enough. Therefore,

lim [(A;J*)** u(t)]|l2 = 0
k—o0

and . -
u(t) =Y (AT (ug + J%g) () + D> (A J*) ™ T (A5 — Ar)ult)
m=0 m=0

is well defined for all 0 < ¢ < T,
Definitions of J* and Mittag-Leffler functions lead to

u(t) = By (t* A )ug + /Ot(t —8)* B, o ((t — 5)*A)g(s)ds
[ = 9 Bl = A — ArJuls)ds

= E,(t"A )up + « /Ot(t —8)* LB ((t — 5)*AL)g(s)ds

ta /Ot(t _ )0 B (= 5)" AL (As — A Ju(s)ds.

Again, by [40, Formulas (8.5) and (8.6)] one gets the representation

1 [ .
u(t) :—/ et A uofr’kéGa(l,r’é)dr
0

a
t e8]
+/ (t— S)a_lf AT ()% Go (1,777 )drds
0 0
t o)
+/ (t — s)o‘_l/ el Arr (45 — AT)U(S)T_éGa(l,T_é)deS.
0 0
On the other hand, from [52, Section 1.3 Lemma 3.2| it follows that

[Aru®)lla < [[Asu(®)]l2, 7>0, 0<t<T7,

and property (P;) implies that the last integral is dominated (in [|-||2) by

t
[ = e g
Here, we use that u € Ly([0,T%]; X4, ) and Holder’s inequality as above, together

with properties (P,)-(P;) and the dominated convergence. Therefore,

1 e 1 1
u(t) :a/o Tyar ugr " aGo (1,77 a)dr

t [o8)
+/ (t—s)o‘_l/ Tit—s)or g(s)r_EG (1,r a)drds
0 0

whenever 7 — oo and % < a<l.
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2.4. STRONG SOLUTIONS

This and the definition of g, show that the strong solution u has the form of the
r.h.s. of the operator (2.12) and thus u = @.

Now, for the case 0 < a < % we may repeat previous arguments, in particular
[57, Theorem 8.7] using the space Lj([0,T*]; X4,) with some 1 < p < oco. In this
situation, we note that p > 2 and again u = u.

Finally, we note that the problem (2.17) is equivalent to the original (2.1).

We are now ready to state the main result of this section.

Theorem 2.4.2. Let o € (0,1), B € (0,2), A € R and v > 1. Assume that (C1)-(C3)
are satisfied. Suppose =+ < p < oco. Ifug € H¥*(RY) N Loo(R?), then there exists T >
0 such that the Cauchy problem (2.1) has a solution u € C([0,T]; Lo(R?) N Lo (R?)).
Moreover, u is strong in the sense that u € Ly([0,T]; X, ) whenever 3 < o <1 and
u € Ly([0,T); X4, ) whenever 0 < o < 1.
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Chapter 3

The semi-linear problem with
constant coefficients

This chapter deals with the solvability of the semi-linear Cauchy problem

O (u — ug)(t, ) + Wa(—iV)u(t,x) = Mu(t,z)|" " u(t, ), t>0, 2R

3.1
u(t, z)|imo = uo(x), x€RY, (3:1)
where the symbol of the operator Ws(—iV) is independent of z, that is,
— B 6 Rd
(&) = €l w, el ) £ e RY,
and
)= [ l0-nlPutdn. 0e st 3:2)

Again, v > 1 and A € R are parameters of the non-linear term. As it was set
in Chapter 2 for the dependent case of x, u(dn) is a centrally symmetric finite
(non-negative) Borel measure defined on S9!, the so-called spectral measure, and
p(dn) = o(n)dn with the density p. Some restrictions on the function g may be
required for the lower bound and behaviour of the fundamental solutions; see e.g.,
[38, Section 5.2]. More precisely, our basic hypothesis throughout this chapter is the
following:

(H1) The spectral measure u has a strictly positive density, such that the function

w, is strictly positive and (d + 1 + [3])-times continuously differentiable on
S,

We denote by (H2) to refer to (H1) whenever we need to assume that w), is (d+ 2+
[3])-times continuously differentiable on S¢~!. The considerations just made above
have been taken from [40, Proposition 4.5.1] and [40, Theorem 4.5.1|, for d = 1 and
d > 1 respectively. We want to point out that the condition of strict positivity on
w,, in H;, guarantees that the support of the measure p on S% ! is not contained in
any hyperplane of R? ([40, Section 4.5]).

Evolutionary problems like (3.1) can be considered as a generalization of the
classical rigid ignition model. The behaviour of the combustion processes, involving
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3.1. FUNDAMENTAL SOLUTIONS

non-linear source terms, has become a challenging field for mathematical analysis
in the last decades (see, e.g. [10, Chapter 3|,[23]). In the case § = 2 and w, =1
we see that the operator, namely Wy(—iV), becomes the negative Laplacian (—A)
with symbol ¥ (&) = [|£]|>. The corresponding fundamental solution with a € (0, 1)
has been studied (see, e.g. [17, Chapter 5]) and bounds can be found in [18]|. These
bounds are used in [33] in order to study the fundamental solution Z for the subd-
iffusion problem

O (u—ug) —Au=0, t>0, zeR?

u|t:0 =Up, IE R,

In this context, an important concept associated with « is the mean squared dis-
placement (MSD) or the centred second moment, which describes how fast is the
dispersion of the particles in a random process. In [33; Lemma 2.1|, the authors
proved that the M SD governed by the preceding equation specifically turns out to
be F(ﬁa) t*, t >0, 0 < a < 1. In the literature one traditionally finds that anoma-
lous diffusion refers to this power-law. See, e.g. [64], [45], [43], [3] and references
therein. However, in our case, the Cauchy problem (3.1) does not possess a finite
MSD. This can be directly checked by using the definition of M SD (|33, expression
(6)]) and similar arguments as in the proof of [33, Lemma 2.1] or Theorem 3.1.1 be-
low. Models with infinite M SD involving equation (3.1) could be an open problem
for future research, because we know from the existing literature that in some cases
of Lévy flights there is also a divergent MSD and its physical meaning is still not
very clear (see, e.g. [19] and [65]).

3.1 Fundamental solutions

Whenever we study evolution equations it is natural to ask about the fundamental
solutions associated with the evolutionary problem. For equations like (3.1) we know
that if an operator A generates a strongly continuous semigroup 7} in a Banach space,
under suitable conditions, the solution of the Cauchy problem

O (u—ug)(t,z) = Au(t,z) + g(t,x), t>0, v € R
u<t7 x)|t:0 = uo('r)J LS Rdv

has the representation
t
u(t) = Eqo(At*)ug + a/ (t—s8)* B (A(t — 8)*)g(s)ds
0

in terms of the Mittagf-Leffler functions E, and E!,, respectively for a € (0, 1) (see
e.g.,[40, Theorem 8.2.1]). This representation is also called the mild solution of the
evolution equation. Considering A = —Wg(—iV), the term corresponding to the
operator E,(—WVs(—iV)t*) has been studied extensively in [32, Section 2|, where
the authors found that one of the fundamental solutions is

Z(t,7) = é/o Gtos, 2)s =G (1, 5% )ds. (3.3)
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3.1. FUNDAMENTAL SOLUTIONS

Here, G stands for the Green function that solves the equation
Oy v(t,x) + Vg(—iVu(t,z) =0, t>0, 2R
with the initial condition
G(t,x)|i=o = do(x), = €RY,

do being the Dirac delta distribution. In this case, G,(+,-) is the Green function that
solves the problem

Oy vu(t, s) + %v(t,s) =0, t>0, seR, G,0,s)=0d(s),

and

d° _ L 2 fs—T1)= f(s)
@f(s) " T(—a) /0 Tite ar,

see [10, Formulas (1.111) and (2.74)]. Besides, in [32, Theorem 2| the authors
established that the fundamental solution Z admits the following bounds. In what
follows, we employ the notation Q = ||z[|’t= for z € R? and ¢ > 0.

Proposition 3.1.1. Let o € (0,1) and g € (0,2). Assume the hypothesis (H,)
holds. Then there exists a positive constant C such that for (t,z) € (0,00) x R the
following two-sided estimates for Z hold. For Q) <1,

Z(t,x) = Ct™F if d< 8, (3.4)
Z(t,z) = Ct~*(|log(Q)| + 1) if d=8, (3.5)
Z(t,x) = Ct 5 Q"5 if d>p. (3.6)
For Q > 1,
Z(t,x) = Ct™ 5 Q17 5, (3.7)

In the same way we have derived a second fundamental solution Y, as follows.
From [40, Formula (8.8)] we know that

tlfa

El(At*) = / e Gy (s,t)ds.
0

«

By [40, Formula (2.77)] we also have
Ga(s,t) = sy (1, s_§t> :

which produces
tl —a

E!(At*) = / e s aGy(1, s at)ds.
0

«
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Together with the transition density G, we see that

o [ =B = 5))als)is
= i OooeATg(s)T_}wGa(l,T_i(t—s))drds

t o)
= / / TTg(s)T*éGa(l, Tﬁé(t — s))drds
0 Jo

_ /Ot /OOO UR Glr, - — z)g(s)(z)dz] A1, R (E — ))drds
:/Ot /R VOOO G(r.- —z)r‘iGa(l,T_i(t—s))dT} 9(s)(=)dzds,

i.e., we have the convolution of g(s) with a function given in the square brackets.
This allows us to define

Y(t—s,z):= / G(r, x)T_éGa(l,T_é(t —s))dr
0
and changing the integration variable to 7 = (¢t — s)%r we obtain that

Y(t,x) ::/ tO‘_lG(to‘s,x)s_%Ga(l,s_é)ds. (3.8)

0

Therefore, we find the following bounds for the fundamental solution Y.

Proposition 3.1.2. Under the same assumptions as Proposition 3.1.1, the following
two-sided estimates for Y hold. For Q <1,

Y(t,z) = Ot~ 5t if d<28, (3.9)
Y (t,x) < Ot~ (| log(Q)| + 1) if d=28, (3.10)
Y(t,x) =< Ct™FtelQ> s if d>28. (3.11)
For Q > 1,
Y(t,z) =< Ct~ T8, (3.12)

Proof. The assertions follow from straightforward computations made in the proof
of the estimates for Z, in [32, Theorem 2|. There, the authors used the fact that
the asymptotic behaviour of G, is the same as for the density w, given in [32,
Proposition 1] (with the skewness of the distribution that equals to 0) by

rol-a as T — 00,

We(T) ~ C’{ 2 a

2 __a
fo(T) =7 M@ gca™ 77 as 17— 0,

where ¢, = (1 —a)aTa. See e.g., |40, Proposition 2.4.1] and |72, Theorem 2.5.2] for
more details.

Keeping this in mind, we see that a difference between the functions Z and Y,
given by (3.3) and (3.8) respectively, is the factor s™! inside the improper Riemann
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integral of Z. Thus, we only need to check the corresponding two-sided estimates
for

/G(tas,a:)s_iGa(l,s_;)ds,
0

which can be written equivalently as
/ G(t%s, x)s_l_iGa(l, s_i)s ds < I, + I.
0
Here, similar to the integrals that are used in [32, expression (33)],
1 ad
_71::/ mm(t BQ 1= ﬁst B s ﬂ)sds
0
and -
I := / min <t7%d§2*17%3,t7%d37%> s_l_éfa(s_i)s ds,
1
where

. _aed o q_d _ad _d
min (¢t 7€ Bs,tT Fs B d

_ad _q_4d
d)_ t Q) TEs, fors <,
t_%ds_ﬁ, for s > €,

as in [32, expression (32)]. Next, we need to analyse the two-sided estimates for I,
j =1,2. The case 2 < 1 yields

_ad _q_4d @ 2 _ad 1 _d
Iy =t"5Q 75 s°ds+t B s fsds
0 Q

1
= lt_%dQQ_% —|—t_aﬂd/ 81_%d8.
3 Q

The last integral requires the sub-cases d < 2, d = 2 and d > 20:

t52—<1—§22 ) for d < 28,

_ad ! 1—4
t s / s fds = < t**log(Q)], for d = 28,
. t 5—2(92“—1) for d > 26.
B

For I, since 2 < 1, we have that

IQ—t_/ “Fsia a(s™ a)sds

— 5B gmi e (1—e)a TS T
1
el 1
— % | gEtamme (et EsTE g
1
ad
=Ct 5.
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3.1. FUNDAMENTAL SOLUTIONS

We point out that the improper integral is convergent due to the Laplace method
for integrals (see e.g., [32, (A1)]). Therefore, if d < 2 we find that

_ad 1 _ad 9 a  _ad
Ct s :12§11+12:§t 5T+t

_ 2_*
B(l Q )+Ctﬁ

IS

<t

)

if d =20 we obtain

1
[1 + [2 = gtiQa + tiQQNOQ(Q” + CtiQa

and d > 23 implies that

1

_ad o d 1
gt BQ Bgllg.[l‘i‘fgz

1 _od o d _oad 9_d _ad
gtﬂQ B4t B 2(9 ﬂ—1>+(1tﬂ

d
B

IS

o

<A

™l

Since the additional factor t*~! is a constant for the integral of Y, the estimates
(3.9)-(3.11) hold. Now, for the case 2 > 1 we have that

and

On the other hand,

Q oo
Lzt Tat Z/ s “fa s f’)ds+t Fo! / S_Z_Efa(s_é)ds
! 0

e

— Oyt TR,

These bounds show that I1 + [, < £~5 Q"5 The factor t*! completes the proof
of the estimate (3.12).

]
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Remark 3.1.1. We note a singularity at the origin with respect to the spatial variable
for Z, whenever d > 3, and for' Y whenever d > 23. It is well known that this type
of singularities occurs in the equations of fractional evolution in time, even if § = 2
and w, = 1.

As we will see later, the two-sided estimates of fundamental solutions (Z,Y) play
a key role for our main results in the present chapter. Now, we continue by showing
some properties of the fundamental solutions Z and Y.

Lemma 3.1.1. Under the same assumptions as Proposition 5.1.1, there exists a
positive constant C for all t,,ts > 0 and x € R?, such that there exists t, > 0,
between t, and ty, and the following estimates for Z hold with Q. = ||z||°t;®. For
Q. <1,

te 7 if d< B,
| Z(t1, @) = Z(t2, )| < Clty =t § £ (| log(Q) [+ 1) if d=8,
_ed_q q_d
ORCER OV if d> 8,
and for Q. > 1,
_ad_1 _q_d
|Z(t1,ﬂf)—Z(t2,LL’)| §C|t1—t2’tc E Qc B.
Proof. From (3.3) it follows that
1 o0
Z(ty, ) — Z(ty, x) = 5/ [G(t8s,2) — G(tSs,2)] s 5 Ga(1, 57 )ds.
0

It is known (|40, Theorem 4.5.1|) that G is differentiable with respect to ¢ > 0 and
satisfies

d t
< . ,—d
|G(t,x)] < C'min <t B’—Hx||d+5> :

_ _ t
SCH]lH(t ,W>

In these estimates, C' depends on (3, d and the bounds for w,. Using this and the
mean-value theorem, we have that for some ¢, between t; and ¢,

e

't%—f(t,x)

|12 (1, ) = Z(ta, )]
< 1 /OO ‘8G(t°‘s, x)
0

It — to|s T w Ga(1, 577 )ds

t=tc

T« ot

|t1 _t2| o a e _1-1 _1
— [t0sG (tes,x)| s "aGo(l, s )ds
c 0

|t1 — tg’ /OO . _ t%s 11 _1
<(C t — a 1,5 a)ds.
< T i min | (t5s)7 7, Tz &7 s o(1,872)ds

™l
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Therefore, we proceed in the same way from [32, Theorem 2], i.e.,
© d taS 1 1
min | (t9s)" 5, — )slaG (1,5 =)ds
/ ( «*) 5 alj °
1 d to‘s 1 1
= [ min | (t0s) F, — ) s aw,(sTa)ds
/0 < ‘ ||| 47 ¢
0 d taS 1 1
+/ min ((to‘s)_ﬁ, C—) s Taw (s~ a)ds.
1 RN P i
With the asymptotic behaviour of w,, the first integral reduces to

0/1 _ ((to‘ )_% t%s )d
min ( (t%s)77, s
0 [J]|4+5

1
and we note that the improper integral / (t?s)fgds appears whenever 2. < s < 1.

0
Here, we need to check the cases d = 3, d < [ and d > [, respectively. Thus, we
get the desired bounds. O

Lemma 3.1.2. Under the same assumptions as Proposition 3.1.1, there exists a
positive constant C for all t;,t, > 0 and © € R?, such that there ewists t, > 0,
between t, and ty, and the following estimates for Y hold with Q. = ||z||Pt;®. For
Q. <1,
—ad 9 .
te ” if d<2p,
V() = Yt )] < Ol — ta] {22 2(1og(@0)| + 1) if d =28,

ad d
*7‘1‘01*2 2—Z

te Q. 7 if d> 28,

and for Q. > 1,

ad_ _1_4d
_[3+O‘2 1

|Y(t1,£[}> — Y(tg,.’ll')’ S C‘tl — tzytc Qc ﬁ.

Proof. The assertions follow from straightforward computations made in the proof
of the previous estimates for Z, but using (3.8). O

Lemma 3.1.3. Let o € (0,1) and § € (0,2). Assume the hypothesis (Hz) holds.
Then there exists a positive constant C for allt > 0 and x,, x5 € RY, such that there

exists ( in the open segment connecting x1 and xa, and the following estimates for
Z hold with Q¢ = ||C||Pt=>. For Q; <1,

_ald+1) 17%
|Z(t,l’1) - Z(t,l‘2)| S CHI’l - l’g”t B Qg
and for Q¢ > 1,
_a(d+l) _%
|Z(t,21) — Z(t, 22)| < Cllay — af[t™ 7 Q, .
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3.1. FUNDAMENTAL SOLUTIONS

Proof. From (3.3) it follows that

1 & 1 1
Z(t,xy) — Z(t,x9) = a/ [G(t%s, 1) — G(t%s,12)] 571 0 Gy(1, 8™ %)ds.
0

From ([40, Theorem 4.5.1]) we know that G is one time continuously differentiable
in x and satisfies, for any j =1,--- ,d,

. _dtl t
Slen (t B ,W)

We recall that C' depends on 3, d and the bounds for w,. Let DG(t%s,x) the
Jacobian of G(t%s, ) in the point z. By the mean-value inequality, we have that for
some ( in the open segment between x; and x,,

oG
a—xj(t’x)

|Z(t,x1) — Z(t, x5)]

1

1 [ 1
< 5/ |DG(t%s, C) (x4 —xg)\s_l_EGa(l,s_E)ds
0
|21 —I2||/
<

ta
<z — xQH/ min <(ta5)_51, W) sflfiGa(l, sfé)ds.
0

Now, we proceed in the same way from [32, Theorem 2|. O

s717a o(1, s‘i)ds

Lemma 3.1.4. Under the same assumptions as Lemma 5.1.3, then there exists a
positive constant C for all t > 0 and x,,75 € RY, such that there exists  in the

open segment connecting x1 and xo, and the following estimates for Y hold with
QC = HCHﬁt_a For QC < 1,

—G a1 if d+1<28,

Y (ta1) = Yt 22)] < Cllay — 2| 757 (|log(Q)| +1)  if d+1=28,
QD) o 12+ L 4

t~ Q, if d+1> 20,

and for Q¢ > 1,

d+1

_aldtl) o _1-—d+1
’Y(t, 512'1) — Y(t,l’g)‘ S CH.CIZ’l — Ith B * IQC E .
Proof. This is similar to the proof of the previous lemma for Z. m

Remark 3.1.2. It is worth mentioning that all these estimates have been thor-
oughly investigated using the Zolotarev-Pollard formula for Mittag-Leffler functions
E., which is valid for the case 0 < a < 1 (see [32, Section 2] and [}0, Proposition
8.1.1]). To our knowledge this type of representation has not been explored explicitly
in the literature for the case o > 1, however, we refer the reader to [9] and [4] for the
study of evolution equations with a Caputo fractional derivative of order 1 < a < 2.
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3.1. FUNDAMENTAL SOLUTIONS

Next, we estimate the L,-norm of Z. Let p > 1 and t € (0,00). We begin by
splitting the integral on R¢ according to the conditions for Q given by (3.4)-(3.7).

That is,
/ Zp(t,x)dx:/ Zp(t,a:)dx—l—/ ZP(t,x)dx.
R {o>1} o<1y

In the case of €2 > 1, the integral on this set has two-sided estimates for all d > 1
and all g € (0,2), given by (3.7). Therefore

__adp

/ Zp(t,x)dxx/ QU Py,
{Q>1} {Q>1}

Setting r = ||x||, we obtain

/ ZP(t,x)dr =< /a tf%@(rﬁt_a)(ﬂ*%)prd_ldr
{Q>1} t8

— /OO topp(=B=d)ptd=1 .
t

t—aTd’“r%dS—ﬁp—l—(p—l)dds
(e.)
— f;_%dp(l_%) / Sfﬁpflf(pfl)dds_
1

The last integral converges if and only if Sp+ 1+ (p — 1)d > 1, which holds true
foralld > 1, p € (0,2) and 1 < p < co. Consequently, we obtain the estimate

_ -ad(1-1)
/ ZP(tyx)dr <t 5\ e, (3.13)
{Q=1}

Now, for Q < 1, we consider the following cases separately: § € (0,1), 5 = 1 and
p € (1,2). For 5 € (0,1), we employ the bounds given by (3.6) and we set again
r = ||x|| and the substitution r = ¢# s, obtaining

/ Zp(t,x)da:x/ QOB
(o<1} {n<1)
th adp d
x/ = (o) E Pl
0
t7
_ / o (B—dprd—1,
0
1 adp | ad
:/ B (B—dpd—1 g
0

1
_ 2 (1-1) / S(B—dprd—1 g
0
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3.1. FUNDAMENTAL SOLUTIONS

The last integral converges if and only if 1 —d + (d — 8)p < 1, which is equivalent
d
with p < a5 This together with (3.13) gives
o d
1Z(t, ), =<t 505, 1<p< =5 d>1, Be(0,1). (3.14)

For 8 =1, we check out d = f =1 and d > 3. We employ the bounds given by
(3.5) and (3.6), respectively. In the case of d = 1, we obtain

/ ZP(t, x)dr =< / 7 (| log Q| + 1)" dz
{a<1} {a<1}

tDL
x/ t=% (|log(rt~*)| +1)" dr
0
1
= / t=Pt (|1og(s)| + 1)* ds
0

1
= t_o‘p(l_;)/ (| log(s)| + 1)’ ds.
0
The last integral converges for all 1 < p < co. Together with (3.13) yields
1Z(t, ), =<t 08 1<p<oo, d=1, f=1. (3.15)
Now, for d > 2 the corresponding estimate is similar to the case of 5 € (0,1).
Thus,
—ad(l—l) d
Finally, for 5 € (1,2), we check out d <  and d > 5. We employ the bounds
given by (3.4) and (3.6), respectively. For d = 1,

adp

/ ZP(t, x)dx x/ 75 dx
{Q<1} {a<1}

Together with (3.13) and the fact that

sup Z(t,-) <t 7,
zeR

we conclude
2, =t 505 1<p<oo, d=1, B e (1,2). 3.17
p
In the case of d > 2, the corresponding estimate is similar to that of g € (0,1).
Thus,

[e] d
HZ(t’ )Hp = t_WdO_%), 1<p< m, d> 2, ﬁ € (1,2) (318)
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3.1. FUNDAMENTAL SOLUTIONS

Gathering the two-sided estimates from (3.14) to (3.18), we have proved the
following result.

Theorem 3.1.1. Let d € N, a € (0,1) and 8 € (0,2). Assume the hypothesis (H1)
holds. The kernel Z(t,-) belongs to L,(R?) for all t > 0 if, and only if, 1 < p < Ky,
where

5 ifd>p,
00 otherwise.

K1 = k1(d, B) = {
Moreover, the two-sided estimate
1zt ), <t 505) ¢t >0, (3.19)
holds for every 1 < p < ky. In the case of d < [3, (3.19) remains true for p = oo.

Remark 3.1.3. As we can see, unlike the Gaussian fundamental solutions here we
can not ensure the Ly,-integrability of Z(t,-) for all1 <p < oo, t > 0.

We next examine the critical case p = ﬁ for d > 3, in the L,-weak space with
the quasi-norm | - |, o defined by

1
| flpoo 1= sup{A ds(N)7},
A>0
where

df(\) = [{z € R?: f(z) > A}|
stands for the distribution function of f.
Theorem 3.1.2. Let d € N, a € (0,1) and 5 € (0,2) such that d > 3. Assume the
hypothesis (H1) holds. Then Z(t,-) € Lﬁm(Rd) and satisfies

1Z(t)] o St t>0,

d—pB’

d
Proof. Let t > 0 and denote Z(t) = Z(t,-). Set p = i3 By definition, Z(t) €
Ly~ (RY) if the quasi-norm

|Z(t)|p,co = sup{A dz()(A)? } < oo.
A>0

As above we use the similarity variable Q = ||z||*t=® and we split Z(t) as Z(t) =
Z(t)x(t)a<1y + Z(t)x(t){oz13. Then

1Z()poe < 2 (1Z()x () (021 pe + 1Z(OX() 221} lpoo) -

By (3.13) and the L, version Tchebyshev’s inequality (|68, Formula (5.49)]), we
obtain

Z(OX (@11l < NZOx(E) 0z, < O F073) = e,
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3.1. FUNDAMENTAL SOLUTIONS

Now, employing (3.6) we have
Azt 0ery V) = {z €RT: Z(Lx) > Xy Q< 1}
<z eR: A< CtFQFY
= [{z e R : A< Ct 7 ()Pt )5}
= {z e RY: X\ < Ct~||z ||~}
<G (t*axl)ﬁ :

Thereby, we find that

Q=
SIS

A dZ(t)X(t){le} (>‘) < CPie,
and thus
1 Z(1)Xx(t) (o<1t lpoe ST

The proof is complete. O

Analogously to the analysis done for the L,-integrability of Z, we can obtain the
corresponding results for Y using the bounds given by (3.9)-(3.12).

Theorem 3.1.3. Let d € N, a € (0,1) and 5 € (0,2). Assume the hypothesis (H1)
holds. The kernel Y (t,-) belongs to L,(RY) for all t > 0 if, and only if, 1 < p < K,

where

d .
o = ra(d, ) = { T2 122
00 otherwise.
Moreover, the two-sided estimate
o =2 (1-1)+(a-1)
Y (&)=<t , >0, (3.20)

holds for every 1 < p < ko. In the case of d < 28, (3.20) remains true for p = co.

Theorem 3.1.4. Let d € N, o € (0,1) and 5 € (0,2) such that d > 2. Assume
the hypothesis (H1) holds. Then Y (t,-) € Lﬁm(Rd) and satisfies

YY) o St t>0.

a—28">°

Now, we can establish that Z(¢,-) is a locally Lipschitz function in L, and it is
an approximation of the identity. To this end, we first show that Z and Y satisfy
the following scaling property.

Lemma 3.1.5. Let t > 0, v € R%. Then
_ad _a
Z(t,x)=t 2 (l,t 5:15)

and .
Y(t,2) =t 5y <1,t*ﬁx) .
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3.1. FUNDAMENTAL SOLUTIONS

Proof. It is well-known that the Fourier transform in the spatial variable of Z,
denoted by Z(t,¢), is

Z(t,€) = Ean(—t"¥()), t>0, (3.21)

see, e.g. [34, Sub-section 8.4] and [44, Section 5]). -
Using this and changing the integration variables, where £ = and w,, is given
by (3.2), we get

Z(t, x)
Y
_(%) / B (—t*9(€))dé
% £ el R P
/S T B 0 el @l ol
/ (5 t”g”E (@) (55 )0 (dE) €|
i ——

T

m\Q| 8

Bar(—ruw, )r ' 0(dE)dr

— %
27T /gdl

= t77Z (1,75 Bx

On the other hand, it is also known that the Fourier transform in the spatial variable
of Y is given by )
Y(t,€) =t Eqo(—t9(€)), t>0. (3.22)

Therefore, the previous argument can be applied to
V(t0) = g [ € Bu—t0()d
7 (2m)? Jpa h '
O

Theorem 3.1.5. Let d € N, a € (0,1), 8 € (0,2). Assume the hypothesis (H;)
holds. Then

(i) Z € C((0,00); L,(RY)) for 1 < p < k1. Further, for each € > 0 there exists a
constant C' > 0 depending on €,d,p, o, B such that

1Z(t,-) = Z(s, )|l < C|t — s, (3.23)
holds for all t,s > €. In the case of d < 3, (3.23) remains true for p = co.
(ii) For any v € L,(R?), with 1 < p < oo, we have

i Z(t,) v = v, = 0.
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3.1. FUNDAMENTAL SOLUTIONS

Proof. Let 0 < € < s,t. From Lemma 3.1.1 we know that there exists 7 > 0 between
s and t, with Q. = ||z||*77%, such that

_ad_q

T B it d<pg,

|Z(t,x) — Z(s,2)| < C|t — s| { T (| log(Q)] + 1) if d=p,
ad _d

E, it d> g,

for Q. <1 and
1

d
Z(t,x) — Z(s,2)| < Clt — s|7~F Q. 7
for Q). > 1. Similar arguments as in the proof of Theorem 3.1.1, with the only
difference that there appears () instead of €2, in the spatial integral respect to =z,
show that o
12(t,2) = Z(s, )y < Cult = s #0707 e > 0,

if and only if 1 < p < k;. Recall that the condition if and only if guarantees the
existence of the improper Riemann integrals in the proof.

Indeed, let Q, = |z|?s™ and ; = ||z||’t=. Without loss of generality we
suppose that s < 7 < t, which implies that ; < Q. < Q. When 2. > 1 we note
that 0, > 1 and if . <1 then ©; < 1. Keeping this in mind we have that

_1-4d
/ |Z(t,2) = Z(s, 2)Pdw < C7|t — slp/ ARy,
{Qe>1} -
SCl=sp [ et
Qs>1

+o0o
< Pt — sfpglo / (B -1y,

S

@R

ad)

= Pt — spps~ 5 (175

~—

—-p

For Q). < 1 we need to check the cases d < 3, d = § and d > [, respectively. If
d < [ we see that

/ |Z(t, ) — Z(s,x)[Pde < CP|t — s|p/ T(_%d_l)pdx
{Q.<1} {Qc<1}
S CPIt — s\ps(_aﬂd_l)p/ dx
{2 <1}
= CP|t — s|ps<_%_1)pt%d
= crlt — slrs(CF (s 4 (2 — s))F
S CPIt — s|ps(_%d_1)p (s%d + (t— 3)%(1)

= Pl —sfprs” O (14 (57 e - ) ¥ ).
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3.1. FUNDAMENTAL SOLUTIONS

If d = [ we obtain

/ |Z(t,x) — Z(s,x)[Pde < CP|t — s\p/ 7P (log ()| 4 1)P dx
{Qe<1}

{Qc.<1}

S CPJt — s|ps(_o‘_1)p/ ([Log(£2)| + 1)P dx
{Q:<1}

= |t — s|Ps(—oDpge
S CPIt— s\ps(’a’l)p (s 4 (t —9)Y)
= CP[t— sps™ P07 P (14 (s (t — 5))°)

and d > 3, with p < ﬁ, yields

adl

_d
/ |1Z(t,x) = Z(s,z)|Pde < CP|t — s|p/ O s G
[Q.<1}

{Q.<1}

< CP|t — S|p/ T(_a_l)pHIH(B_d)pdlL‘
{2:<1}

IR

< CP|t — s|Ps(Talp /t H(B-dp a1,

=CP|t — S‘Ps(al)pta(;—ﬁpngl

— CP|t — sps™ F (17) (1 e s))ap—%d”%d) |
This implies that

1Z(t,) = Z(s,)l, < Cult — sls~ F =07 (14 (57 (8 — 5))F)

Withk:%Wheneverd<ﬁ,k::%Wheneverd<ﬁandk;:a—%‘l(1—z—1))

whenever d > 3. Nevertheless, the factor s~!(t — s) does not affect the results of our
work and therefore it will not be considered. Thus, it makes sense to assume that
7, between s and t, is independent of x.

In order to get (3.23), we use the fact that 7 > e. Thus,

1Z(t,7) = Z(s, ), < Cilt — sfe”F (75)

for all ¢,s > € and we take C' = C’lef%d(k%)*l. This proves (i).
To prove (ii), let v € L,(R?) with p > 1. From (3.21) and since ¥(0) = 0, we
have

/ Z(t,x)de = Z(t,0) =1, t>0. (3.24)
R4

Now, for ¢ > 0 define ¢;(z) = =% 7 (1,t_%x>, r € R% By (3.24) it follows
that ¢, xv € L,(R?) for all p > 1. By applying the Minkowski’s integral inequality
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3.1. FUNDAMENTAL SOLUTIONS

we obtain

pdm);
< /Rd ( y [o(x — t5y) — v(x)!pr(Ly)dx);dy
= [ 20l = #35) = o0l

[ (vle = t9) = @) Z01. )

Since [Ju(- —t#y) —v(-)|, = 0 as t — 0 and [[v(- — t7y) — v(-)||, < 2|jv]l,, we apply
the dominated convergence theorem to the last integral concluding Z(t,) x v — v
in L,(R?) as t — 0. O

In the same way, we can establish that Y (¢, -) is locally Lipschitz function in L,

and that g#(t)Y(t, -) is an approximation of the identity in L, as ¢t — 0.

Theorem 3.1.6. Let d € N, a € (0,1), 5 € (0,2). Assume the hypothesis (H1)
holds. Then

(i) Y € C((0,00); L,(R%)) for 1 < p < ky. Further, for each ¢ > 0 there exists a
constant C' > 0 depending on €,d, p,a, 8 such that

1Y (t,) =Y (s, )ll, < Clt = s, (3.25)
holds for all t,s > €. In the case of d < 2[3, (3.25) remains true for p = co.

i) For any v € L,(RY), with 1 < p < 0o, we have that
p

= 0.

p

lim
t—0

Y(t, )xv—v

9a(t)

Proof. The proof of (i) is similar to the one we used in Theorem 3.1.5 part (). Such
arguments and Lemma 3.1.2 imply that

IVt ) = Y (s, )l < Calt — sfs™ 5 (70)02 (14 (572t — ))F) |

with k = % whenever d < 203, k = 270‘ whenever d = 25 and k = 2a — %d (1 — 1—1)>

whenever d > 23. Again, the factor s7 (¢t — s) does not affect the results of our work
and therefore it will not be considered.
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The key point to prove (i) is Lemma 3.1.5 and (3.22), because

1
Y(t,x)dr =1, t>0.
goz(t)/Rd (t,)

]
We finish this section by proving the following relation between the fundamental

solutions Z and Y.

Lemma 3.1.6. Let fivred v € RI\{0}. Under the same assumptions as in Proposition
3.1.1, Z and Y satisfy

Y () = %(ga $Z(.7), t>0.

Proof. From (3.22) and Fubini, we have that
t

(g1—a * Y (-, 2))(t) :/0 gi—a(t — 8)Y (s,2)ds

- /ot (Ft(zj):)y [(zylr)d /R €857 Bg o (—0(€)s%)dE | ds

iz ' s o o
¢ [ g B (s dsde

= ar .

On the other hand, using the definition of E, , given in Section 1.2, it follows that

S S ()
=) D T¥(O)s) kzo Tlhata) (—sp

By integrating respect to s, we obtain

e e S (U@ [t
/0 (t — s)aEa’a( PlE)s%)ds = (ko + ) /0 (t — s)ad '

In the last integral, the substitution s = t7 yields

t kata—1 1 tka ka+a—1
/ S—adS :/ T—adT.
o (t—5) o (1-7)
We note that this improper integral exists because o € (0,1). By using Beta B and

Euler Gamma I functions, we get
[(ka+ a)(1 — «a)

1
/ rhete=l(1 — )= ldr = Blka+ a,1 — a) =
0

I'(ka+1)
and thus
vt e () Tkt )T(1 —a)
/0 [T ) Do —¥(§)s%)ds = 2 T(ka+a) T(ka + 1)

k=0
=T'(1 — @) Ea 1 (=9 (§)t7).
Using this in the first part of the proof, we conclude that
Z(t,x) = (g1-a * Y (-, 2))(1).

The convolution with g, and the derivative w.r.t. the time complete the proof. [J
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3.2 Local well-posedness

Due to the properties of the pair (ga, ¢1-a), Wwith 0 < o < 1 (see Section 1.4), and
under suitable conditions, the problem (3.1) can be rewritten as the semi-linear
Volterra equation

U+ Go * Ua(—iV)u = ug + A go * |u]?  u.

This fact is particularly exploited in Section 3.4. However, in this section we deal
with the corresponding integral representation for mild solutions in the sense of
Volterra, which leads to fixed points of the integral equation

u(t,z) = /]Rd Z(t,x — y)uo(y)dy + /\/0 /Rd Y(t—s,2—y)|uls,y)|"  u(s, y)dyds.

(3.26)
In this section, by a local solution of the Cauchy problem (3.1) we understand the
solution w of the corresponding integral equation (3.26) (the so-called mild solution)
belonging to the Banach space

Er := C([0,T); Ly(R") N Ly (R) N C((0, T}; Loo(RY)),
with the norm

ad
loll, == sup (ot + oGt )l ) + sup ¢35 fo(t, ).
te[0,T te(0,7]

We define on Er the operator M given by

M) (t,z) = /

R4

t
Zlta=yuo(dy A [ [ Y(e= sz y)lols)l ol pdyds
0 Jrd
(3.27)
where uy € L,(RY) N Ly (R?) is a given data and v € Er. The space L,(R?) N Ly (R?)
is equipped with the usual norm |||y + [|-||,,-

d>pj,

d
We also need to define the number x := < 7’ _
1, otherwise.

Theorem 3.2.1. Let a € (0,1) and 5 € (0,2). Assume the hypothesis (1) holds.

Let A € R and v > 1. Suppose that max (1,/@, d(vﬂ—1)> <p<oo. Ifuyge L,(RYH)N

Li(RY), then for some 0 < T* < T the operator M defined by (3.27) has a unique
fized point in Ep«.

Proof. Since ug € L,(RY) N Ly (R?Y) and Z(t,-) € L (RY), it follows that Z(t, ) xuy €
L,(RY) N Ly (RY) for each ¢t € [0,7]. Condition max(1,x) < p < oo and Young’s
inequality for convolutions imply that Z(, ) xug € Lo (R?) for each ¢ € (0, T}, since
there exists a ¢ such that %+% =land 1 < ¢ < Ky, thus Z(¢,-) € L,(R?). We recall
that x; was introduced in Theorem 3.1.1. Furthermore,

1Z(t, ) xuolly < ([Z(E, )l [[uoll, = lluolly

1Z(t, ) *uoll, < [[Z(L, )l luoll, = lluoll,, . (3.28)
_od

1Z(t, ) *uoll o < 12, uoll, St 7 [luoll,,-
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The continuity of ¢ — Z(t,-) x up in [0,7] with respect to the norm topology on
L,(R%) N Ly (R?) follows from Theorem 3.1.5. The continuity in (0,7] with respect
to the norm topology on L. (RY) follows from the same considerations mentioned
above for p and from Theorem 3.1.5 part (7).
t
Let us consider ¢t — / Y(t—s,)x|v(s, )| u(s,-)ds, where 0 <t < T.
0
Previous arguments together with the Minkowski’s integral inequality and the

ady
fact that |[|[u(s, )" o(s, )|y < s~ 5

From Theorem 3.1.3 it follows that

‘ /Oty(t —5,) % |u(s, )" (s, - )ds

||v|| Yo(s, )|l for s > 0, produce

/0 Yt —s,) % (s, )~ u(s, )ds

<ol [ e sl

ad(y—1)

t
Sl [ (= o155 as
1 0

Condition d”ﬁ Y < p < oo yields
t L _ad(y=1)
[ vie= s wlots )P uts s S ol
0 1
with y .
0 < o — m < 1.
Bp
Similarly,
! ) _adG=1)
| vt s wlutsaros, 9ds| S ol e
0 P
Therefore,

/0 Y(t—s,-)*v(s, )" tu(s, )ds /0 Y(t—s,-)*v(s, )" (s, )ds

ad(v 1)

S vl £

.

1 P

This shows that

whenever ¢ — 0, and that

—0
Lp(Rd)le(]Rd)

/0 Y(t—s,-)*v(s, )" o(s, )ds

/0 Yt — 5, % [v(s, )" u(s, )ds € L,(RY) A Ly (RY

for t € [0, 7.
Again, condition max(1,x) < p < oo and Young’s convolution inequality imply
that for any t € (0,7], Y(t,-) € L,(R?) with 117+E =1land 1 < g < k2 (see Theorem
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3.2. LOCAL WELL-POSEDNESS

3.1.3 and note that ky > k;). Hence, Y(t — s,-) x |v(s, )" 0(s,+) € Loo(RY),
0<s<t.
Further, condition max(1, k) < p < oo also implies that 0 < ip < 1. Thus,

¢
‘ o)

t
< [ = sl el P ol ds

/0 Y(t—s,-)*v(s, )" (s, )ds

ad(y—1)

t
Slolly, [ (= o) Bt s
0

i t
2 Q ad(y—1) a d(v—1)
S S KR e d3]

_ad(y—1)

< lullY P\ "Bl pb 3 v ' —gyta—l
< HU”ET 5 S Bp dS + 5 (t — 3) Bp dS
0 5

ad _ad(y—-1)

< . t T T Bp
< ol (4 <oo

t
The continuity of t — / Y(t—s,-)*|v(s, )" v(s,-)ds in (0, T] with respect to the
0

norm topology on L,(R?) N L;(R?), it follows from conditions on p, continuity of v

and the property (2.14),
[a[*a =6 S [a = b[(lal®+[b]°) S |a = b|(|al + (0] ), a,beR,c>0.

Indeed, suppose 0 < ty < t without loss of generality. We have that

/0 Y(t—s,-)*]U(S,-)P‘lv(s,-)ds—/OOY(tO—s,~)*|v(s,-)|7_1v(s,-)ds

1

to
: / 1Y (s, ) lllfo(t = s, )" ot = s,-) = [o(to = 5, )" o(ty — 5, ) 1ds
0

t
+ [ IV llote = 5.7 o = 5, uds
to

fo ad(y-1) ad(y—1)
Sholie [ 5 (0= 95 4 0 - )75 ) ds
0

t ad(y—1)
+ ||u||7;T/ (1 — 5) " ds
to
-1 to a1 _ ad(y-1) o t a1 _ad(y-1)
Slollge | s (to—s) 7 ds+|ollp, [ s*(t—s)" 7 ds
0 t
ad(y—1) ’

-1 ,0— _ad(y=1)
Sl ete ™ +lvllE, (& —t)* o
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3.2. LOCAL WELL-POSEDNESS

Similarly, we obtain that

/0 Y(t—s,-)*|v(s,-)w—1u(s,-)ds—/0OY(tO—s,->*\v(s,-)|v—1v(s,-)ds

—0
p

whenever t — tg.

t
Now, for the continuity of ¢ — / Y(t—s,-)x|v(s,)|" tv(s, -)ds in (0,T] with
0

respect to the norm topology on L., (R?), we find that

/0 Y(t—s,-)*v(s, )" to(s, )ds — /0 0 Y (tg—s,-) % |[v(s, )| u(s, -)ds

o0
to
< / 1Y (5, Malllott — 5, )P 0t = 5,-) — ot — 5, ) 0(to — 5, ds
0
t
+ LIV llllete = 59070t = 5. ds
to
—1 to ,aid+ —1 70“1(”*1) 7U¢d("/*1)
Sholl's [ B (- - o)) s
0
t o ad(*)
+|yv||'gT/ sl _ o g
to
_1 tO _M+ 1 _Dcd('yfl> t _ﬂ+ 1 _ad(’yfl)
snvn;gTs/ sl g ds+||v||gT/s ARSI )
0 to
ad 4o adi-1) ad(y—1)

— _ad
Sllols, eto ™ T ol to (= t0)* TR

Up to this point, we have proved that the operator M given by (3.27) is well defined.
Now, let v,w € Ep. Previous arguments show that

M (0)(E, ) = M(w)(E, )],

< IM/O 1Y (=5, [[lo(s, ) (s, ) = Jw(s, ) Hw(s, )] ds

t
—1 a1l —
S (oller + llwlle,)” ||v—w||ET/(t—8) T ds
0

< (ollr + lwllzr) ™ o = wl g5
< (ollr + lwllz,) ™ o = w]l g, 75
In the same way we estimate
M)t ) = M), S (ol + lwlls) ™ o = wllg, 725
Similarly,
_ad_adi-1)

IM(@)(2,) = M)t )l S (0llzr + lwlle) o = wllg 55

and we have

ad 1 _ad('yfl)
tor M), ) = M(w)(E, )l S (vller + lwlle:) v = wlle %5
1 _ad(y—1)
S (loller + lwlle,)™ v = wllg, 7% %
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3.2. LOCAL WELL-POSEDNESS

This shows that

o 2dty=1) _
IM(v) = M(w)l g, < CT* 5 |lv = wllgy (Jolle, + lwle,) . (3.29)
Besides, we derive from (3.28) that
12 % uoll . < Cil[luolls + [luolly)- (3.30)
Let T* € (0,T) and R = 2C||uol| 1, ®d)nL,re)- We consider the closed ball
Br« g ={w € Er : [|w|/g,. < R}.

Our aim now is to obtain a suitable 7™ such that M is a contraction as an operator
Br+« p — Br- g, thereby existence and uniqueness of a fixed point of this operator
follow from the Banach fixed-point theorem.

First, we find a condition on 7 such that M(Bp« g) C Br« . Let w € Bp« g
Using (3.29) with v = 0 and (3.30), we obtain that

(’Y —1
Nl (ells,.)

[M(w)] . < Cl||U0HLp(Rd)mL1(Rd) + Co(T*)*

R _(7
:§+@@w

il

Therefore, we need to set the condition

7 1 R
Co(T* )5 R < 3 (3.31)

On the other hand, let v,w € By« g. Using (3.29) we get

£\ Q— (v _
M) = M(w)|| .. < Co(T7) HU — gy ([0llp + wllEp) ™

ad(y—1)

< Co(T)* o |lv — wllp. (2R)

Consequently, we also need

dv

Oy (T")* % (2R)"~ (3.32)

Thus, for sufficiently small 7%, the requirements (3.31) and (3.32) are satisfied.
For the uniqueness, we want to conclude that the integral equation (3.26),

t
utia) = [ 2t = yuoty + 7 [ [ V== g)luts ) uls g)duds,
R4 0 JRd
can only have at most one solution (fixed point) in the Banach space
Er = C([0,T); L,(RY) N L1 (RY)) N C((0, T}; Lo (R?)),
with the norm

ad
[0l = sup (1ot ), + oGt )l + sup 15 flo(t, ).,
te[0,1] te(0,T]
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3.3. GLOBAL SOLUTION WITH SMALL INITTAL. CONDITION

whenever 40=1 ~ 1.
Bp

Indeed, we suppose that there are two solutions, u; and us, of (3.26). Using the
property given by (2.14), it follows that

lua(t) — w(®)], < A / 1V (= s, lallfa (s, ) (s, ) = [us(s, )P (s, ) [lnds
L A / (t— )" s~ ™5 Jun(s) — us(s)|ds.

By applying Lemma 1.2.1, with ¢ = 0 and ¥ = %, we obtain the desired

result. O
3.3 Global solution with small initial condition

In this section, by a global solution of the Cauchy problem (3.1) we understand the
solution u of the integral equation (3.26) belonging to the Banach space

E := O([0,00); L,(RY) N L1 (RY)) N C((0,00); Loo(RY)),

with the norm

ol <= sup (<t>ﬂd<1’
t>0

*@\H

ote, ), + Bote, ) +sup {13 @3 el

t
where 1 < p' <p, (t) :=V1+t? and {t} := )

As in the previous section, we define on E the operator

Me)(ta) = [ Za=punlder [ [ Yi—samplotsn s gdyds

uo € Ly(RY) N Ly (RY) is a given data andvEE
Let e Randy>1. Let1 =p' < % (7 1)Wheneverd<6,0r <p < (7 1)

d(y=1)
B
and p’ guarantee the existence of 1 < ¢ < k1 such that

whenever d > 5. Suppose that max (1 K, ) < p < 0o. These conditions on p

1 1 1
-+ -=1+-,
[ q r
considering r € {1,p,o0}, where [, ¢ and r are related to Young’s convolution
inequality, that is,
1Z(t, ) *uollr < 1 Z(,-)llqlluolli;, =0

We note that for » = 1, this is possible only if [ = ¢ = 1. Similar situation we

have for Y. For r = 1 we can not get a factor of time estimating ||Z % ug||; because
|Z(t,-)|ls =1 por all t > 0.
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3.3. GLOBAL SOLUTION WITH SMALL INITTAL. CONDITION

These conditions, together with Young’s convolution inequality and a result of
interpolation, yield the following bounds.
1Z(t.) % unll, < 12(, )], lluoll, = [[uoll, for al ¢ > 0.
12, -) % uoll, < [|Z(£, )l [luoll, = [luoll, for all 0 <# <1.
(

12(t, ) % woll.. < 1Z(t), luoll, S 5 Juoll, for all 0 < ¢ < 1.

_ad _od
1Z(t, ) *uollo < [1Z(E ), uoll,, < ¢ 5 [uoll, < ¢ 5" max([luolly, [[uol[) for
t>1.
Therefore,

() ,
ad
12t ) % uoll,, < | Z(£, )l luoll,, St 7 (=2) max(fu 1. [[ual,) for all t > 1.
()
()

ad (1 1 ad ad
sop (0762 1209wl + 120,95 wll, ) + 5w 0 1200wl
S (Juolly + [luollp)-

For 0 <t <1 we have that

/0 Yt — s,-) % o(s, )~ (s, )ds

1

< IV = sl P (s, s

t
S ol / A

d

t

S R e
0

S ollpt= 507D < ol

For ¢ > 1, we use the fact that o — % > 0 and that o — % < 0. Choosing
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3.3. GLOBAL SOLUTION WITH SMALL INITTAL. CONDITION

t
O<c<§wegetthat

t

Y(f—S ) * [u(s, )" (s, )ds

1

/I!Yt—s Vallle(s, ) to(s, ) ds
< el / (t — 5)2 L5 B0 (5~ F OV (E5) s

t

S lollz [/2(15 - S)O‘_ls*%(%l)<3>‘?(7—1)(p—1,_%)d8
0

—el(-1)(F-1) pt
t B p P
+<§> /(t—S)“ s~ B0 Nds

2

o

S il ad(—1) . adt-1)
Bp By’

t a_gTjd/('Y_l)
Stolls [+ (5) S ol

For 0 <t <1 we get

t

i Y(t—s,-)*|v(s, )| to(s,-)ds

L) ey (e <t>—°;fw—1>(;—;
_|_

o — o —

p

t
< [ = s lllots )P (s, llds
0
t 1y~ -1
Sl [ (= s)1sm 50 (g0
0

t
1 _ad(._
< ol / (t — 5)* s 50 Vs < |1

S e
|
B =
~—
—
»
S~
|
)
~—~
&Y
|
S|
~—
QL
»

For t > 1, the fact that ||v(s, )|, < max(||v(s, )|, ||v(s,)l,), s > 0, together with
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3.3. GLOBAL SOLUTION WITH SMALL INITTAL. CONDITION

the condition F < 1, yields

(t—s,-) % |v(s, )| o(s,-)ds

/||Y Walllo(s, ) (s, )l ds
S ol 1/ (t—S)f%d(F")w ity ”(sf%d(”’l)(ﬁﬁ)uv(&.)||p,ds
0
t
Sl [ - o) F G- F o0 G-,
0
ad t 1 ad _afd( _1)<i_l>
g||v||7Etap/(t_S) $ra1 8- - FO0-D(-3) g
0

t

a 2 a @ ad. 11
S ||v||gtﬂTZ [/ (t — 3)_T§+“_1S—ﬁ(7—1)<3> 2 (v-1) (& ;)ds
0

t
S s>55*“s‘%i”—”<s>?<“><éé%zs]

2

_ad
By .
= “UH”M [(%) p / (t— s)a_ls‘@(v—1)<5>’7(%1)
0
o= 1)<i’ l) G5 (=1) gt
! B ’ ¢ 51) —ad L1
+ <_> <—> / (t —s) B ds
2 9 .
13 _[?T;i/ t 5(7 1)(% %) t _%Z(’Y—l)—g—;-‘ra
< 'Ytﬁ C _ v t
o))

—ed(y-1)(%-1) —52(1—-1)+a
Sl fow(5) T T (5) 7

N+
au
Q
s
~~
[

o~

~Y

Now, for all 0 <t < 1, as in the proof of Theorem 3.2.1, we obtain that

t

Y(f—s ) xfos, ) (Sw)ds

/HYt—s M o, o, )l
S e I L
0

1
7

%>ds
t ad

< ol / (t — 5)~ ol H0D g
0

_ad
S llvllgt™ 5.
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3.3. GLOBAL SOLUTION WITH SMALL INITTAL. CONDITION

For all t > 1 we find

t
< IV = s ol P o, s
t

/0 Y(t—s,)*v(s, )" (s, )ds

o0

ad

S ||U||75/ (t — s)fgizi*a*lsf%;l(%l)<S>—7(y—1)<p _%)ds
0
S Jollpt i

Using these bounds and from a straightforward inspection of the proof of Theorem
3.2.1, it follows that the operator M is well defined on F. From the beginning of
this section, we also get the estimate

1Z % uollp < Cr([[uolly + [luollp)-
In the same way, as in the proof of Theorem 3.2.1, the following estimate
-1
[M(v) = M(w)|p < Collo —wlle ([v]le + [[wlle)”

holds, considering as before the cases 0 <t < 1 and ¢t > 1, respectively.

Finally, if uy € L,(R%) N Li(R?) is sufficiently small, then the operator M also
satisfies the proof of Theorem 3.2.1 with the corresponding closed ball on E, that
is, the conditions (3.31) and (3.32) are satisfied without the restriction on the time.

As the uniqueness of the local solution was shown, similar situation happens for
a global solution of (3.26) in the Banach space

E = C([0,00); Ly(RY) N Ly (RY)) N C((0, 00); Loo(R7)),

with the norm
afd(%_;) ad ad
o]l = sup &) 7\ ot ), + o)l +St1>1§{t}ﬂp &) ot )l -

t

Recall that 1 < p/ < p, (t) := V14t and {t} = —

d(;’;l) < 1 for applying Lemma 1.2.1.
Consequently, we have proved the following result.

. Again, we use that

Theorem 3.3.1. Let a € (0,1) and B € (0,2). Assume the hypothesis (H1) holds.
Let \€e Randy>1. Let 1 =p' < %(’y—l) whenever d < 3, 0r%<p’< %(’y—l)
whenever d > 3. Suppose that max (1, K, dﬁg”) <p<oo. Ifuy € L,(RY) N L (RY)
15 sufficiently small, then the operator M has a unique fixed point u in E and the

optimal time decay estimate

1

ad 1 ad
)l + % G )l + 657 u()lo S Gl + ol

18 true for all t > 1.
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3.4. GLOBAL SOLUTION WITH NON-NEGATIVE INITIAL
CONDITION

3.4 Global solution with non-negative initial
condition

In this section we consider the operator (—Ws(—iV), C5°(R?)) on the Hilbert space
X = (Ly(R%),||-||2). First, we have that (—Ws(—iV), C5°(R?)) satisfies the posi-
tive maximum principle since its symbol ¢ (independent of z) is a continuous and
negative definite function on R? (Corollary 2.1.1, [29, Theorem 4.5.6]). It is also
symmetric because 1 is real. Consequently, (—Wz(—iV), C5°(R?)) is closable (|63,
Theorem 3.6]).

Defining the domain of —Wz3(—iV) as D(—VUgz(—iV)) = C’é’o(]Rd)H'”q’ﬁ’L2 —: HJ(RY),
where the closure is respect to the graph norm H~||?I,B’L2 = ||-|IE+1s(—=iV) ()13 (|29,
Theorems 2.7.14 and 3.10.3]) and Hj (R?) is an anisotropic function space ([29, Sec-
tion 3.10 and Example 4.1.16]), we get that (—Ws(—iV), H) (R%)) =: A generates a
symmetric sub-Markovian semigroup on Lo(R?), (|29, Examples 4.1.13 and 4.3.9]).

As we know (see Chapter 1), a sub-Markovian semigroup is a strongly continuous
contraction semigroup. Therefore, A is closed and Hj(R?) is dense in Ly(R%) (|29,
Corollary 4.1.15]). Moreover, A is a self-adjoint operator (|29, Section 4.7]).

Since A is closed, linear, densely defined and self-adjoint on the Hilbert space
X, it follows that —A is a normal operator (|59, Definition 13.29]) and o(—A) C R.
Moreover, o(—A) C [0,00) because A satisfies |13, Theorem 8.3.2 (i)]. From Parse-
val’s theorem we also have that —A is strictly positive, hence it is 1-1 and satisfies
[59, Theorem 13.11 b)]. Therefore, —A is sectorial (|57, Section 8.1]). Besides, X
belongs to the class HT (see |57, definition in page 216, a characterization in page
217 and page 234]).

This shows that the operator —A belongs to BZP(X) and _4 = 0 (|57, Defini-
tion 8.1 and Section 8.7 ¢)(i)]), furthermore, it satisfies [57, Theorem 8.7 (i)] with
[y — 0.

On the other hand, the Laplace-transform of g, (t) = %, t>0,is gu(s) = s,
Re(s) > 0 (|57, Example 2.1]). This yields

lim |ga(s)| < 0.

S§—00

The kernel g, is also l-regular (|57, Definition 3.4 and Proposition 3.3]|) and 6,-
sectorial with 6, = aF (|57, Definition 3.2|). Therefore, 6, 4+ 6_4 < .
This shows that g, satisfies |57, Theorem 8.7 parts (ii), (iv) and (v)], with w, = 0.
Now, we consider the Volterra equation

t
u(t) = f(t) —I—/ Go(t — s)Au(s)ds, t€10,T]. (3.33)
0
The family of bounded linear operators {S(t)}i>0 on Ly(RY), given by
S(t)v = Z(t,-) * v, (3.34)

is a resolvent for (3.33). That is, S satisfies the following conditions (|57, Definition

75



3.4. GLOBAL SOLUTION WITH NON-NEGATIVE INITIAL
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1.3]).

(S1) : S(0) = I and S(t) is strongly continuous on [0, c0),
(S2) : S(t)v € D(A) and AS(t)v = S(t)Av, for all v € D(A) and ¢t > 0,

t
(S3): S(t)v=wv +/ ga(t — s)AS(s)vds, for all v € D(A) and ¢t > 0.
0

Indeed, it is easy to see that S(t) is a bounded linear operator and (.S7) is satisfied
from Theorem 3.1.5. For (S), let t > 0 and v € Hj (R%). We have that

15 (#)vll2 < flvfla < o0

and
[ iy ISOu@Pds = [ 1+ 1PV E (v P
< [ 4+ PP RE P < o.

Besides, denoting by (-,-) the usual Euclidean inner product on R%, we obtain

AS(t)0 = s [ 0 (-u(€) S
_ )
~ G [ U B v e
— 1 ez( o 0l
o /. (—10(E)) () (E) e
= 1 e’ ) 4«
- /. (—t(€)) A (e
= S(t)Av.

The last condition (S3) also holds because

/o Ja(t — 5)AS(s)vds

= / Galt = 5) (er)d /R () By (—50(8))0(€)deds
(t —s)ot

1 € (— ol ' o .
o [ eoviente) [ U b @i

B 1 e N t (t . S)a 1 k ak
~ (2n) /Rde< £>( 1/}(5))“(5)/0 (a) ; ak:+1 sdg§
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CONDITION
1 i) R > i taJrak
- o /R OO X O Fg
1 e e (= (€))L (g
= (27T)d /Rde< §>U(£); F(a(k+ 1) n 1) ¢
= G [ Baa(—0() — 1 de
(2i)d /R By (—t(€))0(§)dE — @ /R (6 dg
= S(t)v —v.

Since a strong solution u of (3.33) is also a mild solution, from [57, Proposition 1.2
(i)] it follows that u satisfies

d

— /t S(s)f(t—s)ds, te][0,T]. (3.35)

uh =2,

The equation (3.35) is called the variation of parameters formula for the Volterra
equation (3.33).

Now, let u the unique local mild solution of (3.1) given by (3.26) on [0, 7], under
the assumptions of Theorem 3.2.1. Define

gt)(z) = g(t, ) == Nau(t, )" u(t,z), 0<t<T, =xecR% (3.36)

We claim that g, * g(t) € Ly(R%) for 0 <t < T, whenever 2 < 1. Indeed,

6

lga* 9}l ety = </1Rd (g0 % 9(0) () dx)é

(0 T o) o)
<[ % (f |g<s,x>|2da:)éds

t _adtz=1)
§||ﬂ||%;1/(t—s - i (/ |usa:|dx> ds
0

iy — ¢ 1 _ d(v
S e e L COBIE
0

ad(y—=1)

t
SIWHE;/O@—S)MS_ fr max(([u(s, )1 [[u(s, -)lloo)ds

t
~| A — a1l — (w -
STl [ = st 5 s + s, ) )s
t
~11 a-1,—29G=0
SIl, [ a—smts 5 (1578 as
0

ad(y—1) ady
Bp

+ta*67> < 0.

< Nl (#
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3.4. GLOBAL SOLUTION WITH NON-NEGATIVE INITIAL
CONDITION

From here, we get
Jga *g(0) = 0.
In the same way it can be shown that g, * g € Ly([0, T]; Ly(RY)). We additionally

have that g € Ly([0, T]; L2(R?)) whenever % <1

Let up € D(A). Consider the equations of Volterra

u(t) = ga * g(t) —l—/o go(t — 8)Au(s)ds (3.37)
and .
u(t) = ug + /0 ga(t — s)Au(s)ds, (3.38)

for ¢ € [0, 7.

Conclusions (a) and (b) of [57, Theorem 8.7], using B = 0 and the Banach space
X4 = (H)(RY), |-llws,L,), imply that (3.37) and (3.38) have a unique a.e. strong
solution u; and wus, respectively.

Therefore, u := uy +uy € Ly([0,T]; X4) is the unique a.e. strong solution of the
Volterra equation

u(t) = ug + ga * g(t) + /0 ga(t — 8)Au(s)ds (3.39)

and satisfies (3.35) with f(¢) :==up + go * g(t), t € [0,T].

Next, we need to prove the following result using the operators S(t) given by
(3.34).

Lemma 3.4.1. Let o € (0,1) and § € (0,2). Assume the hypothesis (Hi) holds.
Let A € R and v > 1. Assume that u is a fixed point of the operator given by (3.27)
on Er with ug € Ly(RY). If % < 1, then u satisfies

u(t) = 4 / S(s)f(t — s)ds,

where f(t) := ug + g * g(t) and g like (3.36), t € [0,T].
Proof. Let v € R%. We define

F(t,s) = /Rd Jo ¥ Z (2 —y)(t — 5)g(s,y)dy

:/Rdg(S,y) [/Ot_s%z(ﬂx—y)dr} dy
- /Ot_sa_;(—_a;)al/ Z(r,x = y)g(s, y)dydr

t—s a—1
t—s— @
< ||u||7ET / —( s —7) s~ i Z(t,x — y)dydr
0

S flull, s~ 5 (¢ — s)°.
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That is,
G ¥ Z(-, o — )t —38)g(s,-) € Li(RY), 0<s<t t>0. (3.40)

Without loss of generality, let 0 < ty5 < t. The same arguments as in the proof of
Theorem 3.1.5, part (i), but using the bounds of Y given in Lemma 3.1.2, yield

Y(t—s,a2—y)gls,y)dy— [ Y(to— s,z —y)g(s,y)dy
R4 R4

Y=o —y) =Vt — .2 =y)llg(s,y)ldy

<||u||7 - /|Yt—sx—> Y(ty— 5,2 — )| dy
Sl s B Y (E = s, — ) = Yito — 5,2 — )]s
S Hlullh, s~ 5 [t — tol(to — $)°72 = 0

whenever t — .
This, together with (3.40) and Lemma 3.1.6, proves that

oF
E(ﬁ S) = Y(t — 5T — y)g(sa y)dy7 (341)
R4

which is continuous w.r.t. ¢t € (0,77, for 0 < s < t. Therefore,

t t aF
/ / Y(t—s,z—y)g(s,y)dyds = / —-(t,5)ds.
0 JRd o Ot

From the previous work to (3.40) we also obtain

¢
/ F(t,s)ds
to

t ad
< / B (t — 5)%ds < ty 7 (t —to)*T
to

and thus

1 t
lim / F(t,s)ds = 0.
t—to t - tO to

The mean-value theorem and the dominated convergence theorem yield

d t 1 t to
_ t;t — (/ F(t,s)ds — / F(to, s)ds)
t=tg 0 0 0 0

7 = lim
I I
= lim / [F(t,s) — F(tg, s)] ds + lim / F(t,s)ds
0 t=to T — 1o Jy,

t—to t — 1o

o OF
= lim — (t., s)ds
t—to [y Ot

. OF
_/o lim E(tc,s)ds

t—to

F(t,s)ds
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because tg < t. < t and the equality (3.41) implies

OF
S / Y(te — s,z —y)lg(s,y)|dy
Rd

_<t075>
_ady
< flullp, s~ % / Y(t. - s,z — y)dy
Rd

ot
_ady (tc — S)a_l
S lls™ =5y —

S Hlully, s~ 5 (t — 5)°".

Consequently,
d [* LOF
% F(t,s)ds = i e —(t,

In view of (3.41), the non- hnear part of (3.27) can be written as

(t — — Ydyds = (t,
//Rd S, x g(s,y)dyds /01% s)d

= — F(t s)ds

t,s)ds.

//Rdga*Z x —y)(t —s)g(s,y)dyds

//Rdg"‘*z z—y)(s)g(t — s, y)dyds.

Using Fubini and convolution respect to the time, the integral over R? is

/OS /Rd %Z(ﬂ x—y)g(t — s,y)dydr

and hence

O\H\
—
e}

Q
*
N
—~
8]
|
<
N—
—
N—
N}
—~
~
|
[V
<
N~—
QU
<
Q
n

I
S~

~

~+

~

~+

— T S T T —
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CONDITION

Therefore, the operator (3.27) evaluated in u has the form

u(t):%/o S(s) (up + ga *g(+,)(t —s))ds, te€][0,T].

[]

By Lemma 3.4.1 and uniqueness, we obtain © = u. Besides, (3.39) is equivalent
to

O (u — ug)(t, x) + Va(—iV)u(t, x) = Mu(t, z)|tu(t,x), te€(0,T], v € R%
u(t, )|mo = uo(z), =z €R<
(3.42)

Indeed,

u(t) — /0 Ja(t — 8)Au(s)ds = ug + go * g(t)

© Gi—a ¥ ul) + g1-a * go ¥ Va(=iV)u(t) = gia * (U0 + go * 9)(1)
S Groa * (U —ug)(t) + 1% Ug(—iV)u(t) = 1% g(t)
& %gla * (u—ug)(t) + Ug(—iV)u(t) = g(t).

Now, we define u™ (¢, z) = max(u(t,z),0) and v~ (¢, z) = max(—u(t, x),0).

From |70, Section 2|, it is known that if v € Ly([0, T]; R), g1_o*v € W5 ([0, T]; R)

d
and (g1-q *v)(0) = 0, then the operator Ofv := (91 « *v) has a Yosida approxi-

d
mation %(gl,a,n*v) in Ly([0,T];R) as n — oo, with nonnegative and nonincreasing
G1—an € WE([0,T);R) for all n € N. From this work, one can also derive

v i(gl an *0)(t) < —li(gl,an (v )?)(t) ae te(0,T), neN. (3.43)

dt 2 dt ’
Next, we use these results to prove that u is a local positive solution a.e. of (3.1),
whenever uy > 0, but non zero, and A < 0. By contradiction, suppose that u < 0
somewhere on (0,7] x R%. Let x € R%L In order to apply (3.43) to u(-,x), we
need the condition %Lpd < 1 to get u(-,x) € Lo([0,T];R). For the requirement

G1—a * u(-,z) € Lo([0,T];R), we have that

T
oo x uCoa)lE = [ lova < ult. 0Pt
0

:/OT /Ot—(t_s)_au(s,a:)ds

I'l —a)

T t d
Sl [ M@—@%wm]

2ad
Bp

2

dt

which is finite because 0 < <land 0 < a< 1.
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d
We also find conditions such that E(glﬂ s u)(-,x) € Lo([0, T];R). For this

purpose, we already know that u € Lo([0,T]; X4) is a strong solution of (3.39) and
satisfies the equation (3.42). Conclusions (a) and (b) of |57, Theorem 8.7]) yield

T
/ |Wg(—iV)u(t,z)*dt < 00 a.e., x€R%
0

d
It % < 1, we also get that |u|7_1u(',:v) € Ly([0,T];R) and %(91704 * o) (+, @) €

Ly([0,T];R) whenever 0 < o < 3. Finally, it can be readily checked that (g;_, *
u)(0,z) = 0 whenever o + 3 < 1

This work allows one to employ the Yosida approximation of ¢g;_,, in Ly ([0, T]; R)
with u. Using (3.43) we obtain

d 1d
— < ———(g1— )2 €. T).
u” dt(gl an *u)(t,x) 2dt(g1 an* (U )7)(t,x) ae te(0,T)

Besides, (g1_an * (u7)?)(0,2) = 0 for all n € N (see e.g., [70, Formula 8] and [33,
Formula 10]). Consequently,

To_d
— t,x)dt
| v e st

<—1/Ti< « (V) (t, 2)dt
=~ 2 o dt J1—an Uu y L

1

= (e * WO 2) F (010 (u))(0,2)

= L (DT 0)

2
<0.
Thus,

[ o < [0 (o= o) st

and applying Holder we conclude that

/ g1 o ku)(t, z)dt

s(/0< >2<t,x>dt)%</f !

dt((gl a gl—a,n) * U)(t, :L’)
< lu™ (- @)l

This shows that

2\ 2
dt)
d

/0 u a(gl o % (u—1up))(t,x)dt <0 (3.44)

a.e., r € R
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On the other hand, if v,w € Er we have that v(t,-),w(t, ) € Ly(R?) whenever
t > 0. Besides, —Uz3(—iV) satisfies |63, Theorem 3.6] and we can write

(Wa=iV)ult, )it o = 5 [ (o) =olta))wlt. ) —u(t.)w(dn)ds (3.45)

2
with a positive kernel v on R¢ such that / ly =z v(dy) < oo.

ri\{z} 1+ [y — 2|
Using (3.42), we obtain

u” (t,2)08 (u — ug)(t, z) = — u (t, 2)Ws(—iV)u(t,r) + A~ (¢, 2)|u(t, z)|" u(t, z)

= U_(t,flf)\ljg(—iV) +( ) ( ,x)\llg(—iV)u_(t,x)
= Au(t, z) 7 (u)? (¢, @)

Integrating over [0, T] x R¢ and using Fubini in a convenient form, we get

/Rd/ “(t, )07 (u — ) (t, z)dtdr = / /Rd (t, ) Ws(—iV)u't (¢, z)dzdt

_|_/0 /Rd u () Ws(—iV)u~ (t, x)dxdt
_A/O [ Jult, ) (1, @)l

From (3.44) and (3.45) it follows that the left-hand side is non-positive and the right-
hand side is strictly positive, respectively. This contradiction shows that v > 0 a.e.
For the case % < a<1we set the parameter p, such that 1 < p < é Due to
this choice, we have that p <57 7 and that 2 < p . Thereby, we can apply similar
arguments, i.e., Yosida approxnnatlon of g1_o in L ([O T);R) and |57, Theorem 8.7]
in L;([0,T]; LQ(Rd)) for obtaining again that u > 0 a.e. Whenever 0 < o < 3, we

fix p = 2. We are now in a position to show the following theorem.

Theorem 3.4.1. Let a € (0,1) and 5 € (0,2). Assume the hypothesis (1) holds.

dy pod pady
Let A < 0, v > 1. Suppose that max (1,/@, 6) <P <0 Gong < <1, < 1

and a + %5 < 1. Ifug € Ly(RY) N Li(RY) N HE(R?) is non-negative a.c., then
there exzsts a unique non-negative global solution u € C([0,00); L,(R%) N Ly (R%)) N
C((0,00); Loo(R?)) to the Cauchy problem (3.1). Moreover, estimate

1_1 ad
fu()ll +1% G p>IIU(t)||p + 57 [Ju(t) loo S ([Juolly + luollp)
is true for all t > 1, with p’ as in Theorem 3.3.1.

Proof. As in Section 3.2, one finds that there exists a unique local solution u € Ep«
for some 7™ > 0. This solution is non-negative a.e., as discussed above, and satisfies

t
ult,z) = / Z(t,x — y)us(y)dy + A / Yt — 8,2 — gluls, ) uls, y)dyds.
R4 0 R4
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3.5. ASYMPTOTIC BEHAVIOUR FOR GLOBAL SOLUTIONS

The positivity of Z and Y yields

u@w)éA;Z@x—waMW-

Therefore,
[u(t, My < ([ Z(2, ) *uoll; < |luollx for ¢ € 0,77,
lu(t, )y < [1Z(t, ) * uoll, < [[uoll, for t € [0,T7],
lu(t, Moo < 1Z(8,-) % w0l S 5 |lugll, for ¢ € (0,77]
and thus we obtain
[ull 2 < Clluoll L, @)L, @e)- (3.46)

We note that the constant C' is independent of 7%, that is, we can apply Theorem
3.2.1 on [T*,T1], with 0 < T* < T}, and the extended solution u € Ep, also satisfies
(3.46).

In particular, ||u(T™)|| L, ®e)nL, @y < Clluoll L, ®a)nL, @ey- This estimate allows to
prolong the local solution for all times ¢ > 0 (see [24, Theorem 1.20]). Since u(7™)
is non-negative and it is the new initial condition on [T*, T}], it follows that v € Er,
is also non-negative. Consequently, the global solution is non-negative.

On the other hand, as in proof of Theorem 3.3.1, we also get for all t > 1,

_ad(1 1
lutt, My < 12t ) *woll, < ¢ % 55 max((luolls, oy,

_ad
[u(t, oo < 1Z(E, ) *uoll o St 7" max(luoll, ||uolly)-

Thus, we obtain the desired estimate. O]

3.5 Asymptotic behaviour for global solutions

In this section we study the L,-decay of a global solution, which was obtained in
Section 3.3 and in Section 3.4, respectively. We recall that in the first case (Theorem
3.3.1), a small initial data is required. In the other case (Theorem 3.4.1), A < 0 and
initial data non-negative are required, which yield a global solution non-negative.

Lemma 3.5.1. Let a € (0,1) and § € (1,2). Assume the hypothesis (Hz) holds.
Then there exists a positive constant C for all t > 0 and y € RY, such that the
estimate

<yl ()5

~

12t =) = Z(t, )]y < CllylllIVZ(E, )l

_d

1s true for 1 < q < TG

Proof. By application of bounds given in Lemma 3.1.3, we have

e — eyl A [l — ey
Z(t,x—y)—Z(t,x)| <C
1Z( Y) (t, )] 1yl {to‘Hx _ ng_ﬁ—(dH) if ||z — ey

=: Olly||D(t, v — ey),
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where ¢ € (0,1). Using an argument as in Hardy’s inequality proof, we get

126 =) - 2l = [ 1260 - - 260 x>|de);
Sloll ([, prtee - ey)dm);
<ol ([ ([ pie.s- sy)ds)qu);
sl [ ([, Dth—sydx) ds

S ylllDGE,

o

We note that || D(¢,-)||, can be estimated in the same way as Z(¢,-) in Theorem
3.1.1 and that ||VZ(t,)|l, S ||D(t,-)]l;- The mean-value inequality completes the
proof. O]

On the other hand, from [16] it is known the following decomposition lemma.

Lemma 3.5.2. Assume that 1 < r < -4, f € Li(RY) and |-||f € L,(R?), then

there exists a vectorial function F € L,.(R%RY) such that

f= ( f(y)dy) do + div F.
Rd
in the distributional sense and

1E1l < Clg, )N

Using this with f = ug, we find that
200w te) = ( [ wals)dn) 206, ofo) + 200, div o)
Ra
= (/ uo(y)dy> Z(t,x)+VZ(t, )~ F(z).
Rd
Let A = / uo(y)dy. Young’s inequality for convolutions yields
R4

12(E,-) *ug = AZ(E, )|, S NIVZ(E gl Fl
SIVZE gl lluoll:

and we get
_1)_a
12t ) g = AZ(E )y S ¢ 5 75 ol (3.47)
Now, the idea is to find conditions such that
1 1 1 d d
—4l=4-, 1<g<—, 1<r<—. 3.48
pjL q+r’ =1 d+1-p’ =" 0 (3.48)
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First, we need 8 € (1,2) since Lemma 3.5.1 requires this for choices of ¢. Besides,
in the case d = 1 is enough p < co but in the case d > 2 we need p < ﬁ. In
this way it is possible to get the estimate (3.47) and the required upper bound on p
allows one to achieve both the L,-norm and the L,-norm for kernel Y. Therefore,

the estimate

HA/OtY(t— 5. % Ju(s, ) [Lu(s, - )()ds — BY (£.)

p

is true for t > 1, with B = )\/ / lu(s, )" u(s, y)dyds, whenever E‘—I‘f,(’y—l) > 1.
R4

0
Here, p’ is the same as in Theorems 3.3.1 and 3.4.1.
Indeed, we have that

/0 Y(t—s,-) % |u(s, )" u(s, ) (x)ds — Y(t,z) /000 lu(s, y) " u(s, y)dyds

R4

= /2 Y(t—s, )% |u(s, )| (s, ) (z)ds +K Y(t—s,) % |u(s, )| (s, ) (z)ds

Y(t—s,2)+Y(t—s,x)) / lu(s, y)|" T u(s, y)dyds

Y(t |U(S y)[" (s, y)dyds

AL
¥

= [ s e s [V sl s e

- / (t—s,2) / (s, )7 s, y)dyds — / Y(t,2) / (s, )" (s, y)dyds
t Rd

2

- /OQ(Y(t,fE) =Y (t—s.2) | lu(s,y)["" uls,y)dyds

Rd

=Ji(t,x) + Jo(t,x) — J5(t,x) — Ju(t, x) — J5(t, x).

Now, we estimate the L,-norm for Ji, k = 1,--- .5, recalling that (7 —-1) < 1,

B,<1and1<p <p.

12ty < / IVt = 5,) % us, ) u(s, =) ds
< / 1Y (= 5 plllats, =) uls, ) s

ad

3 . . w11
Sl [0 - R0ty Fe g,

ad 1
" —2d(1-L)+a-1 .1 . i i
st (£) T [Pyt G
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Choosing 0 < ¢ < & we get

J

c 1
:/ s‘%ﬁ—l)(s)*%(‘**l)(i*%)ds_|_ /2 3—2‘%(7—1)<S>*%d(vfl)(ﬁﬁ)d8
0

[

VIS

S—%ﬁ(v—l)<s>—%d(v—l)<p _%)ds

. t
5/ S_g;i(“*_l)ds—k/2 s A 7D s
0 c

159 (v=1)
< 1 Asemn 1 (E) EA ST A
1—%(v—1) 1—g4(y—1) \\2

We note that 1 — g—‘;(fy —1)>0and 1 — g—;l,(fy —1) < 0. Thus,

t)aﬁdo;)m s

146l % o (5

. —ad(1-1) _7(;/_;) )
However, if £ > 1 we have that t 5 p) <t 7/ and we obtain
ad( 1 1
[t S ¢ F e, (3.50)
We continue with J; and we estimate

1t ) < / 1Y (= 5,-) % Jus, )"~ uls, ) s

< [ Y= s )llallluls, ) uls, )|y ds

— 24 (y—1)
t v —ad L—I)ta
Sl (3) (- sy #73)

2 t
— 29 (v-1) —ad(L_l)iq
oy (1) F ()
Therefore,
ad (1 _ 1\, ad(,_
1, ) S ¢ F ) remgion, (351)
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For J; we have that

el < [CIV = [l oty ds

ad

t
0
t

—2d(1-1)4a-1
<l By 7o ’ S—%Z(V—l)<S>*%(V*1)(§*%)d‘9
~ E 2 0

and proceeding in the same way as in the estimate of J;, we obtain
_ad(1 1),
I st < % ) (352

For J4 we find
[Ja(t, )y < HY(t,-)Hp[ /Rd Ju(s, y)|" " |u(s, y)|dyds

(e 9]
Sl A

t

2
1-£84 (v—1)
Sl ¥ (5) 7

and we get
ad(1 1), _oad
st < ¢ Gs)region, (3.53)

In order to estimate Js, we follow the same arguments as in the proof of Theorem
3.1.5, first part, but using the bounds of Y given in Lemma 3.1.2, that is,

3
1950, < [ 10 =¥ 5l [t pands
N ””’”,5/2 st — 5)_%1@_%)”_23_%(7—1)<S>*%d(vfl)(;f;)d8
0

ad 1 t
N\~ (-g)re-1 e . Cmdr (11
<l (3) [ st =yt H G,

2
ad 1
—g(1-3) -1 4t . .
<l (3) [ st oo e
0
—(1-L)ta-1 L
ship(3) T [ FeGa
0

Now, we proceed in the same way as in the estimate of J; and thus

ad

15t < ¢ F st (3.54)

Gathering estimates from (3.50) to (3.54), we have proved (3.49). This, together
with (3.47), show the following result.
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Theorem 3.5.1. Let a € (0,1) and 5 € (1,2). Assume the hypothesis (Hz2) holds.
Let X € R and v > 1. Suppose that the initial data uy € Li(RY), p and p' satisfy
conditions as in Theorem 3.5.1. Let p < k1 as in Theorem 5.1.1 and g—;('y —-1)> 1.

Assume in addition that ||-||ug € L,(RY), with some r and q as in (3.48). Ifu € E
is a global solution to the Cauchy problem (3.1), then u has the asymptotic behavior

lult,-) = AZ(t,-) = BY'(t, )], = 0

as t — oo, with the constants
A= [ wu(y)dy
Rd

and

B=A / (s, )", y)dyds.
0 Rd
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Chapter 4

A blow-up case

In this chapter we study the behaviour of solutions for the Cauchy problem

O (u —ug)(t, ) + VUa(—iVu(t,z) = |ult,z)| u(t,x), t>0, xR

4.1
U(t,[[‘)|t:0 = Uo(x) > Oa VS Rd) ( )

under the same definitions given in Chapter 3. In this case, we recall that the symbol
of the operator W3(—iV) is independent of z and it has the form

B(E) = [P (Hg—n) . ey,
with

“ull) = /541’9 |’ u(dn), 6e€ ST

We also recall that the Borel measure u(dn) is centrally symmetric, finite (non-
negative), defined on S?'. The basic hypothesis throughout the chapter is the
same as in Chapter 3:

(H1) The spectral measure p has a strictly positive density, such that the function
w, is strictly positive and (d + 1 + [3])-times continuously differentiable on
Sa-1,

Again, we denote by (Hz) to refer to (1) whenever we need to assume that w, is
(d + 2 + [B])-times continuously differentiable on S¢!.

Our aim here is to obtain a Fujita type blow-up result, together with Fujita’s
critical exponent in terms of the parameters of the stable non-Gaussian process.
Besides, we want to show a result for global solutions. For this purpose, we introduce
the following definitions.

Definition 4.0.1. Let a € (0,1), 5 € (0,2) and v > 1. Assume the hypothesis (H;)
holds. Suppose that 1 < p < oo and that uy € L,(R?) is a non-negative function. A
function u is called a local solution of (4.1), if there exists T > 0 such that

(i) u€ C([0,T}; Ly(RY)) N Lo ((0,T) x RY),
(11) u satisfies (4.1) in [0,T].
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A function u is called a global solution of (4.1) if (i)-(i1) are satisfied for any
T > 0. We say that u is a mild solution of (4.1) if u € C([0,T); L,(R%)) N
Loo((0,T) x RY) and it satisfies the integral equation

uta) = [ Zr=puaars [ [ Yie—sa—plutsn)lusgdys (42

forallz € R and 0 <t < T.

Definition 4.0.2. Let T > 0. We say that a function u : [0,T) x R? — R blows-up
at the finite time T of

lim [Ju(t)]c = +oc,

t—=T~

Therefore, our main result is stated as follows.

Theorem 4.0.1. Let o € (0,1) and B € (0,2). Assume the hypothesis (Hy) holds.
Suppose that o = g, that 1 < p < oo and that uy € L,(RY)NC(RY) is a non-negative
function. If 1 <y <1+ %, then all non-trivial non-negative solutions of (4.1) that
admit the representation (4.2) can only be local. If v =1+ g, then the non-trivial
non-negative solutions can only be local whenever the initial condition is sufficiently
large. Moreover, if additionally uy € Lo(RY), then any positive mild solution of
(4.1) blows-up in finite time.

Since the literature on blow-up theorems of Fujita type is quite extensive, we do
not attempt to review it in this chapter. Nevertheless, let us emphasize that the
relation @ = 5 pays a crucial role in the proof of Theorem 4.0.1, which makes a
similarity with what Fujita (1928-) found in 1966 for the case o = 1 working in the
Gaussian framework when 8 =2 and w, = 1.

Before proving Theorem 4.0.1, we give some precise results for solutions of (4.1)
in the sense of Definition 4.0.1.

4.1 Representation of solution in its integral form

In this section we analyse the conditions under which a local solution u of (4.1), in
the sense of Definition 4.0.1, can be represented by (4.2).

Although the subordination principle employed here follows directly from [8,
Chapter 3|, for instance, the point we want to emphasize is the relation

d
Y(ax) :E(qa*Z(Wx))? t>07
in the context of non-Gaussian process, which was proved in Lemma 3.1.6.
First, we recall from Corollary 2.1.1 that the symbol ¥(§) is a continuous and
negative definite function. Thereby, from [29, Example 4.6.29] we know that the
operator (—Wg(—iV), Cs(RY)) satisfies, for any 1 < p < oo, the Dirichlet condition

[ Um0 @ (=17 @de <0, f e OFRY,
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and consequently it is L,(R?)-dissipative (|29, Propositions 4.6.11 and 4.6.12]). In
fact, the density of C§°(R?) in L,(R?) implies that (—¥z(—iV), C5°(R?)) is closable
and its closure (A, D(A)) generates a sub-Markovian semigroup {7} };>o on L,(R?)
which is a strongly continuous contraction semigroup ([29, Lemma 4.1.36, Theorems
4.1.33 and 4.6.17, Definition 4.1.6]). Besides, A is densely defined on L,(R9) (|29,
Corollary 4.1.15]). On the other hand, it is well known that g, is a completely
positive function and belongs to Ly ;,.(RT) (see Section 1.4).

We denote u(t) = u(t,-) and |u|""*(¢t) = |u(t,-)]""!. Since u and wuq satisfy
Definition 4.0.1, if ug € L (RY) we observe that g, * |u|""'u(t) € L,(R?) for 0 <
t<T.

Equation (4.1) can be written as the Volterra equation

u(t) = ug + go * [u] " ru(t) + go * Au(t), 0<t<T, (4.3)

which admits a resolvent {S(¢)};50 in L,(R?) ([57, Theorems 4.1 and 4.2]). From
[57, Corollary 4.5] we have that

S(t):—/ T, w(t;dr), t>0,
0

where w is the propagation function associated with g,. In order to describe this
resolvent we use the representation

110 = [ Gt =iy, 1< D),

the function G being the fundamental solution of the homogeneous problem

0,G(t,x) +Vg(—iV)G(t,2) =0, t>0, z€R?
G(t,2)|=0 = do(x), = €R%

See, e.g. [52, Section 1.2 Theorem 2.4 (c¢) and Section 4.1 Theorem 1.3 |. For
v € D(A) we see that

Sty =— /OO T.v w(t;dr)
0
= _/Ooo G(t,-) *v w(t; dr)
and using the Fourier transform we obtain
F(S(t)v) = — /000 e ™V OT w(t; dr)

= s(t,9(&))v
= Z(t, )0

with the relaxation function s that comes via scalar Volterra equations (see Section
1.4, |57, Proposition 4.9], [33, Section 1|). This implies that
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4.2. CONTINUITY AND NON-NEGATIVENESS OF SOLUTION IN [0,7) x R4

and the boundedness of S(t) leads to an extension to all of L,(R?).
Let 0 <t <T. If u(s) € D(A), 0 < s < t, identity (4.3) and [57, Proposition
1.1, Definition 1.3| yield

Lv u(t) =

(St = s)u(s) — A(ga x S)(t — s)u(s)) ds

S(t — s)u(s)ds — /0 (g% S)(t — 5) Au(s)ds

S(s)ult — s)ds — /O (5 (gu * Au)(t — 8)ds

S(s) (ult — s) = (ga * Au)(t — s)) ds

S(s) (uo + ga * [u]" " u(t — s)) ds

and thus we get the variation of parameters formula for (4.3) given by
u(t) = %/Ot S(s) (uo + ga * [u]" ") (t — s)ds.

We note that i .

it J,

By proceeding as in the proof of Lemma 3.4.1 together with Lemma 3.1.6, but
working with the L,(R?) space, the fact that sup |||Ju]* " u(t)||,, < oo leads to
0<t<T

S(s)upds = S(t)ug = Z(t,-) * uo.

||OO

d t

i, S(8) (ga * [u]" ") (t — s)ds = /0 Y(t—s,-)* [u]" " u(s,-)ds.

Theorem 4.1.1. Let a € (0,1) and 5 € (0,2). Assume the hypothesis (1) holds.
Let v > 1 and suppose that 1 < p < co. Let ug € D(A) N Loo(R?) be a non-negative
function. If u is a local solution in the sense of Definition 4.0.1 for some T > 0 and
u(t) € D(A) for all 0 <t < T, then u admits the representation (4.2).

4.2 Continuity and non-negativeness of solution in
0,T) x R?

Let u be a local solution of (4.1). In this section we show that u is a continuous and
non-negative function on [0,7") x R¢, for some T > 0. For this purpose, the repre-
sentation (4.2) obtained in the previous section is particularly important. Besides,
we need the following technical results.
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4.2. CONTINUITY AND NON-NEGATIVENESS OF SOLUTION IN [0,7) x R4

Lemma 4.2.1. Let d € N, a € (0,1) and 8 € (0,2). Assume the hypothesis
(H1) holds. If f is a continuous and bounded function on RY, then Z(t,-)*x f — f
uniformly on compact sets whenever t — 0.

Proof. From Lemma 3.1.5 and Formula (3.24) we know that g(z) := Z(1, ), z € R,
satisfies all assumptions of [19, Theorem 1.6] with e = ¢5. O

Lemma 4.2.2. Under the same assumptions as Lemma 3.1.3, then there exists a
positive constant C' for all t > 0 and 1, x5 € R?, such that the estimate

_ad(q_1)_ay,_
Y (- — 1) = Y(t,- = 2)lg < Cllas — ma|[[ VY (£, )|y S |2y — wojt~ 5 (a) =540t
(4.4)
ﬁ, d+l>25andﬂ>%,
0, d+1<26.

In the case of d+ 1 < 2, (4.4) remains true for ¢ = oc.

is true for 1 < q < k', where k' :=

Proof. Tt follows from the same arguments as in Lemma 3.5.1 but using the bounds
given in Lemma 3.1.4. [

d>p,

otherwise

d
In what follows we use the parameter x := f ’ which sets a condi-

tion on p for the existence of some ¢ > 1 such that
1 1
-+ - = 1
p q

and the L,norm for Y'(¢,-), t > 0, is reached. Indeed, by choosing kK < p < oo we
obtain that 1 < ¢ < oo whenever k =1 and 1 < ¢ < ﬁ whenever kK = %. This
implies that ¢ < kg, with k9 as in Theorem 3.1.3.

Theorem 4.2.1. Let a € (0,1) and B € (1,2). Assume the hypothesis (Ha) holds.
Let v > 1 and suppose that max (1,x) < p < co. Let ug € D(A) N Loo(RY) N C(RY)
be a non-negative function. If u is a local solution in the sense of Definition 4.0.1
for some T > 0 and u(t) € D(A) for all 0 <t < T, then u € C([0,T) x RY).

Proof. From Theorem 4.1.1 it follows that the local solution v has the form
t
utia) = [ 2t - gty + [ [ V(e s = pll uls s,
R4 0 Rd
r€R? 0<t<T. We define

wlta) = [ 2t - yuoly)dy
R
and .
wita) = [ [ Vo= so -yl uts,p)dyds.
0 JRd
We shall show that for all € > 0, there exists o > 0 such that

’Uj(t,l') — Uj(t0,$0)| < E,V(t,l') € B((to,l’g),é) C [O,T) X Rd,
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4.2. CONTINUITY AND NON-NEGATIVENESS OF SOLUTION IN [0,7) x R4

for j € {1,2}.
Let 7o € R and 0 < t, < T. We suppose t, < t < T without loss of generality.
For u; we see that

nto) = wlta,ao)| < [ 1200 =) = Zlta, a0 = p)luol)dy
< [ 120 =) = Zlto,2 = plunta)dy
+ [ 12002 =) = Z(to. 70— ) lun(0)dy
Sl [ 1200 =) = Z(to,o — )y

ol [ 12000, =) = Z(to, 20~ )ldy
R

S lluolloolt = tolty™ + lluollsollz — zollto 7,

where the last estimates follow from Theorem 3.1.5 and Lemma 3.5.1, respectively.
Thus,

[e3

i (t, 2) — wi(to, 20)| S [t — tolty " + [lz — oty

and we can take a ball in R? of radius C~'et; centered at xy, and an interval in
[0,T) of radius C ety centered at to, where C'is the constant of the estimate.
For the continuity of u; in (0, z0) we have that

i (t, ) — u1(0, z0)| = |ua(t, x) — uo(2o)|
= |ui(t,x) — up(x) 4+ ug(x) — ug(xo)|
|ua (¢ )

1(t, @) — uo(w)] + |ug(x) — uo(wo)]

<

|, 2.2 = puata)ds = wola) |+ Juo(o) = un(a)l

We note that, by Lemma 4.2.1, the continuity and boundedness of ug imply the
uniform limit on compact subsets of R? for the first term as ¢ — 0. By choosing a
sufficiently small § we get the desired result.

Next, we analyse the continuity of uy. We see that

¢
o)l < [ [ Vie- s —yluts)dys
0 JRrd
< sup |u(s ||7// Y(t — s,z —y)dyds

0<s<t

0<s<t F(a)
tCl{
<'s 7
0<L;1;|IU(S)||OOF( Y
This proves that
limus(t, z) =
t—0
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uniformly on R
Now, let o € R? and 0 < ¢, < T. Again, we suppose t, < t < T without loss of
generality. We find that

’Ug(t, .13) — Ug(t(], .T0)|
< ua(t, ) — us(to, )| + |ua(to, x) — usz(to, xo)|

to
< / / Y(s,z—y) |[u] " ut = s,y) — [u] " ulty — s,y)| dyds
0 Jrd
t
[ [ v -yt = s dyds
to J R4
to
[ ] ¥t s =) = Yt — s )l uts. ) dyds
0o Jr

to
< v sup |lu(s)||? / /d Y(s,x —y)|u(t — s,y) —u(ty — s,y)|dyds
o Jr

0<s<t

t
+ sup ||u(3)||ZO/ / Y(s,z —y)dyds
to J R4

0<s<t

to
+swp ) [ [ V5o = 9) = Vit - 5.0~ y)ldyds
0 R

0<s<t

to
<7 sup IIU(S)IIZ.TI/ 1Y (s, ) * [u(t — s) — u(to — 5)|[| ds
0

0<s<t

t
+ sup Hu(s)HgO/ 14

0<s<t to
to o )
+ sup [Ju(s)ll% [l — ol (to — 5) 77" ds,
0<s<t 0

where the last integral is estimated by Lemma 4.2.2. For estimating the first term,
we use the continuity of u with respect to the norm topology on L,(R?), Young’s
convolution inequality and Theorem 3.1.3, i.e.,

/0 Y (s, ) fult — s) — ulte — 8|l ds < / Y (s lallult — 5) — ulto — 9)]l, ds

to
ad
—2=+a—1
ge/ s~ br ds.
0

Thus,

ad

lua(t, @) — us(to, zo)| < ety 7 + (1% —19) + ||a — oty °.

The second result of this section is the following.

Theorem 4.2.2. Let o € (0,1) and § € (0,2). Assume the hypothesis (H1) holds.
Let v > 1 and suppose that 1 < p < oo. Let ug € D(A) N Loo(RY) be a non-negative
function. If u is a local solution in the sense of Definition 4.0.1 for some T > 0
and u(t) € D(A) for all 0 <t < T, then there exists 0 < T* < T such that u is
non-negative in [0, T*) x RY.
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Proof. We define the operator

Mo(t, z) = / Z(t,x — y)vo(y)dy + /Ot /Rd Y(t—s,x—y)g(v(s,y))dyds

Rd
on the Banach space L., ((0,T) x R?), where g is a non-decreasing Lipschitz function
with g(0) = 0 and vy € Lo(RY). As in the proof of [1, Lemma 1.3], we derive that
the operator M has a unique fixed point v. Furthermore, v > w whenever vy > wy,
where w is the fixed point associated with wy € Loo(R?). Our aim now is to apply
this result to a sequence of functions g,, such that for each n € N they have the same
properties as g but with the additional constraint that their structure approximates
the non-linear term (-)” on [0,00). In accordance with our particular situation with
v > 1, we need a sequence that allows us to control the derivative of the function
(). For that purpose, we define

0 if <o,
gn(r) =< 17 if 0<r<m,

ap —bpe™™ if 1 >n,

where ay,, b, are positive constants that guarantee the existence of g/, > 0 on R a.e.
By construction we have that for all n € N the constant Lipschitz of g, is yn?71,
9n(0) = 0 and g,(r) = r” for 0 < r < n. Therefore, there exists a unique function
Un € Loo((0,T) x R?) such that 0 < u,, and

it = [ 2m =) (wo+ 1) o+ [ [ V== ghgn(anto s

forzr €e R?and 0 < ¢ < T. Since = > n+r1, we have that u,,; < u,. Thus, for almost
every (t,z) € (0,T) x R% the sequence of real numbers (u,(t, T))nen is decreasing
and bounded from below by zero. Consequently, we can define the function

u(t,x) = lim w,(t, )
n—oo

a.e. in (0,7) x R% On the other hand, we have that

[[ttn ()] o0 <

/0 (t = )" un(s) | ods

. 1 . ynY 1
u —
T w Da)

and Gronwall’s inequality (see [69, Corollary 2]) yields

[n ()0 <

ug + %H Eq (yrﬂ_lta)

<

Uy + %H Eqyq (vnv_lTo‘) , O0<t<T.

Now, for small enough 0 < 7% < T we can find N € N such that

uo + %H Eoy (YN7HT*)*) < N.
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4.3. EXISTENCE OF BLOW-UP

Therefore, for all n > N it follows that u,(t,z) < N, for x € R? and 0 < t < T*.
This shows that

1 t
wito) = [ 2o (w2 ) ot [ [ vie-somputs s, 0z
R4 0 Rd

We note that the non-linear integral term is dominated by N7 and the dominated
convergence theorem implies that

t
) = [ 2t - gy + [ [ V(e sz = ).y dyds.
R4 0o JRd
Next, we show that v = u a.e. in (0,7*). Indeed,

lu(t, x) — u(t, x)|

/ /Rd —s,x —y) [[ul"tuls,y) — uls,y)| dyds

B / / Y(t =52 —y) [l ulsy) — [@ s, y)| dyds
S sup ([Ju(s) I+ las) 1) /0 /Rd Y(t—s,x—y)|u(s,y) —u(s,y)|dyds

0<s<T™*

<oy [ [ Y- sz —y)luls) - s)|edyds

< C(T7)

and thus Ty
Jutt) = 70l < Gt [ €= 9 uts) = s) s,

By Gronwall’s inequality we conclude the desired result. O

4.3 Existence of blow-up

In this section we prove Theorem 4.0.1. We start by obtaining some estimates. Let
t > 0. Using the bounds given in Proposition 3.1.1, it is clear that

ad _ Jlz—y|?

Zt,x—y)>Ct ve =, Q<1
If 2 > 1, we have that

Z(t,x—y) > ctFQE
= O 1™ |l —y |7

_ad ., ad =y
e B O ﬁd(” )
(2vt) >

llz—yl?

> O Tt (24) Pde
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4.3. EXISTENCE OF BLOW-UP

whenever d < 3. For larger dimensions, it is always possible to find a suitable

—B—d o—yll2
constant K > 1, depending on 8 and d, such that <M> > e K From

2/t
the hypothesis a = g, it follows that

ad _ Jlz—y|?

Zt,x—y)>C2 P e, Q>1,

which means that
d _ Jle—y|?

Zt,x—y)>Cit Fe @, (4.5)
C
for all t > 0 and z,y € RY, with C; = 25"

We may assume without loss of generality that the constant C' of the Proposition
3.1.2 is the same as that of the Proposition 3.1.1. In this way, we have also derived

llz—yll2

Y(t—s,z—y)>Ci(t— s)f%dﬂkle_ =) (4.6)

forall 0 < s < tand x,y € RY

Now, we proceed by contradiction. We suppose that there exists a global non-
trivial non-negative solution u of (4.1), according to Definition 4.0.1. In this case,
uo(yo) > 0 for some g € RY. The continuity of ug implies that

uo(y) > Co, Vy € B(yo, ),

with some 6 > 0 and Cy = uo(yo).

The representation (4.2) for u is

u(t, ) = /Rd Z(t,x — y)uo(y)dy + /Ot /Rd Y(t — s, —y)u(s,y) dyds

for all z € R? and 0 < ¢ < T. We note that, given the assumption made, T' can be
arbitrarily large. As in Section 4.2, we define

wltia) = [ 2t~ yuly)dy
R
and ,
ug(t, x) := / / Yt — s,z —y)u(s,y) dyds.
0 Jrd
Using (4.5), it follows that

2
_llz=yll

ul(t,x)zcltaﬁd/ e A ug(y)dy

R4

_od _ llz—y|?
ZClCot B e 4t dy

B(yo,0)

_ad _ Jlz—yol? _lly=wol?
> CiCot  Pe 2 / e 2t dy
B(y075)
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4.3. EXISTENCE OF BLOW-UP

and we obtain

uy(t, ) > C’gt_%de_ i, t>1, zeRL
Let H be the heat kernel
1 _lI=)1? d
H(t,x) = —e 4 . t>0, xe€R%
(4rt)2
Using the fact that
H(t, z)dx =1,
Rd
we define the function
F(t)= H(t,x)u(t,z)dx, t>0,
R4

and splitting the integral into two parts we see that
F(t) = g H(t,x)uy(t, z)dx + » H(t, x)uy(t, z)dz.
In the first integral we use the estimate (4.7), for obtaining
F(t) > Cst™ % + [ H(t o)t )ds

whenever ¢ > 1.
In the second integral, we use the fact that (see Theorem 3.1.6)

1
Yo (t)

Jensen’s inequality and Fubini’s theorem yield

/ Y(t,z)dv =1, t>0.
R4

H(t, x)uy(t, z)dz
R4

= [ Ha [/Ot /RdY(t s y)u(s,y)”dyds} dx
/t galt —s) | Ht.x) VR mm 57— y)uls, y)“/dy} dads

[
0
[
0
[
0
/ goct_s
0

v

[ Ht. UR Wl_s)w 57— y)uls, y)dy} " duds

H(t,x) [ /R Y(t—sa—yuls, y)dy} s

R4

-
gl
7 [ H(t, 35)/ Y(t—s,x—y)u(s,y)dy d:r;] ds
R4 Rd
”

- {/Rd { 5 H(t,z)Y(t — s,z — y)dx} u(s,y)dy}w ds.

t—s
(t—s))
(t—s)) "

v

(4.7)

(4.8)
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The expression in the square brackets can be estimated with (4.6), i.e.,

H(t,x)Y(t —s,x —y)dx
Rd
_lz—y)?

> Cy(t — s)_%dw_l H(t,z)e @ dx

: Il _ =l _ Jle—yl?
== 01(47'('8)_%6_ H‘yl! <§> (t — S)i%dJra*l GZT_T_TES)CZ[L’.
t R

Proceeding in the same way as in [27, page 42|, with a = 5, we get

H(t, z)Y(t —s,x —y)de > 04(47r8)_g€_“?i! <§>

Rd

and thus

=CJ(t— S)(a—l)v (;) 27 F(s)

for 0 < s < t. It follows that

d

t d
Ht, 2)us(t, 2)dz > O] / (gt =)' (0= )7 (2)7 F(s)as
Rd 0 t
and hence c o
Py > &0 / SSYF (s)ds
tz t27 Jo

for all ¢ > 1. Consequently,
d 1 d 1,1 ¢ d
£V TOR(t) > Cyt2 0Dl 4 05/ $27F7(s)ds.
0

Defining the r.h.s. of this expression as f(¢), ¢ > 1, we have that
F(t) > Cyt2-Dyl-e

and that )
f/(t) > Cst2VF(t).

From (4.9) it follows that

F1(t) > Cst? (

= Cyte?(=0=0=a)y 714,

ft) )”

t%'ﬂrlfa

(4.9)

(4.10)

(4.11)

101



4.3. EXISTENCE OF BLOW-UP

Therefore,
f/(t)f_’y(t) Z 0515%7(1_7)_(1—01)7

and

T T
/ f(s)f 7 (s)ds > 05/ $3r(1=7)—-(1-a)y g
t t

with 7" > t. From here, we get that

1— T
f 7<t) > 05/ Sg’y(l—’y)—(l—a)'yds
y—1 7 t

and using (4.10) we also obtain the estimate

1— 1—y
P G gamp--a)a-n),

y-1 7-1
This implies that
O?}_W d(1_y)2_(1 1 Lo H-@
L e / s~ 207 D=0megg, (4.12)
Y — t

Next we analyse the r.h.s. of (4.12), according to the following cases with a :=
d—2(1—a).

For the case 1 <~ < 4+ %, we have

2
7§2+—=>d72§a7+2
d dy

Sdy¥+2(1—a)y—dy—2<0

d
@—%(7—1)—(1—&)7—%120,
which yields a contradiction for large enough 7.

For the case § + % <y <%+ 2 we write the expression (4.12) as

O?}_v f%(l—v)zf(lfa)(vfl) >C t—%W(“f—l)—(l—a)WH — T‘%V(V_l)_(l_o‘)”/“
—— el 5
v—1 y-1)+(1—a)yy—1

Besides

2
7<§+E:>dv<d—2(1—a)+2

@—1<—g(7—1)—(1—a)

DDt —apy—1<56-12+1-a)n-1),

which is a contradiction for large enough ¢ and T" — oc.
For the critical case v =1+ %, we use the facts that

’LL(Zf, x)’y > U (ta m)’y
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and
U(t, 1’) Z u?(t7 l’),

together with the estimates (4.6) and (4.7). Therefore, for ¢t > 2, we get

uta)= [ [ Vit puls.g)ydys
1 Rd

t

2 _ad, . _ N EE _Ld’Y Al
20103/ (t—s)" 5t 1/ e 1 sT 5 e s dyds
1

R4
Y i _ a—1,.4 212 Moyl 2
_ GG |zt2/z (t S)d di;/ L TR T dyds
t2 1 (t—s)zs 2z Jre
CiCY i 2 (t—s)* e el _ i jul® _ oilwl?
> 1d t ( )d y / e R dyds
t2 1 (t—s)2s2 Jpa
t
Ce _1a12 [2 (2 a-1
> G ) / (t—s) s
t2 1 s«
t
Ce _l=l? H 1
> 766 / ds
t2 1 t—s

and hence

F(t) > %1 (2 - 2) . (4.13)
Now,

1 1
EOP () = 5t%%fl—“F(t) + §t%7tl_aF(t)

Cr o1t 2\ C
> L - —In(2—-)+ —5/ 52”’F7(s)d8,
2 4t / 2

0

where (4.13) yields the bound for the first term and the second term comes from
(4.9). The critical value of ~y yields

tg'ytlfaF(t) > %tln (2 — %) + %/ 827F7(s)ds.
0

Defining the r.h.s. of this expression as the new f(t), ¢ > 1, we proceed as before
but using

£(t) > CstIn (2 _ %)

and )
f(t) > Cot2"F7(t)
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instead of (1.10) and (4.11), respectively, with Cs = & and Cy = <. The resulting
expression, instead of (4.12), is
1—v T
08—251_7 In'™ (2 2 > C’g/ s~ 5 (=D=(1=a)v g
y—1 t) t
or, in this case,
Cl—’y 2 T
=87 Int <2 — —) > Cg/ s Vds.
y—1 t t
This implies, as T' — oo, that
2
Ce 'In'™ (2 — 2) > Cl,

which is a contradiction whenever the initial condition is sufficiently large at the
point .

So far we note that in this proof we do not require that u satisfies (4.1). Hence,
any positive mild solution u can only be local under the assumptions of Theorem
4.0.1. In this context, let

T=sup{T >0:ue C([0,T]; L,(RY)) N Lo ((0,T) x RY)

is a positive mild solution of (4.1)}.

Previous work implies that T < 4oc. Suppose that lim, 5 |lu(t)]|e < 4o00. Since
ug € Loo(RY), it follows that there exists M > 0 such that ||u(t)|| < M for all
t € [0,7). We choose a sequence t, — T as n — oo, with ¢, < T for all n € N. We

suppose %TV <ty < t, without loss of generality, with n,m > N for some N € N.
As in the proof of Theorem 3.2.1, we find that

[u(tn) = wtam)lly St — twm)t luoll,

th’L
+MHAIWW—@—Wm—ﬂMMﬂWS

tn
20 [ (b = )l s
tm

On the other hand, for any ¢ € [0,7) we sce that

T / (t — )" lu(s)|lpds

and Gronwall’s inequality ([69, Corollary 2]) yields
lu)llp < ol Eat (M), 0<t<T.

[u@)llp < lluoll, +

This shows that ||u(t)]|, < ||u0||pEa71(M'V*1T“) =: K forallte [O,f). Thus,
Jutn) — u(tm)ll, S(tn — tm>t;zl||u0”p

tm
4wm*KAyww—g—ymfwm@

tn
—HWlK/HYm—@mw
tm
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The integral over [0, t,,] can be estimated, using Theorems 3.1.3 and 3.1.6, as follows:

/0 mHY(tn —5) =Y (t,, — s)|ds = /0 mHY(tn —tm +5) — Y(s)|1ds

< [Vt =t 9) - Y ()uds
0

o0

tn—tm
:/ HY(tn—thrs)—Y(s)Hlder/ Y (ty — tm + 5) — Y ()] 1ds
0 t

n _t"L

tn—tm tn—tm 0
< / Y (¢, —tm—l—s)HldS—i-/ \]Y(s)\]1d8+/ Y (t, =t +s) — Y(s)|1ds
0 0 t

n_tm

tn—tm tn—tm oo
< / (tn — tm + 8)* 'ds + / s lds + / (tn — tn)s* ds
0 0 t

n_tm
< (tn — tn)”.
Consequently,

lu(tn) — u(tm)Hp S (b — tm)T_1||u0||p + MV_IK(tn —tm)”

and thus (u(t,))nen represents a Cauchy sequence in L,(RY). We define u(T) :=

lim, .7 wu(t). From [60, Theorem 3.12| it follows that |u(T)|lse < M and that

uw(T) > 0. Next, as in the proof of [71, Theorem 3.2|, we define the operator

t

Y (t —s)* [v(s)]"Tu(s)ds

T

T
Muo(t) = Z(t) x ug —i—/ Y(t—s)xu’(s)ds —i—/
0
on the Banach space
E, = O(IT, T +7); Ly(RY)) N Lo ([T, T + 7) x RY),
with some 7 > 0 and the norm

[olle. = sup Jlu(@)l,+  sup  Jo(t,2)].
te|T,T+7] (t,z)€[T,T+7)x R4

It is straightforward to see that M : E, — E, is well defined and that Mu(T) =

u(T). Besides, for v,w € E, we have that

(Mu(t, ) — Muw(t, z)| < | Mo(t) — Mw(t)]|s

< é 1Y (t = )llslllo(s) " o(s) = Jw ()"~ w(s)[lwds

S (HUHETHIwHET)”1/T(t—8)a1Hv(5)—w(8)Hood8

S (lle. + lwlle, )" o — wlle, (¢ = T)%,

and hence

IMo(t) = Muw®) o S (0lle, + lwlle,) " o —wlls,m, te[T,T+7).
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Similarly,

[IMo(t) = Mw®)]l, S (vlls, + llwle ) v —wllsr, te[T,T+r].
Therefore, there exists Cjy > 0 such that

Mo = Muw| g, < Cror*([v]lg, + [wlle) " o —wlle,, v,weB.  (414)

We also find that

Z@)*%4‘A Y (¢ — ) % (s)ds snza>*wmm+lé 1Y (t = $)lls e (5) | ods

T
swm+w/@ﬂw%
0

S luolloo + M7 (% — (¢ = T)7)
S lluolloo + 10T

and that

T
Z(t)*lb0+/ Y(t—s)xu?(s)ds|| < ||luoll, + MTTKT®,
0

p

that is, there exists C7; > 0 such that

T ~
Z(t)*u0+/ Y(t—s)xu'(s)ds|| <Cn (HuoHoo—i— Hu0|]p—|—]\/[7’1(M—|—K)Ta> :
0

" (4.15)

Let R =2C (HUQHOO + |luoll, + M1 (M + K)fa>. If we consider the closed ball

B, = {w € E: : [jw|lg, <R},

then estimates (4.14), with v = 0, and (4.15) show that M : By, — Bg, is a
contraction whenever 7 is small enough (see Theorem 3.2.1), thus showing that M
has a unique fixed point w’ € Bg_. Moreover, since u > 0 we obtain that w’ > 0 in
[T, T+ 7) x R? following the same arguments as in the proof of Theorem 4.2.2, but
one must now use the fact that

) = Z(t)% (uo + %) +/OT Y(t—s)* (u + %)7 (s)ds+/;Y(t—s)*gn(vn(s»ds,

for all n € N and v, € Loo(T,T + 7) x R%. However, this leads to a contradiction
with the definition of T', and therefore lim, ,&_||u(t)|| = +o0.

O
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The final result of this section deals with the case v > 1 + %. For this purpose,

as in Section 4.2, we set
d
_ E? d > /Bv .
1, otherwise

We also define HJ(RY) := C’SO(Rd)”'H%M, with the closure being respect to the
graph norm [|-[[g,, ., = [[[[3 + [Ws(=iV)()[I5.

Theorem 4.3.1. Let a € (0,1) and 5 € (0,2). Assume the hypothesis (H1) holds.
Suppose that v > 1+ é that max <1, K, d(”T_l)> <p<ooandthatl=p < %(7— 1)
whenever d < 3, or § d <9 < (7 — 1) whenever d > 3. If ug € Li(R%) N HY (RY) N
Loo(R?) is suﬁ?czently small and non-negative, then there exists a global solution u
to (4.1) in the sense of Definition 4.0.1 and the optimal time decay estimate
GDlatol + o5

@)l + 7 572 (@)l + 5 [u®) oo S (luoll + luolly + ol oo)

18 true for all t > 1.

Remark 4.3.1. Whenever d < 3, the existence of parameter p' follows from the
fact that v > 1+ %. However, in the case d > [3 one can not generally guarantee the
existence of p'.

Proof. We consider the Banach space
E = 0(]0,50); Ly(RY) N Li(RY) N Lo (0, 50); Loo (),

with the norm

o]l = Sup (( y#G

=

ote ), + ol )+ sup(d (03 ot

where (t) := /14t and {t} :=

We define on E the operator

t
VitE
t
M(ta) = [ 2t =)y + [ [ V(e sz =gl ol v)duds
R 0o Jr
and similar arguments as in Sections 3.2 and 3.3 show that

M(v) € C([0,00); L(RT) N Ly (RY))

and that
1Z(t, ) *uollo, < NZ () [Juolloe = lluolloes > 0.

For 0 < ¢ <1 we have that

/Yt—s * o(s, )" u(s

/uYt—s allloCs, 7" o(s, lloods
< sw x>|7/0<t— 5)°1ds

(t,x)€[0,1]xR?

< osup (k@)
(t,x)€[0,1] xR
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and for ¢t > 1 we obtain (see Section 3.3)

‘ o0

t
< I = s ol P ot )l
t

/0 Y(t—s,-)*v(s, )" (s, )ds

S ||U||75/ (t — s)fgizi*a*lsf%;l(%l)<S>—%d(7—1)<p _%)ds
0
S Jlolpt 5

<l

This proves that
M(v) € Luoo((0,00); Log (RY)).

Besides, as in Section 3.3 one finds that
12 5 uolle < Cr (luolly + lluolly + [luolls)

and that the operator M is a contraction in the closed ball B = {v € E : ||v||p < R}
of radius R = 2C (|Juo|l1 + ||uollp + [|wol|ls). Consequently there exists a fixed point
u which is unique in E because of Gronwall’s inequality ([69, Corollary 2]).

Let T > 0. We define the Volterra equation

u(t) = ug + go * |U]771U(E) + go ¥ Au(t), 0<t<T,

and by proceeding as in Section 3.4, since ug € Hf(Rd), we find that there exists
a unique strong solution u € L,([0,T]; HY(R?)), and it satisfies the variation of
parameters formula

u(t) = %/0 S(s) (uo + ga * [a]"~') (¢ — s)ds.

On the other hand, similar arguments as in Lemma 3.4.1 show that the fixed point

u satisfies -
_d / S(s) (uo + go * [@7170) (¢ — s)ds
dt J,

and therefore u = u. This holds for any 7" > 0 which implies that u is global. ]

016)

Remark 4.3.2. Since ug € Loo(R?), Theorem 4.2.2 guarantees the positivity of the
global solution w on [0,T) for some T > 0.
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