dmat library
Collection Total:
580 Items
Last Updated:
Aug 8, 2014
Abelian Categories: An Introduction to the Theory of Functors (Harper's Series in Modern Mathematics)
Abstract and Concrete Categories: The Joy of Cats
Jiri Adamek, Horst Herrlich, George E. StreckerA modern introduction to the theory of structures via the language of category theory. Unique to this book is the emphasis on concrete categories. Also noteworthy is the systematic treatment of factorization structures, which gives a new, unifying perspective to earlier work and summarizes recent developments. Each categorical notion is accompanied by many examples, usually moving from special cases to more general cases. Comprises seven chapters; the first five present the basic theory, while the last two contain more recent research results in the realm of concrete categories, cartesian closed categories and quasitopoi. The prerequisite is an elementary knowledge of set theory. Contains exercises.
Number Theory
George E. AndrewsAlthough mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.
In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.
Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.
Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
Algebraic Geometry over the Complex Numbers
Donu ArapuraThis is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
Geometry of Algebraic Curves: Volume I
Enrico Arbarello, Maurizio Cornalba, Phillip Griffiths, Joseph Daniel HarrisThis comprehensive and self-contained account of the extrinsic geometry of algebraic curves applies the theory of linear series to a number of classical topics, including the geometry of the Reimann theta divisor, as well as to contemporary research.
Galois Theory: Lectures Delivered at the University of Notre Dame by Emil Artin
Emil Artin, Arthur N. MilgramIn the nineteenth century, French mathematician Evariste Galois developed the Galois theory of groups-one of the most penetrating concepts in modem mathematics. The elements of the theory are clearly presented in this second, revised edition of a volume of lectures delivered by noted mathematician Emil Artin. The book has been edited by Dr. Arthur N. Milgram, who has also supplemented the work with a Section on Applications.
The first section deals with linear algebra, including fields, vector spaces, homogeneous linear equations, determinants, and other topics. A second section considers extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, Noether equations, Jummer's fields, and more.
Dr. Milgram's section on applications discusses solvable groups, permutation groups, solution of equations by radicals, and other concepts.
A Concise Introduction to the Theory of Numbers
Alan BakerNumber theory has a long and distinguished history and the concepts and problems relating to the subject have been instrumental in the foundation of much of mathematics. In this book, Professor Baker describes the rudiments of number theory in a concise, simple and direct manner. Though most of the text is classical in content, he includes many guides to further study which will stimulate the reader to delve into the great wealth of literature devoted to the subject. The book is based on Professor Baker's lectures given at the University of Cambridge and is intended for undergraduate students of mathematics.
Stability in Modules for Classical Lie Algebras: A Constructive Approach
Georgia M. Benkart, D. J. Britten, F. W. Lemire
Finite Groups of Automorphisms: Course given at the University of Southampton, October-December 1969
Norman BiggsFinite Groups of Automorphisms: Course given at the University of Southampton, October-December 1969 (London Mathematical Society Lecture Note Series)
Complex Abelian Varieties
Christina Birkenhake, Herbert LangeThis book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ". . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.
Lectures on K
Raoul Bott
Cohen-Macaulay Rings
Winfried Bruns, H. Jürgen HerzogIn the past two decades Cohen-Macaulay rings and modules have been central topics in commutative algebra. This book meets the need for a thorough, self-contained introduction to the subject. The authors emphasize the study of explicit, specific rings, making the presentation as concrete as possible. The general theory is applied to a number of examples and the connections with combinatorics are highlighted. Throughout each chapter, the authors have supplied many examples and exercises.
Riemannian Geometry
Manfredo P. do CarmoRiemannian Geometry is an expanded edition of a highly acclaimed and successful textbook (originally published in Portuguese) for first-year graduate students in mathematics and physics. The author's treatment goes very directly to the basic language of Riemannian geometry and immediately presents some of its most fundamental theorems. It is elementary, assuming only a modest background from readers, making it suitable for a wide variety of students and course structures. Its selection of topics has been deemed "superb" by teachers who have used the text.

A significant feature of the book is its powerful and revealing structure, beginning simply with the definition of a differentiable manifold and ending with one of the most important results in Riemannian geometry, a proof of the Sphere Theorem. The text abounds with basic definitions and theorems, examples, applications, and numerous exercises to test the student's understanding and extend knowledge and insight into the subject. Instructors and students alike will find the work to be a significant contribution to this highly applicable and stimulating subject.
Differential Geometry of Curves and Surfaces
Manfredo P. Do CarmoThis volume covers local as well as global differential geometry of curves and surfaces.
Lectures on Lie Groups and Lie Algebras
Roger W. Carter, Ian G. MacDonald, Graeme B. SegalThree of the leading figures in the field have composed this excellent introduction to the theory of Lie groups and Lie algebras. Together these lectures provide an elementary account of the theory that is unsurpassed. In the first part, Roger Carter concentrates on Lie algebras and root systems. In the second Graeme Segal discusses Lie groups. And in the final part, Ian Macdonald gives an introduction to special linear groups. Graduate students requiring an introduction to the theory of Lie groups and their applications should look no further than this book.
Collected Papers of Ruggiero Torelli
C. Ciliberto
Collected Papers of Giacomo Albanese
Ciro Ciliberts, Pauolo Ribenboim, Edoardo Sernesi
Higher Dimensional Complex Geometry: A Summer Seminar at the University of Utah, Salt Lake City, 1987
Herbert Clemens
Toric Varieties
David A. Cox, John B. Little, Henry K. SchenckToric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.
Linear Algebra and Geometry.
Jean Dieudonne
Riemann Surfaces
Simon DonaldsonThe theory of Riemann surfaces occupies a very special place in mathematics. It is a culmination of much of traditional calculus, making surprising connections with geometry and arithmetic. It is an extremely useful part of mathematics, knowledge of which is needed by specialists in many other fields. It provides a model for a large number of more recent developments in areas including manifold topology, global analysis, algebraic geometry, Riemannian geometry, and diverse topics in mathematical physics. This graduate text on Riemann surface theory proves the fundamental analytical results on the existence of meromorphic functions and the Uniformisation Theorem. The approach taken emphasises PDE methods, applicable more generally in global analysis. The connection with geometric topology, and in particular the role of the mapping class group, is also explained. To this end, some more sophisticated topics have been included, compared with traditional texts at this level. While the treatment is novel, the roots of the subject in traditional calculus and complex analysis are kept well in mind. Part I sets up the interplay between complex analysis and topology, with the latter treated informally. Part II works as a rapid first course in Riemann surface theory, including elliptic curves. The core of the book is contained in Part III, where the fundamental analytical results are proved. Following this section, the remainder of the text illustrates various facets of the more advanced theory.
The Geometry of Incidence
Harold L. Dorwart
Commutative Algebra: with a View Toward Algebraic Geometry
David EisenbudThis is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Fundamental Algebraic Geometry
Barbara Fantechi, Lothar Gottsche, Luc Illusie, Steven L. Kleiman, Nitin NitsureAlexander Grothendieck's concepts turned out to be astoundingly powerful and productive, truly revolutionizing algebraic geometry. He sketched his new theories in talks given at the Séminaire Bourbaki between 1957 and 1962. He then collected these lectures in a series of articles in Fondements de la géométrie algébrique (commonly known as FGA). Much of FGA is now common knowledge. However, some of it is less well known, and only a few geometers are familiar with its full scope. The goal of the current book, which resulted from the 2003 Advanced School in Basic Algebraic Geometry (Trieste, Italy), is to fill in the gaps in Grothendieck's very condensed outline of his theories. The four main themes discussed in the book are descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. The authors present complete proofs of the main results, using newer ideas to promote understanding whenever necessary, and drawing connections to later developments. With the main prerequisite being a thorough acquaintance with basic scheme theory, this book is a valuable resource for anyone working in algebraic geometry.
Intersection Theory, 2nd Edition
William FultonIntersection theory has played a central role in mathematics, from the ancient origins of algebraic geometry in the solutions of polynomial equations to the triumphs of algebraic geometry during the last two centuries. This book develops the foundations of the theory and indicates the range of classical and modern applications. The hardcover edition received the prestigious Steele Prize in 1996 for best exposition.
Introduction to Toric Varieties.
William FultonToric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories.

The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.
Principles of Algebraic Geometry
Phillip Griffiths, Joseph HarrisA comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.
Moduli of Curves
Joe Harris, Ian MorrisonA guide to a rich and fascinating subject: algebraic curves and how they vary in families. Providing a broad but compact overview of the field, this book is accessible to readers with a modest background in algebraic geometry. It develops many techniques, including Hilbert schemes, deformation theory, stable reduction, intersection theory, and geometric invariant theory, with the focus on examples and applications arising in the study of moduli of curves. From such foundations, the book goes on to show how moduli spaces of curves are constructed, illustrates typical applications with the proofs of the Brill-Noether and Gieseker-Petri theorems via limit linear series, and surveys the most important results about their geometry ranging from irreducibility and complete subvarieties to ample divisors and Kodaira dimension. With over 180 exercises and 70 figures, the book also provides a concise introduction to the main results and open problems about important topics which are not covered in detail.
Geometry and the Imagination
D. and S. Cohn-Vossen Hilbert
A Course in Commutative Algebra
Gregor KemperThis textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.
Lectures on Resolution of Singularities
János KollárResolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem.
Categories for the Working Mathematician
Saunders Mac LaneAn array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Algebraic Theories
E.G. ManesIn the past decade, category theory has widened its scope and now inter­ acts with many areas of mathematics. This book develops some of the interactions between universal algebra and category theory as well as some of the resulting applications. We begin with an exposition of equationally defineable classes from the point of view of "algebraic theories," but without the use of category theory. This serves to motivate the general treatment of algebraic theories in a category, which is the central concern of the book. (No category theory is presumed; rather, an independent treatment is provided by the second chap­ ter.) Applications abound throughout the text and exercises and in the final chapter in which we pursue problems originating in topological dynamics and in automata theory. This book is a natural outgrowth of the ideas of a small group of mathe­ maticians, many of whom were in residence at the Forschungsinstitut für Mathematik of the Eidgenössische Technische Hochschule in Zürich, Switzerland during the academic year 1966-67. It was in this stimulating atmosphere that the author wrote his doctoral dissertation. The "Zürich School," then, was Michael Barr, Jon Beck, John Gray, Bill Lawvere, Fred Linton, and Myles Tierney (who were there) and (at least) Harry Appelgate, Sammy Eilenberg, John Isbell, and Saunders Mac Lane (whose spiritual presence was tangible.) I am grateful to the National Science Foundation who provided support, under grants GJ 35759 and OCR 72-03733 A01, while I wrote this book.
A Course in Mathematical Logic for Mathematicians
Yu. I. ManinThe book starts with an elementary introduction to formal languages appealing to the intuition of working mathematicians and unencumbered by philosophical or normative prejudices such as those of constructivism or intuitionism. It proceeds to the Proof Theory and presents several highlights of Mathematical Logic of 20th century: Gödel's and Tarski's Theorems, Cohen's Theorem on the independence of Continuum Hypothesis. Unusual for books on logic is a section dedicated to quantum logic.

Then the exposition moves to the Computability Theory, based on the notion of recursive functions and stressing number{theoretic connections. A complete proof of Davis{Putnam{Robinson{Matiyasevich theorem is given, as well as a proof of Higman's theorem on recursive groups. Kolmogorov complexity is treated.

The third Part of the book establishes essential equivalence of proof theory and computation theory and gives applications such as Gödel's theorem on the length of proofs. The new Chapter IX, written for the second edition, treats, among other things, categorical approach to the theory of computation, quantum computation, and P/NP problem. The new Chapter X, written for the second edition by Boris Zilber, contains basic results of Model Theory and its applications to mainstream mathematics. This theory found deep applications in algebraic and Diophantine geometry.

Yuri Ivanovich Manin is Professor Emeritus at Max-Planck-Institute for Mathematics in Bonn, Germany, Board of Trustees Professor at the Northwestern University, Evanston, USA, and Principal Researcher at the Steklov Institute of Mathematics, Moscow, Russia. Boris Zilber, Professor of Mathematics at the University of Oxford, has been added to the second edition.
Commutative Ring Theory
H. MatsumuraIn addition to being an interesting and profound subject in its own right, commutative ring theory is important as a foundation for algebraic geometry and complex analytical geometry. Matsumura covers the basic material, including dimension theory, depth, Cohen-Macaulay rings, Gorenstein rings, Krull rings and valuation rings. More advanced topics such as Ratliff's theorems on chains of prime ideals are also explored. The work is essentially self-contained, the only prerequisite being a sound knowledge of modern algebra, yet the reader is taken to the frontiers of the subject. Exercises are provided at the end of each section and solutions or hints to some of them are given at the end of the book.
Elliptic Curves: Function Theory, Geometry, Arithmetic
Henry McKean, Victor MollThe subject of elliptic curves is one of the jewels of nineteenth-century mathematics, whose masters were Abel, Gauss, Jacobi, and Legendre. This book presents an introductory account of the subject in the style of the original discoverers, with references to and comments about more recent and modern developments. It combines three of the fundamental themes of mathematics: complex function theory, geometry, and arithmetic. After an informal preparatory chapter, the book follows a historical path, beginning with the work of Abel and Gauss on elliptic integrals and elliptic functions. This is followed by chapters on theta functions, modular groups and modular functions, the quintic, the imaginary quadratic field, and on elliptic curves. The many exercises with hints scattered throughout the text give the reader a glimpse of further developments. Requiring only a first acquaintance with complex function theory, this book is an ideal introduction to the subject for graduate students and researchers in mathematics and physics.
Etale Cohomology.
James S. Milne
Topology from the Differentiable Viewpoint
John Willard MilnorThis elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
Elementary geometry from an advanced standpoint.
Edwin E. MoiseThis book presents a solid understanding of elementary geometry from a sophisticated point of view. Uses modern ideas and language and related geometry to the algebra of the real numbers... Book is virtually self contained, the necessary fragments of algebra and the theory of nunmbers are presented at the end.. FEATURES: A thorough, logical elucidation Uses modern concepts and language Follows recommendations of CUPM Presupposes no earlier knowledge of geometry. Approx 9.5 x 6.5 inches.
Inversive Geometry. First Edition.
Frank Morley
Elementary Differential Topology.
James R. MunkresBook by Munkres, James R.
Graph Theory and Feynman Integrals
N. Nakanishi
Algebraic Number Theory
Jürgen NeukirchThis introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.
An Invitation to Morse Theory
Liviu NicolaescuThis self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.
Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties
Tadao OdaThe theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's. It is an updated and corrected English edition of the author's book in Japanese published by Kinokuniya, Tokyo in 1985. Toric varieties are here treated as complex analytic spaces. Without assuming much prior knowledge of algebraic geometry, the author shows how elementary convex figures give rise to interesting complex analytic spaces. Easily visualized convex geometry is then used to describe algebraic geometry for these spaces, such as line bundles, projectivity, automorphism groups, birational transformations, differential forms and Mori's theory. Hence this book might serve as an accessible introduction to current algebraic geometry. Conversely, the algebraic geometry of toric varieties gives new insight into continued fractions as well as their higher-dimensional analogues, the isoperimetric problem and other questions on convex bodies. Relevant results on convex geometry are collected together in the appendix.
Vector Bundles on Complex Projective Spaces
Algebraic Geometry III: Complex Algebraic Varieties Algebraic Curves and Their Jacobians
A.N. Parshin, I.R. ShafarevichThis two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.
Algebraic Geometry IV: Linear Algebraic Groups, Invariant Theory
A.N. Parshin, I.R. ShafarevichTwo contributions on closely related subjects: the theory of linear algebraic groups and invariant theory, by well-known experts in the fields. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics and theoretical physics.
Algebraic Geometry V: Fano Varieties
A.N. Parshin, I.R. ShafarevichThis EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.
E. M Patterson
Classical Theory of Algebraic Numbers
Paulo RibenboimThe exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Introduction to Algebraic Geometry
J. G. Semple, L. RothThis classic work, now available in paperback, outlines the geometric aspects of algebraic equations, one of the oldest and most central subjects in mathematics. Recent decades have seen explosive growth in the more abstract side of algeraic geometry, with great emphasis on new basic techniques. This timely reissue complements these recent innovations, providing a much-needed background in such areas as plane curves, quadratic transformations, the geometry of line systems, and the projective characters of curves and surfaces. Providing a wealth of definitive material, this work will appeal to those interested in algebraic geometry and in more modern abstract studies.
Deformations of Algebraic Schemes
Edoardo SernesiThis account of deformation theory in classical algebraic geometry over an algebraically closed field presents for the first time some results previously scattered in the literature, with proofs that are relatively little known, yet relevant to algebraic geometers. Many examples are provided. Most of the algebraic results needed are proved. The style of exposition is kept at a level amenable to graduate students with an average background in algebraic geometry.
A Course in Arithmetic
J-P. SerreA modern introduction to three areas of number theory: quadratic forms, Dirichlet's density theorem and modular forms. "... Accessible to graduate or even undergraduate students, yet even the advanced mathematician will enjoy reading it." - American Scientist.
Complex Semisimple Lie Algebras
Jean-Pierre SerreThese short notes, already well-known in their original French edition, present the basic theory of semisimple Lie algebras over the complex numbers. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras. Subsequent chapters introduce Cartan subalgebras, root systems, and linear representations. The last chapter discusses the connection between Lie algebras, complex groups and compact groups. The book is intended to guide the reader towards further study.
Introduction to Number Theory
James E Shockley
Mathematics: the Man-Made Universe; an Introduction to the Spirit of..
Sherman K. Stein
Lie algebras
Ian Stewart
Algorithms in Invariant Theory
Bernd SturmfelsThis book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.
A modern introduction to geometries
Annita Tuller
Graph Theory
W. T. Tutte
Homology Theory: An Introduction to Algebraic Topology
James W. VickThis introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Elements of number theory;
Ivan Matveevich Vinogradov"A very welcome addition to books on number theory."—Bulletin, American Mathematical Society
Clear and detailed in its exposition, this text can be understood by readers with no background in advanced mathematics; only a small part requires a working knowledge of calculus. One of the most valuable characteristics of this book is its stress on learning number theory by means of demonstrations and problems. More than 200 problems and full solutions appear in the text, plus 100 numerical exercises. Some of these exercises deal with estimation of trigonometric sums and are especially valuable as introductions to more advanced studies. Translation of 1949 Russian edition.
Game Theory: Lectures for Economists and Systems Scientists
Nikolai N. Vorob'evThe basis for this book is a number of lectures given frequently by the author to third year students of the Department of Economics at Leningrad State University who specialize in economical cybernetics. The main purpose of this book is to provide the student with a relatively simple and easy-to-understand manual containing the basic mathematical machinery utilized in the theory of games. Practical examples (including those from the field of economics) serve mainly as an interpretation of the mathematical foundations of this theory rather than as indications of their actual or potential applicability. The present volume is significantly different from other books on the theory of games. The difference is both in the choice of mathematical problems as well as in the nature of the exposition. The realm of the problems is somewhat limited but the author has tried to achieve the greatest possible systematization in his exposition. Whenever possible the author has attempted to provide a game-theoretical argument with the necessary mathematical rigor and reasonable generality. Formal mathematical prerequisites for this book are quite modest. Only the elementary tools of linear algebra and mathematical analysis are used.
An Introduction to Homological Algebra
Charles A. WeibelThe landscape of homological algebra has evolved over the past half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras is also described. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors.
Matroid Theory
D. J. A. WelshThe theory of matroids connects disparate branches of combinatorial theory and algebra such as graph and lattice theory, combinatorial optimization, and linear algebra. Aimed at advanced undergraduate and graduate students, this text is one of the earliest substantial works on matroid theory. Its author, D. J. A. Welsh, Professor of Mathematics at Oxford University, has exercised a profound influence over the theory's development.
The first half of the text describes standard examples and investigation results, using elementary proofs to develop basic matroid properties and referring readers to the literature for more complex proofs. The second half advances to a more sophisticated treatment, addressing a variety of research topics. Praised by the Bulletin of the American Mathematical Society as "a useful resource for both the novice and the expert," this text features numerous helpful exercises.
Curves and Their Properties
Robert C. Yates