Library
dmat library
Collection Total:
580 Items
Last Updated:
Aug 8, 2014
Abelian Categories: An Introduction to the Theory of Functors (Harper's Series in Modern Mathematics)
Function Theory of One Complex Variable. Second Edition.
Function Theory of One Complex Variable. Second Edition.
LOGIQUE MATHEMATIQUE. Tome 2, Fonctions récursives, théorème de Gödel, théorie des ensembles, théorie des modèles
Séminaire sur les algèbres complètes
Nancy> Séminaire sur les Algèbres Complètes <1969 - 1970
Local Analytic Geometry
Shreeram Shankar AbhyankarThis book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: algebraic treatment of several complex variables; geometric approach to algebraic geometry via analytic sets; survey of local algebra; and survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied. In the transition from punctual to local, ie. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively.
Manifolds, Tensor Analysis, and Applications
Ralph Abraham, Jerrold E. Marsden, Tudor RatiuThe purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid mechanics, electromagnetism, plasma dynamics and control theory are given using both invariant and index notation. The prerequisites required are solid undergraduate courses in linear algebra and advanced calculus.
Abstract and Concrete Categories: The Joy of Cats
Jiri Adamek, Horst Herrlich, George E. StreckerA modern introduction to the theory of structures via the language of category theory. Unique to this book is the emphasis on concrete categories. Also noteworthy is the systematic treatment of factorization structures, which gives a new, unifying perspective to earlier work and summarizes recent developments. Each categorical notion is accompanied by many examples, usually moving from special cases to more general cases. Comprises seven chapters; the first five present the basic theory, while the last two contain more recent research results in the realm of concrete categories, cartesian closed categories and quasitopoi. The prerequisite is an elementary knowledge of set theory. Contains exercises.
Turing and the Universal Machine: The Making of the Modern Computer
Jon AgarThe history of the computer is entwined with that of the modern world and most famously with the life of one man, Alan Turing. How did this device, which first appeared a mere 50 years ago, come to structure and dominate our lives so totally? An enlightening mini-biography of a brilliant but troubled man.
Cr-Geometry and over Determined Systems
Takao AkahoriThis volume consists of survey articles and research papers on the most recent developments of CR-geometry and overdetermined systems. Some of the papers are based on the lectures delivered at a conference of the same title. The volume contains notes from three lectures on the invariant theory of the Bergman kernel, and on the deformation of CR structures with applications. Other papers, original or expository, are recent contributions on important problems in complex geometry of differential geometric aspects of analysis, and many of them are related to CR-geometry. This volume offers timely and useful information on the subject area.
Elements of the Theory of Elliptic Functions
N. I. AkhiezerThis book contains a systematic presentation of the theory of elliptic functions and some of its applications. A translation from the Russian, this book is intended primarily for engineers who work with elliptic functions. It should be accessible to those with background in the elements of mathematical analysis and the theory of functions contained in approximately the first two years of mathematics and physics courses at the college level.
Problems in Real Analysis, Second Edition
Charalambos D. Aliprantis, Owen BurkinshawA collection of problems and solutions in real analysis based on the major textbook, Principles of Real Analysis (also by Aliprantis and Burkinshaw), Problems in Real Analysis is the ideal companion for senior science and engineering undergraduates and first-year graduate courses in real analysis. It is intended for use as an independent source, and is an invaluable tool for students who wish to develop a deep understanding and proficiency in the use of integration methods.
Problems in Real Analysis teaches the basic methods of proof and problem-solving by presenting the complete solutions to over 600 problems that appear in Principles of Real Analysis, Third Edition. The problems are distributed in forty sections, and cover the entire spectrum of difficulty.
Problems in Real Analysis, Second Edition
Charalambos D. Aliprantis, Owen BurkinshawA collection of problems and solutions in real analysis based on the major textbook, Principles of Real Analysis (also by Aliprantis and Burkinshaw), Problems in Real Analysis is the ideal companion for senior science and engineering undergraduates and first-year graduate courses in real analysis. It is intended for use as an independent source, and is an invaluable tool for students who wish to develop a deep understanding and proficiency in the use of integration methods.
Problems in Real Analysis teaches the basic methods of proof and problem-solving by presenting the complete solutions to over 600 problems that appear in Principles of Real Analysis, Third Edition. The problems are distributed in forty sections, and cover the entire spectrum of difficulty.
Plateau's Problem
Frederick J., Jr. AlmgrenThere have been many wonderful developments in the theory of minimal surfaces and geometric measure theory in the past 25 to 30 years. Many of the researchers who have produced these excellent results were inspired by this little book - or by Fred Almgren himself. The book is indeed a delightful invitation to the world of variational geometry. A central topic is Plateau's Problem, which is concerned with surfaces that model the behavior of soap films.When trying to resolve the problem, however, one soon finds that smooth surfaces are insufficient: Varifolds are needed. With varifolds, one can obtain geometrically meaningful solutions without having to know in advance all their possible singularities. This new tool makes possible much exciting new analysis and many new results. Plateau's problem and varifolds live in the world of geometric measure theory, where differential geometry and measure theory combine to solve problems which have variational aspects. The author's hope in writing this book was to encourage young mathematicians to study this fascinating subject further. Judging from the success of his students, it achieves this exceedingly well.
Groups and Representations
J.L. Alperin, Rowen B. BellA concise treatment of topics from group theory and representation theory for use in a one-term course. Focussing on the non-commutative side of the field, this advanced textbook emphasizes the general linear group as the most important group and example.
Readers are expected to be familiar with groups, rings, and fields, and to have a solid knowledge of linear algebra. Close to 200 exercises of varying difficulty serve both to reinforce the main concept of the text and to introduce the reader to additional topics.
Algebra: Chapter 0
Paolo AluffiAlgebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Nonlinear Functional Analysis & Applications to Differential Equations
Antonio Ambrosetti, K. -C Chang, Kwang-Chih ChangAn exploration of nonlinear functional analysis and applications to differential equations. It addresses areas such as Hamiltonian systems, variational methods, duality in nonlinear analysis and applications, and degree and multiplicity results for a superlinear problem.
Functions of Bounded Variation and Free Discontinuity Problems
Luigi Ambrosio, Nicola Fusco, Diego PallaraThis book deals with a class of mathematical problems which involve the minimization of the sum of a volume and a surface energy and have lately been referred to as 'free discontinuity problems'. The aim of this book is twofold: The first three chapters present all the basic prerequisites for the treatment of free discontinuity and other variational problems in a systematic, general, and self-contained way. In the later chapters, the reader is introduced to the theory of free discontinuity problems, to the space of special functions of bounded variation, and is presented with a detailed analysis of the Mumford-Shah image segmentation problem. Existence, regularity and qualitative properties of solutions are explained and a survey is given on the current knowledge of this challenging mathematical problem. The theory embodies classical problems, e.g. related to phase transitions, or fracture and plasticity in continuum mechanics, as well as more recent ones like edge detection in image analysis. This book provides the reader with a solid introduction to the field, written by principle contributors to the theory.
Modern Algebra: An Introduction
Tim AndersonBook by Anderson, Tim
102 Combinatorial Problems
Titu Andreescu, Zuming Feng"102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.
Number Theory
G. Andrews
Number Theory
George E. AndrewsAlthough mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.
In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.
Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.
Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
Number Theory
George E. AndrewsAlthough mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.
In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.
Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.
Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
Mathematics: A Concise History and Philosophy
W.S. AnglinThis is a concise introductory textbook for a one semester course in the history and philosophy of mathematics. It is written for mathematics majors, philosophy students, history of science students and secondary school mathematics teachers. The only prerequisite is a solid command of pre-calculus mathematics. It is shorter than the standard textbooks in that area and thus more accessible to students who have trouble coping with vast amounts of reading. Furthermore, there are many detailed explanations of the important mathematical procedures actually used by famous mathematicians, giving more mathematically talented students a greater opportunity to learn the history and philosophy by way of problem solving. Several important philosophical topics are pursued throughout the text, giving the student an opportunity to come to a full and consistent knowledge of their development. These topics include infinity, the nature of motion, and Platonism. This book offers, in fewer pages, a deep penetration into the key mathematical and philosophical aspects of the history of mathematics.
Mathematics: A Concise History and Philosophy
W.S. AnglinThis is a concise introductory textbook for a one semester course in the history and philosophy of mathematics. It is written for mathematics majors, philosophy students, history of science students and secondary school mathematics teachers. The only prerequisite is a solid command of pre-calculus mathematics. It is shorter than the standard textbooks in that area and thus more accessible to students who have trouble coping with vast amounts of reading. Furthermore, there are many detailed explanations of the important mathematical procedures actually used by famous mathematicians, giving more mathematically talented students a greater opportunity to learn the history and philosophy by way of problem solving. Several important philosophical topics are pursued throughout the text, giving the student an opportunity to come to a full and consistent knowledge of their development. These topics include infinity, the nature of motion, and Platonism. This book offers, in fewer pages, a deep penetration into the key mathematical and philosophical aspects of the history of mathematics.
Introduction to Analytic Number Theory
Tom M. Apostol"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS
Mathematical Analysis, Second Edition
Tom M. Apostol
Algebraic Geometry over the Complex Numbers
Donu ArapuraThis is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
Geometry of Algebraic Curves: Volume I
Enrico Arbarello, Maurizio Cornalba, Phillip Griffiths, Joseph Daniel HarrisThis comprehensive and self-contained account of the extrinsic geometry of algebraic curves applies the theory of linear series to a number of classical topics, including the geometry of the Reimann theta divisor, as well as to contemporary research.
Problems and Solutions in Euclidean Geometry
M. N. Aref, William Wernick, MathematicsIntended for a second course in Euclidean geometry, this volume is based on classical principles and can be used by students of mathematics as a supplementary text and by mechanical engineers as an aid to developing greater mathematical facility. It features 200 problems of increasing complexity with worked-out solutions, along with hints for additional problems.
Each of  the eight chapters covers a different aspect of Euclidean geometry: triangles and polygons; areas, squares and rectangles; circles and tangency; ratio and proportion; loci and transversals; geometry of lines and rays; geometry of the circle; and space geometry. The authors list relevant theorems and corollaries, and they state and prove many important propositions. More than 200 figures illustrate the text.
Mathematical Methods of Classical Mechanics
V. I. ArnoldThis book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Algebra with Galois Theory
Emil ArtinThe present text was first published in 1947 by the Courant Institute of Mathematical Sciences of New York University. Published under the title Modern Higher Algebra. Galois Theory, it was based on lectures by Emil Artin and written by Albert A. Blank. This volume became one of the most popular in the series of lecture notes published by Courant. Many instructors used the book as a textbook, and it was popular among students as a supplementary text as well as a primary textbook. Because of its popularity, Courant has republished the volume under the new title Algebra with Galois Theory. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Algebraic Numbers and Algebraic Functions
Emil ArtinFamous Norwegian mathematician Niels Henrik Abel advised that one should "learn from the masters, not from the pupils". When the subject is algebraic numbers and algebraic functions, there is no greater master than Emil Artin. In this classic text, originated from the notes of the course given at Princeton University in 1950-1951 and first published in 1967, one has a beautiful introduction to the subject accompanied by Artin's unique insights and perspectives. The exposition starts with the general theory of valuation fields in Part I, proceeds to the local class field theory in Part II, and then to the theory of function fields in one variable (including the Riemann-Roch theorem and its applications) in Part III. Prerequisites for reading the book are a standard first-year graduate course in algebra (including some Galois theory) and elementary notions of point set topology. With many examples, this book can be used by graduate students and all mathematicians learning number theory and related areas of algebraic geometry of curves.
Galois Theory: Lectures Delivered at the University of Notre Dame by Emil Artin
Emil Artin, Arthur N. MilgramIn the nineteenth century, French mathematician Evariste Galois developed the Galois theory of groups-one of the most penetrating concepts in modem mathematics. The elements of the theory are clearly presented in this second, revised edition of a volume of lectures delivered by noted mathematician Emil Artin. The book has been edited by Dr. Arthur N. Milgram, who has also supplemented the work with a Section on Applications.
The first section deals with linear algebra, including fields, vector spaces, homogeneous linear equations, determinants, and other topics. A second section considers extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, Noether equations, Jummer's fields, and more.
Dr. Milgram's section on applications discusses solvable groups, permutation groups, solution of equations by radicals, and other concepts.
Algebra, Second Edition
Michael Artin
Basic Probability Theory
Robert B. AshThis introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus.
Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.
Introduction To Commutative Algebra
Michael AtiyahThis book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Geometry of Yang-Mills fields
Michael F. AtiyahThese Lecture Notes are an expanded version of the Fermi Lectures I gave at Scuola Normale Superiore in Pisa, the Loeb Lectures at Harvard and the Whittemore Lectures at Yale, in 1978. In all cases I was addressing a mixed audience of mathematicians and physicists and the presentation had to be tailored accordingly. Throughout, I presented the mathematical material in a somewhat unorthodox order, following a pattern which I felt would relate the new techniques to familiar ground for physicists. The main new results presented in the lectures, namely the construction of all multi-istanton solutions of Yang-Mills fields, is the culmination of several years of fruitful interaction between many physicists and mathematicians. The major breakthrough came with the observation by Ward that the complex methods developed by Penrose in his “twistor programme” were ideally suited to the study of the Yang-Mills equations. The instanton problem was then seen to be equivalent to a problem in complex analysis and to one in algebraic geometry. Using the powerful methods of modern algebraic geometry it was not long before the problem was finally solved.
Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations
Gilles Aubert, Pierre KornprobstThe updated 2nd edition of this book presents a variety of image analysis applications, reviews their precise mathematics and shows how to discretize them. For the mathematical community, the book shows the contribution of mathematics to this domain, and highlights unsolved theoretical questions. For the computer vision community, it presents a clear, self-contained and global overview of the mathematics involved in image procesing problems. The second edition offers a review of progress in image processing applications covered by the PDE framework, and updates the existing material. The book also provides programming tools for creating simulations with minimal effort.
A Concise Introduction to the Theory of Numbers
Alan BakerNumber theory has a long and distinguished history and the concepts and problems relating to the subject have been instrumental in the foundation of much of mathematics. In this book, Professor Baker describes the rudiments of number theory in a concise, simple and direct manner. Though most of the text is classical in content, he includes many guides to further study which will stimulate the reader to delve into the great wealth of literature devoted to the subject. The book is based on Professor Baker's lectures given at the University of Cambridge and is intended for undergraduate students of mathematics.
A Concise Introduction to the Theory of Numbers
Alan BakerNumber theory has a long and distinguished history and the concepts and problems relating to the subject have been instrumental in the foundation of much of mathematics. In this book, Professor Baker describes the rudiments of number theory in a concise, simple and direct manner. Though most of the text is classical in content, he includes many guides to further study which will stimulate the reader to delve into the great wealth of literature devoted to the subject. The book is based on Professor Baker's lectures given at the University of Cambridge and is intended for undergraduate students of mathematics.
Transcendental Number Theory
Alan BakerFirst published in 1975, this classic book gives a systematic account of transcendental number theory, that is those numbers which cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory enriching many branches of pure mathematics. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalization of the Thue-Siegel-Roth theorem, of Shidlovsky's work on Siegel's E-functions and of Sprindzuk's solution to the Mahler conjecture. The volume was revised in 1979, however Professor Baker has taken this further opportunity to update the book including new advances in the theory and many new references.
Transcendental Number Theory
Alan BakerFirst published in 1975, this classic book gives a systematic account of transcendental number theory, that is those numbers which cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory enriching many branches of pure mathematics. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalization of the Thue-Siegel-Roth theorem, of Shidlovsky's work on Siegel's E-functions and of Sprindzuk's solution to the Mahler conjecture. The volume was revised in 1979, however Professor Baker has taken this further opportunity to update the book including new advances in the theory and many new references.
Compact Complex Surfaces
W. Barth, K. Hulek, Chris Peters, A.van de VenIn the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac- cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.
Creative Mathematics: A Gateway to Research
Alan F. BeardonHow do mathematicians approach a problem, explore the possibilities, and develop an understanding of a whole area around it? The issue is not simply about obtaining 'the answer'; rather, Beardon explains that a mathematical problem is just one of many related ones that should be simultaneously investigated and discussed at various levels, and that understanding this is a crucial step in becoming a creative mathematician. The book begins with some good advice about procedure, presentation, and organization that will benefit every mathematician, budding, teaching or practiced. In the rest of the book, Beardon presents a series of simple problems, then, through discussion, consideration of special cases, computer experiments, and so on, the reader is taken through these same problems, but at an increasing level of sophistication and generality. Mathematics is rarely a closed book, and seemingly innocent problems, when examined and explored, can lead to results of significance.
Complex Algebraic Surfaces
Arnaud BeauvilleThe classification of algebraic surfaces is an intricate and fascinating branch of mathematics, developed over more than a century and still an active area of research today. In this book, Professor Beauville gives a lucid and concise account of the subject, expressed simply in the language of modern topology and sheaf theory, and accessible to any budding geometer. A chapter on preliminary material ensures that this volume is self-contained while the exercises succeed both in giving the flavor of the classical subject, and in equipping the reader with the techniques needed for research. The book is aimed at graduate students in geometry and topology.
Topics in Set Theory: Lebesgue Measurability, Large Cardinals, Forcing Axioms, Rho-functions
Mohamed BekkaliDuring the Fall Semester of 1987, Stevo Todorcevic gave a series of lectures at the University of Colorado. These notes of the course, taken by the author, give a novel and fast exposition of four chapters of Set Theory. The first two chapters are about the connection between large cardinals and Lebesque measure. The third is on forcing axioms such as Martin's axiom or the Proper Forcing Axiom. The fourth chapter looks at the method of minimal walks and p-functions and their applications. The book is addressed to researchers and graduate students interested in Set Theory, Set-Theoretic Topology and Measure Theory.
Models and Ultraproducts: An Introduction
A. B. Slomson J. L. BellIn this text for first-year graduate students, the authors provide an elementary exposition of some of the basic concepts of model theory—focusing particularly on the ultraproduct construction and the areas in which it is most useful. The book, which assumes only that its readers are acquainted with the rudiments of set theory, starts by developing the notions of Boolean algebra, propositional calculus, and predicate calculus.
Model theory proper begins in the fourth chapter, followed by an introduction to ultraproduct construction, which includes a detailed look at its theoretic properties. An overview of elementary equivalence provides algebraic descriptions of the elementary classes. Discussions of completeness follow, along with surveys of the work of Jónsson and of Morley and Vaught on homogeneous universal models, and the results of Keisler in connection with the notion of a saturated structure. Additional topics include classical results of Gödel and Skolem, and extensions of classical first-order logic in terms of generalized quantifiers and infinitary languages. Numerous exercises appear throughout the text.
Topology Optimization
Martin Philip Bendsoe, Ole SigmundThe topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.
Stability in Modules for Classical Lie Algebras: A Constructive Approach
Georgia M. Benkart, D. J. Britten, F. W. Lemire
Geometry I
Marcel BergerVolume I of this 2-volume textbook provides a lively and readable presentation of large parts of classical geometry. For each topic the author presents an esthetically pleasing and easily stated theorem - although the proof may be difficult and concealed. The mathematical text is illustrated with figures, open problems and references to modern literature, providing a unified reference to geometry in the full breadth of its subfields and ramifications.
A Panoramic View of Riemannian Geometry
Marcel BergerThis book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field.

From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." —MATHEMATICAL REVIEWS
Spectral Theory and Analytic Geometry over Non-Archimedean Fields
Vladimir G. BerkovichThe purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and $p$-adic analysis.
Axiomatic Set Theory
Paul BernaysA monograph containing a historical introduction by A. A. Fraenkel to the original Zermelo-Fraenkel form of set-theoretic axiomatics, and Paul Bernays’ independent presentation of a formal system of axiomatic set theory. No special knowledge of set thory and its axiomatics is required. With indexes of authors, symbols and matters, a list of axioms and an extensive bibliography.
Algèbre linéaire et géométrie classique
J.-E Bertin, M.-J Bertin
Fourier Series
Rajendra Bhatia
Finite Groups of Automorphisms: Course given at the University of Southampton, October-December 1969
Norman BiggsFinite Groups of Automorphisms: Course given at the University of Southampton, October-December 1969 (London Mathematical Society Lecture Note Series)
Discrete Mathematics
Norman L. BiggsThe widespread use of computers and the rapid growth in computer science have led to a new emphasis on discrete mathematics, a discipline which deals with calculations involving a finite number of steps. This book provides a well-structured introduction to discrete mathematics, taking a self-contained approach that requires no ancillary knowledge of mathematics, avoids unnecessary abstraction, and incorporates a wide rage of topics, including graph theory, combinatorics, number theory, coding theory, combinatorial optimization, and abstract algebra. Amply illustrated with examples and exercises.
Probability and Measure
Patrick BillingsleyPROBABILITY AND MEASURE

Third Edition

Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.

Like the previous editions, this new edition will be well received by students of mathematics, statistics, economics, and a wide variety of disciplines that require a solid understanding of probability theory.
Complex Abelian Varieties
Christina Birkenhake, Herbert LangeThis book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ". . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.
Combinatorics of Coxeter Groups
Anders Bjorner, Francesco BrentiIncludes a rich variety of exercises to accompany the exposition of Coxeter groups

Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups
Theory of Numbers, Mathematical Analysis and Their Applications
N. N. And K. K. Mardzhanishvili, Eds. Bogolyubov
Heights in Diophantine Geometry
Enrico Bombieri, Walter GublerDiophantine geometry has been studied by number theorists for thousands of years, since the time of Pythagoras, and has continued to be a rich area of ideas such as Fermat's Last Theorem, and most recently the ABC conjecture. This monograph is a bridge between the classical theory and modern approach via arithmetic geometry. The authors provide a clear path through the subject for graduate students and researchers. They have re-examined many results and much of the literature, and provide a thorough account of several topics at a level not seen before in book form. The treatment is largely self-contained, with proofs given in full detail.
Number Theory,
Z. I. Borevich, I. R. ShafarevichModern number theory, according to Hecke, dates from Gauss's quadratic reciprocity law. The various extensions of this law and the generalizations of the domains of study for number theory have led to a rich network of ideas, which has had effects throughout mathematics, in particular in algebra. This volume of the Encyclopaedia presents the main structures and results of algebraic number theory with emphasis on algebraic number fields and class field theory. Koch has written for the non-specialist. He assumes that the reader has a general understanding of modern algebra and elementary number theory. Mostly only the general properties of algebraic number fields and related structures are included. Special results appear only as examples which illustrate general features of the theory. A part of algebraic number theory serves as a basic science for other parts of mathematics, such as arithmetic algebraic geometry and the theory of modular forms. For this reason, the chapters on basic number theory, class field theory and Galois cohomology contain more detail than the others. This book is suitable for graduate students and research mathematicians who wish to become acquainted with the main ideas and methods of algebraic number theory.
Convex Analysis and Nonlinear Optimization: Theory and Examples
Jonathan M. Borwein, Adrian S. LewisOptimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Lectures on K
Raoul Bott
Algèbre commutative: Chapitre 10
N. BourbakiLes Éléments de mathématique de Nicolas Bourbaki ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements.

Ce volume du Livre d’Algèbre commutative, septième Livre du traité, est la continuation des chapitres antérieurs. Il introduit notamment les notions de profondeur et de lissité, fondamentales en géometrie algébrique. Il se termine par l’introduction des modules dualisants et de la dualité de Grothendieck.

Ce volume est paru en 1998.
Algèbre commutative: Chapitres 1 à 4
N. BourbakiLes Elements de mathematique de Nicolas Bourbaki ont pour objet une presentation rigoureuse, systematique et sans prerequis des mathematiques depuis leurs fondements. Ce premier volume du Livre d Algebre commutative, septieme Livre du traite, est consacre aux concepts fondamentaux de l algebre commutative. Il comprend les chapitres: 1. Modules plats; 2. Localisation; 3. Graduations, filtrations et topologies; 4. Ideaux premiers associes et decomposition primaire. Il contient egalement des notes historiques. Ce volume est une reimpression de l edition de 1969.
Algèbre commutative: Chapitres 5 à 7
N. BourbakiCe deuxième volume du Livre d’Algèbre commutative, septième Livre du traité, introduit deux notions fondamentales en algèbre commutative, celle d’entier algébrique et celle de valuation, qui ont de nombreuses applications en théorie des nombres et en géometrie algébrique. It traite également des anneaux de Krull ou de Dedekind. Il comprend les chapitres : 1. Entiers ; 2. Valuations ; 3. Diviseurs.
Algèbre commutative: Chapitres 8 et 9
N. BourbakiCe volume du Livre d’Algèbre commutative, septième Livre du traité, comprend les chapitres: 8. Dimension ; 9. Anneaux locaux noethériens complets. Le chapitre 8 traite de diverses notions de dimension en algèbre commutative, telles que la dimension de Krull d’un anneau. Ces notions jouent un rôle capital en géometrie algébrique. Le chapitre 9 introduit, quant à lui, les vecteurs de Witt et les anneaux japonais.
Algèbre: Chapitre 4 à 7
N. BourbakiCe deuxième volume du Livre d’Algèbre, deuxième Livre des Éléments de mathématique, traite notamment des extensions de corps et de la théorie de Galois. Il comprend les chapitres : 4. Polynômes et fractions rationnelles ; 5. Corps commutatifs ; 6. Groupes et corps ordonnés ; 7. Modules sur les anneaux principaux.
Algèbre: Chapitre 8
N. BourbakiCe huitième chapitre du Livre d'Algèbre, deuxième Livre des Éléments de mathématique, est consacré à l'étude de certaines classes d'anneaux et des modules sur ces anneaux.

Il couvre les notions de module et d'anneau noethérien et artinien, ainsi que celle de radical. Ce chapitre décrit également la structure des anneaux semi-simples. Nous y donnons aussi la définition de divers groupes de Grothendieck qui jouent un rôle universel pour les invariants de modules et plusieurs descriptions du groupe de Brauer qui intervient dans la classification des anneaux simples.

Une note historique en fin de volume, reprise de l'édition précédente, retrace l'émergence d'une grande partie des notions développées.

Ce volume est une deuxième édition entièrement refondue de l'édition de 1958.
Algèbre: Chapitre 9
N. BourbakiFormes sesquilinéaires et formes quadratiques

Les Éléments de mathématique de Nicolas BOURBAKI ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements.

Ce neuvième chapitre du Livre d’Algèbre, deuxième Livre du traité, est consacré aux formes quadratiques, symplectiques ou hermitiennes et aux groupes associés.

Il contient également une note historique.

Ce volume est une réimpression de l’édition de 1959.
Algèbre: Chapitre 10. Algèbre homologique
N. BourbakiLes Éléments de mathématique de Nicolas Bourbaki ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements.

Ce dixième chapitre du Livre d’Algèbre, deuxième Livre du traité, pose les bases du calcul homologique.

Ce volume est a été publié en 1980.
Algèbre: Chapitres 1 à 3
N. BourbakiLes Éléments de mathématique de Nicolas Bourbaki ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements.

Ce premier volume du Livre d’Algèbre, deuxième Livre des Éléments de mathématique, comprend les chapitres : Structures algébriques.- Algèbre linéaire.- Algèbres tensorielles, algèbres, extérieures, algèbres symétriques
Elements De Mathematique: Livre III Topologie Generale
N. Bourbaki
Functions of a Real Variable
N. BourbakiThis is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.
Theory of Sets
N. BourbakiThis is a softcover reprint of the English translation of 1968 of N. Bourbaki's, Théorie des Ensembles (1970).
Topologie générale: Chapitres 1-4
N. BourbakiLes Éléments de mathématique de Nicolas Bourbaki ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements.

Ce premier volume du Livre de Topologie générale, troisième Livre du traité, est consacré aux structures fondamentales en topologie, qui constituent les fondement de l analyse et de la géométrie. Il comprend les chapitres: 1. Structures topologiques; 2. Structures uniformes; 3. Groupes topologiques; 4. Nombres réels.

Il contient également des notes historiques.

Ce volume est une réimpression de l édition de 1971.
Theories spectrales, Chapitres 1 et 2: Algebres normees- Groupes localement compacts commutatifs
Nicolas Bourbaki
Calculo de Varias Variables - Volumen 2
Marion Zimmer Bradley, Karl J. Smith
Analyse Fonctionnelle: Theorie Et Applications
Haim Brezis
Foundations of Real and Abstract Analysis
Douglas S. BridgesA complete course on metric, normed, and Hilbert spaces, including many results and exercises seldom found in texts on analysis at this level. The author covers an unusually wide range of material in a clear and concise format, including elementary real analysis, Lebesgue integration on R, and an introduction to functional analysis. The book begins with a fast-paced course on real analysis, followed by an introduction to the Lebesgue integral. This provides a reference for later chapters as well as a preparation for students with only the typical sequence of undergraduate calculus courses as prerequisites. Other features include a chapter introducing functional analysis, the Hahn-Banach theorem and duality, separation theorems, the Baire Category Theorem, the Open Mapping Theorem and their consequences, and unusual applications. Of special interest are the 750 exercises, many with guidelines for their solutions, applications and extensions of the main propositions and theorems, pointers to new branches of the subject, and difficult challenges for the very best students.
Cohen-Macaulay Rings
Winfried Bruns, H. Jürgen HerzogIn the past two decades Cohen-Macaulay rings and modules have been central topics in commutative algebra. This book meets the need for a thorough, self-contained introduction to the subject. The authors emphasize the study of explicit, specific rings, making the presentation as concrete as possible. The general theory is applied to a number of examples and the connections with combinatorics are highlighted. Throughout each chapter, the authors have supplied many examples and exercises.
Cálculo Superior
Creighton Buck
Exploring the Number Jungle: A Journey into Diophantine Analysis
Edward B. BurgerWelcome to diophantine analysis—an area of number theory in which we attempt to discover hidden treasures and truths within the jungle of numbers by exploring rational numbers. Diophantine analysis comprises two different but interconnected domains—diophantine approximation and diophantine equations. This highly readable book brings to life the fundamental ideas and theorems from diophantine approximation, geometry of numbers, diophantine geometry and $p$-adic analysis. Through an engaging style, readers participate in a journey through these areas of number theory. Each mathematical theme is presented in a self-contained manner and is motivated by very basic notions. The reader becomes an active participant in the explorations, as each module includes a sequence of numbered questions to be answered and statements to be verified. Many hints and remarks are provided to be freely used and enjoyed. Each module then closes with a Big Picture Question that invites the reader to step back from all the technical details and take a panoramic view of how the ideas at hand fit into the larger mathematical landscape. This book enlists the reader to build intuition, develop ideas and prove results in a very user-friendly and enjoyable environment.
A Pathway Into Number Theory
R. P. BurnNumber theory is concerned with the properties of the natural numbers: 1,2,3,.... During the seventeenth and eighteenth centuries, number theory became established through the work of Fermat, Euler and Gauss. With the hand calculators and computers of today, the results of extensive numerical work are instantly available and mathematicians may traverse the road leading to their discoveries with comparative ease. Now in its second edition, this book consists of a sequence of exercises that will lead readers from quite simple number work to the point where they can prove algebraically the classical results of elementary number theory for themselves. A modern high school course in mathematics is sufficient background for the whole book which, as a whole, is designed to be used as an undergraduate course in number theory to be pursued by independent study without supporting lectures.
Fully Nonlinear Elliptic Equations (Colloquium Publications (Amer Mathematical Soc))
Luis A. Caffarelli, Xavier CabreThis book provides a self-contained development of the regularity theory for solutions of fully nonlinear elliptic equations. Caffarelli and Cabré offer a detailed presentation of all techniques needed to extend the classical Schauder and Calderón-Zygmund regularity theories for linear elliptic equations to the fully nonlinear context.

The authors present the key ideas and prove all the results needed for the regularity theory of viscosity solutions of fully nonlinear equations. The book contains the study of convex fully nonlinear equations and fully nonlinear equations with variable coefficients.
Anneaux-Corps, vomume 1 : Eléments de théorie des anneaux
Josette Calais
Introduction to Algebra
Peter J. CameronDeveloped to meet the needs of modern students, this Second Edition of the classic algebra text by Peter Cameron covers all the abstract algebra an undergraduate student is likely to need. Starting with an introductory overview of numbers, sets and functions, matrices, polynomials, and modular arithmetic, the text then introduces the most important algebraic structures: groups, rings and fields, and their properties. This is followed by coverage of vector spaces and modules with applications to abelian groups and canonical forms before returning to the construction of the number systems, including the existence of transcendental numbers. The final chapters take the reader further into the theory of groups, rings and fields, coding theory, and Galois theory. With over 300 exercises, and web-based solutions, this is an ideal introductory text for Year 1 and 2 undergraduate students in mathematics.
Calculus of Variations and Partial Differential Equations of First Order
Constantin Caratheodory, C. CarathéodoryIn this second English edition of Carathéodory's famous work (originally published in German), the two volumes of the first edition have been combined into one (with a combination of the two indexes into a single index). There is a deep and fundamental relationship between the differential equations that occur in the calculus of variations and partial differential equations of the first order: in particular, to each such partial differential equation there correspond variational problems. This basic fact forms the rationale for Carathéodory's masterpiece. Includes a Guide to the Literature and an Index. From the Preface: "The book consists of two parts. In the first part, I have made an attempt to simplify the presentation of the theory of partial differential equations to the first order so that its study will require little time and also be accessible to the average student of mathematics ... The second part, which contains the Calculus of Variations, can also be read independently if one refers back to earlier sections in Part I ... I have never lost sight of the fact that the Calculus of Variations, as it is presented in Part II, should above all be a servant of Mechanics. Therefore, I have in particular prepared everything from the very outset for treatment in multidimensional spaces."
Riemannian Geometry
Manfredo P. do CarmoRiemannian Geometry is an expanded edition of a highly acclaimed and successful textbook (originally published in Portuguese) for first-year graduate students in mathematics and physics. The author's treatment goes very directly to the basic language of Riemannian geometry and immediately presents some of its most fundamental theorems. It is elementary, assuming only a modest background from readers, making it suitable for a wide variety of students and course structures. Its selection of topics has been deemed "superb" by teachers who have used the text.

A significant feature of the book is its powerful and revealing structure, beginning simply with the definition of a differentiable manifold and ending with one of the most important results in Riemannian geometry, a proof of the Sphere Theorem. The text abounds with basic definitions and theorems, examples, applications, and numerous exercises to test the student's understanding and extend knowledge and insight into the subject. Instructors and students alike will find the work to be a significant contribution to this highly applicable and stimulating subject.
Differential Geometry of Curves and Surfaces
Manfredo P. Do CarmoThis volume covers local as well as global differential geometry of curves and surfaces.
Advances in Contemporary Logic and Computer Science: Proceedings of the Eleventh Brazilian Conference on Mathematical Logic, May 6-10, 1996, Salvador Da Bahia, Brazil
Walter A. Carnielli, Itala M. L. D'OttavianoThis volume presents the proceedings from the Eleventh Brazilian Logic Conference on Mathematical Logic held by the Brazilian Logic Society (co-sponsored by the Centre for Logic, Epistemology and the History of Science, State University of Campinas, Sao Paolo) in Salvador, Bahia, Brazil. The conference and the volume are dedicated to the memory of professor Mario Tourasse Teixeira, an educator and researcher who contributed to the formation of several generations of Brazilian logicians.Contributions were made from leading Brazilian logicians and their Latin-American and European colleagues. All papers were selected by a careful refereeing processs and were revised and updated by their authors for publication in this volume. There are three sections: Advances in Logic, Advances in Theoretical Computer Science, and Advances in Philosophical Logic. Well-known specialists present original research on several aspects of model theory, proof theory, algebraic logic, category theory, connections between logic and computer science, and topics of philosophical logic of current interest. Topics interweave proof-theoretical, semantical, foundational, and philosophical aspects with algorithmic and algebraic views, offering lively high-level research results.
Differential Forms
Henri Cartan"Cartan's work provides a superb text for an undergraduate course in advanced calculus, but at the same time it furnishes the reader with an excellent foundation for global and nonlinear algebra." — Mathematical Review
"Brilliantly successful." — Bulletin de l'Association des Professeurs de Mathematiques
"The presentation is precise and detailed, the style lucid and almost conversational . . . clearly an outstanding text and work of reference." — Annales
Cartan's Formes Differentielles was first published in France in 1967. It was based on the world-famous teacher's experience at the Faculty of Sciences in Paris, where his reputation as an outstanding exponent of the Bourbaki school of mathematics was first established.
Addressed to second- and third-year students of mathematics, the material skillfully spans the pure and applied branches in the familiar French manner, so that the applied aspects gain in rigor while the pure mathematics loses none of its dignity. This book is equally essential as a course text, as a work of reference, or simply as a brilliant mathematical exercise.
Differential Forms
Henri Cartan"Cartan's work provides a superb text for an undergraduate course in advanced calculus, but at the same time it furnishes the reader with an excellent foundation for global and nonlinear algebra." — Mathematical Review
"Brilliantly successful." — Bulletin de l'Association des Professeurs de Mathematiques
"The presentation is precise and detailed, the style lucid and almost conversational . . . clearly an outstanding text and work of reference." — Annales
Cartan's Formes Differentielles was first published in France in 1967. It was based on the world-famous teacher's experience at the Faculty of Sciences in Paris, where his reputation as an outstanding exponent of the Bourbaki school of mathematics was first established.
Addressed to second- and third-year students of mathematics, the material skillfully spans the pure and applied branches in the familiar French manner, so that the applied aspects gain in rigor while the pure mathematics loses none of its dignity. This book is equally essential as a course text, as a work of reference, or simply as a brilliant mathematical exercise.
Elementary Theory of Analytic Functions of One or Several Complex Variables
Henri CartanNoted mathematician offers basic treatment of theory of analytic functions of a complex variable, touching on analytic functions of several real or complex variables as well as the existence theorem for solutions of differential systems where data is analytic. Also included is a systematic, though elementary, exposition of theory of abstract complex manifolds of one complex dimension. Topics include power series in one variable, holomorphic functions, Cauchy’s integral, more. Exercises. 1973 edition.
Theorie Elementaire des Fonctions Analytiques d une ou Plusieurs Variables Complexes 1961
Henri Cartan
Cours de calcul differentiel
Henri Paul Cartan
Lectures on Lie Groups and Lie Algebras
Roger W. Carter, Ian G. MacDonald, Graeme B. SegalThree of the leading figures in the field have composed this excellent introduction to the theory of Lie groups and Lie algebras. Together these lectures provide an elementary account of the theory that is unsurpassed. In the first part, Roger Carter concentrates on Lie algebras and root systems. In the second Graeme Segal discusses Lie groups. And in the final part, Ian Macdonald gives an introduction to special linear groups. Graduate students requiring an introduction to the theory of Lie groups and their applications should look no further than this book.
Rational Quadratic Forms
J. W. S. Cassels, MathematicsThis exploration of quadratic forms over rational numbers and rational integers offers an excellent elementary introduction to many aspects of a classical subject, including recent developments. The author, a Professor Emeritus at Trinity College, University of Cambridge, offers a largely self-contained treatment that develops most of the prerequisites.Topics include the theory of quadratic forms over local fields, forms with integral coefficients, genera and spinor genera, reduction theory for definite forms, and Gauss' composition theory. The final chapter explains how to formulate the proofs in earlier chapters independently of Dirichlet's theorems related to the existence of primes in arithmetic progressions. Specialists will particularly value the several helpful appendixes on class numbers, Siegel's formulas, Tamagawa numbers, and other topics. Each chapter concludes with many exercises and hints, plus notes that include historical remarks and references to the literature.
Representation Theory of the Symmetric Groups: The Okounkov-Vershik Approach, Character Formulas, and Partition Algebras
Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo TolliThe representation theory of the symmetric groups is a classical topic that, since the pioneering work of Frobenius, Schur and Young, has grown into a huge body of theory, with many important connections to other areas of mathematics and physics. This self-contained book provides a detailed introduction to the subject, covering classical topics such as the Littlewood-Richardson rule and the Schur-Weyl duality. Importantly the authors also present many recent advances in the area, including Lassalle's character formulas, the theory of partition algebras, and an exhaustive exposition of the approach developed by A. M. Vershik and A. Okounkov. A wealth of examples and exercises makes this an ideal textbook for graduate students. It will also serve as a useful reference for more experienced researchers across a range of areas, including algebra, computer science, statistical mechanics and theoretical physics.
Model Theory, Third Edition
C.C. Chang, H.J. KeislerSince the second edition of this book (1977), Model Theory has changed radically, and is now concerned with fields such as classification (or stability) theory, nonstandard analysis, model-theoretic algebra, recursive model theory, abstract model theory, and model theories for a host of nonfirst order logics. Model theoretic methods have also had a major impact on set theory, recursion theory, and proof theory.

This new edition has been updated to take account of these changes, while preserving its usefulness as a first textbook in model theory. Whole new sections have been added, as well as new exercises and references. A number of updates, improvements and corrections have been made to the main text.
Methods in Nonlinear Analysis
Kung-Ching ChangThis book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.
Riemannian Geometry: A Modern Introduction
Isaac ChavelRequiring only an understanding of differentiable manifolds, Isaac Chavel covers introductory ideas followed by a selection of more specialized topics in this second edition. He provides a clearer treatment of many topics, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. Among the classical topics shown in a new setting is isoperimetric inequalities in curved spaces. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space.
Nevanlinna's Theory of Value Distribution: The Second Main Theorem and its Error Terms
William Cherry, Zhuan YeThis monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Introduction to the Theory of Algebraic Functions of One Variable Mathematical Surveys Number VI
Claude Chevalley
Hamilton's Ricci Flow
Bennett Chow, Peng Lu, and Lei NiRicci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students and mathematicians interested in working in the subject. To this end, the first chapter is a review of the relevant basics of Riemannian geometry. For the benefit of the student, the text includes a number of exercises of varying difficulty. The book also provides brief introductions to some general methods of geometric analysis and other geometric flows. Comparisons are made between the Ricci flow and the linear heat equation, mean curvature flow, and other geometric evolution equations whenever possible. Several topics of Hamilton's program are covered, such as short time existence, Harnack inequalities, Ricci solitons, Perelman's no local collapsing theorem, singularity analysis, and ancient solutions. A major direction in Ricci flow, via Hamilton's and Perelman's works, is the use of Ricci flow as an approach to solving the Poincaré conjecture and Thurston's geometrization conjecture.
Introduction à l'analyse numérique matricielle et à l'optimisation
Philippe G. Ciarlet
Collected Papers of Ruggiero Torelli
C. Ciliberto
Collected Papers of Giacomo Albanese
Ciro Ciliberts, Pauolo Ribenboim, Edoardo Sernesi
The Concise Oxford Dictionary of Mathematics
Christopher Clapham, James NicholsonAuthoritative and reliable, this is the ideal reference guide for students of mathematics at school or in the first year at university.

Many entries have been added for this new edition, expanding coverage in the area of computing, including entries on Linear Algebra, Optimisation, Nonlinear equations, Differential equations, and others. More biographies of prominent mathematicians are also added, including Nobel Prizewinners and Fields' medalists. Terms used in first-year university courses, e.g. Lorenz attractor, Linear programming, Louisville numbers, etc., bring the new edition right up-to-date. The dictionary covers both pure and applied mathematics as well as statistics, and there are entries on major mathematicians and mathematics of more general interest, such as fractals, game theory, and chaos.
Higher Dimensional Complex Geometry: A Summer Seminar at the University of Utah, Salt Lake City, 1987
Herbert Clemens
Introduccion a las Ecuaciones Diferenciales Ordinarias
Earl A. Coddington (Author)
Theory of Ordinary Differential Equations
Earl A. Coddington, Norman LevinsonThe prerequisite for the study of this book is a knowledge of matrices and the essentials of functions of a complex variable. It has been developed from courses given by the authors and probably contains more material than will ordinarily be covered in a one-year course. It is hoped that the book will be a useful text in the application of differential equations as well as for the pure mathematician.
Números: uma Introdução à Matemática
César Polcino Milies, Sonia Pitta Coelho
A Course in Computational Algebraic Number Theory
Henri CohenA description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
Number Theory: Volume I: Tools and Diophantine Equations
Henri CohenThe central theme of this book is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The book contains more than 350 exercises and the text is largely self-contained. Much more sophisticated techniques have been brought to bear on the subject of Diophantine equations, and for this reason, the author has included five appendices on these techniques.
Number Theory: Volume II: Analytic and Modern Tools
Henri CohenThis book deals with several aspects of what is now called "explicit number theory." The central theme is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The local aspect, global aspect, and the third aspect is the theory of zeta and L-functions. This last aspect can be considered as a unifying theme for the whole subject.
Set Theory and the Continuum Hypothesis
Paul J. Cohen, MathematicsThis exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.
In this volume, the distinguished mathematician offers an exposition of set theory and the continuum hypothesis that employs intuitive explanations as well as detailed proofs. The self-contained treatment includes background material in logic and axiomatic set theory as well as an account of Kurt Gödel's proof of the consistency of the continuum hypothesis. An invaluable reference book for mathematicians and mathematical theorists, this text is suitable for graduate and postgraduate students and is rich with hints and ideas that will lead readers to further work in mathematical logic.
Advanced Number Theory
Harvey Cohn"A very stimulating book ... in a class by itself." — American Mathematical Monthly
Advanced students, mathematicians and number theorists will welcome this stimulating treatment of advanced number theory, which approaches the complex topic of algebraic number theory from a historical standpoint, taking pains to show the reader how concepts, definitions and theories have evolved during the last two centuries. Moreover, the book abounds with numerical examples and more concrete, specific theorems than are found in most contemporary treatments of the subject.
The book is divided into three parts. Part I is concerned with background material — a synopsis of elementary number theory (including quadratic congruences and the Jacobi symbol), characters of residue class groups via the structure theorem for finite abelian groups, first notions of integral domains, modules and lattices, and such basis theorems as Kronecker's Basis Theorem for Abelian Groups.
Part II discusses ideal theory in quadratic fields, with chapters on unique factorization and units, unique factorization into ideals, norms and ideal classes (in particular, Minkowski's theorem), and class structure in quadratic fields. Applications of this material are made in Part III to class number formulas and primes in arithmetic progression, quadratic reciprocity in the rational domain and the relationship between quadratic forms and ideals, including the theory of composition, orders and genera. In a final concluding survey of more recent developments, Dr. Cohn takes up Cyclotomic Fields and Gaussian Sums, Class Fields and Global and Local Viewpoints.
In addition to numerous helpful diagrams and tables throughout the text, appendices, and an annotated bibliography, Advanced Number Theory also includes over 200 problems specially designed to stimulate the spirit of experimentation which has traditionally ruled number theory.
Linear equations (Library of mathematics)
P. M Cohn
Universal Algebra
P. M. Cohn
Universal Algebra (Mathematics and Its Applications (closed))
P.M. Cohn
Some properties of spaces of measures
Corneliu Constantinescu
Sphere Packings, Lattices and Groups
John Conway, Neil J. A. SloaneThe third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.
A Course in Functional Analysis
John B ConwayThis book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general.

From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." —MATHEMATICAL REVIEWS
Functions of One Complex Variable
John B. Conway
On Quaternions and Octonions
John Horton Conway, Derek SmithThis book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization. Topics covered include the geometry of complex numbers, quaternions and 3-dimensional groups, quaternions and 4-dimensional groups, Hurwitz integral quaternions, composition algebras, Moufang loops, octonions and 8-dimensional geometry, integral octonions, and the octonion projective plane.
The Sensual Quadratic Form
John Horton ConwayJohn Horton Conway's unique approach to quadratic forms was the subject of the Hedrick Lectures given by him in August of 1991 at the Joint Meetings of the Mathematical Association of America and the American Mathematical Society in Orono, Mane. This book presents the substance of those lectures. The book should not be though of a serious textbook on the theory of quadratic forms—it consists rather of a number of essays on particular aspects of quadratic forms that have interested the author. The lectures are self-contained and will be accessible to the generally informed reader who has no particular background in quadratic form theory. The minor exceptions should not interrupt the flow of ideas. The Afterthoughts to the Lectures contain discussion of related matters that occasionally presuppose greater knowledge.
Computability, Enumerability, Unsolvability: Directions in Recursion Theory
S. B. Cooper, T. A. Slaman, S. S. WainerThe fundamental ideas concerning computation and recursion naturally find their place at the interface between logic and theoretical computer science. The contributions in this book provide a picture of current ideas and methods in the ongoing investigations into the structure of the computable and noncomputable universe. A number of the articles contain introductory and background material that will make the volume an invaluable resource for mathematicians and computer scientists.
Computability Theory
S. Barry CooperComputability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences.

Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level.

The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science.

Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.
Mathematical Logic : A course with exercises — Part I — Propositional Calculus, Boolean Algebras, Predicate Calculus, Completeness Theorems
Rene Cori, Daniel LascarLogic forms the basis of mathematics and is a fundamental part of any mathematics course. This book provides students with a clear and accessible introduction to this important subject, using the concept of model as the main focus and covering a wide area of logic. The chapters of the book cover propositional calculus, boolean algebras, predicate calculus and completeness theorems with answers to all of the exercises and the end of the volume. This is an ideal introduction to mathematics and logic for the advanced undergraduate student.
Recursion Theory, Godel's Theorems, Set Theory, Model Theory
Rene Cori, Daniel Lascar, Donald H. PelletierLogic forms the basis of mathematics, and is hence a fundamental part of any mathematics course. It is a major element in theoretical computer science and has undergone a huge revival with the every- growing importance of computer science. This text is based on a course to undergraduates and provides a clear and accessible introduction to mathematical logic. The concept of model provides the underlying theme, giving the text a theoretical coherence whilst still covering a wide area of logic. The foundations having been laid in "Part I", this book starts with recursion theory, a topic essential for the complete scientist. Then follows Godel's incompleteness theorems and axiomatic set theory. Chapter 8 provides an introduction to model theory. There are examples throughout each section, and varied selection of exercises at the end. Answers to the exercises are given in the appendix.
Logique mathématique, tome 1 : Calcul propositionnel, algèbres de Boole, calcul des prédicats
René Cori, Daniel LascarDans ce premier tome, les auteurs présentent successivement le calcul propositionnel, les algèbres de Boole, le calcul des prédicats et les théorèmes de complétude. Sommaire : Calcul propositionnel : Syntaxe, Sémantique, Formes normales, systèmes complets de connecteurs, Lemme d'interpolation, etc.; Algèbres de Boole : Rappels d'algèbre et de topologie, Définition des algèbres de Boole, Atomes dans une algèbre de Boole, etc.; Calcul des prédicats : Syntaxe, Les structures, Satisfaction des formules dans les structures, etc.
Logique mathématique, tome 2 : Fonctions récursives, théorème de Gödel, théorie des ensembles
René Cori, Daniel LascarCe deuxième tome est plus particulièrement consacré aux problèmes de récursivité et de formalisation de l'arithmétique, aux théorèmes de Gödel et à la théorie des ensembles ainsi qu'à la théorie des modèles. Sommaire : Récursivité : Fonctions et ensembles récursifs primitifs, Fonctions récursives, Machines de Turing, Les ensembles récursivement énumérables; Formalisation de l'arithmétique - Théorèmes de Gödel : Les axiomes de Peano, Les fonctions représentables, Arithmétisation de la syntaxe, etc.
Che cos'è la matematica?
Herbert Robbins Richard Courant
What Is Mathematics? An Elementary Approach to Ideas and Methods
Richard Courant, Herbert Robbins, Ian StewartFor more than two thousand years a familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.

Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics?, Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.

Brought up to date with a new chapter by Ian Stewart, What is Mathematics?, Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.

Formal mathematics is like spelling and grammar—a matter of the correct application of local rules. Meaningful mathematics is like journalism—it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature—it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature—it opens a window onto the world of mathematics for anyone interested to view.
Mirror Symmetry and Algebraic Geometry
David A. CoxMirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kähler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem.
Toric Varieties
David A. Cox, John B. Little, Henry K. SchenckToric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.
Weakly Nonlinear Dirichlet Problems on Long or Thin Domains
E. N. DancerThe aim of this work is to develop a basic theory for nonlinear elliptic equations on long or thin domains for Dirichlet boundary conditions. This is the first treatment of such Dirichlet problems, which are of significant interest in applications.
Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I
Robert Dautray, Jacques-Louis LionsThese 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which together with given boundary data and, if the phenomenon is evolving in time, initial data, defines the system. The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. Modeling by distributed systems now also supports work in many areas of physics (plasmas, new materials, astrophysics, geophysics), chemistry and mechanics and is finding increasing use in the life sciences.
Heat Kernels and Spectral Theory
E. B. DaviesAn advanced monograph on a central topic in the theory of differential equations, Heat Kernels and Spectral Theory investigates the theory of second-order elliptic operators. While the study of the heat equation is a classical subject, this book analyses the improvements in our quantitative understanding of heat kernels. The author considers variable coefficient operators on regions in Euclidean space and Laplace-Beltrami operators on complete Riemannian manifolds. He also includes results pertaining to the heat kernels of Schrödinger operators; such results will be of particular interest to mathematical physicists, and relevant too to those concerned with properties of Brownian motion and other diffusion processes.
Higher-Dimensional Algebraic Geometry
Olivier DebarreThe classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.
Nonlinear Functional Analysis
Klaus Deimling, MathematicsHailed as "eminently suitable as a text for a graduate course" by the Bulletin of the American Mathematical Society, this volume offers a survey of the main ideas, concepts, and methods that constitute nonlinear functional analysis. It offers extensive commentary and many examples in addition to an abundance of interesting, challenging exercises.
Starting with coverage of the development of the Brower degree and its applications, the text proceeds to examinations of degree mappings for infinite dimensional spaces and surveys of monotone and accretive mappings. Subsequent chapters explore the inverse function theory, the implicit function theory, and Newton's methods as well as fixed-point theory, solutions to cones, and the Galerkin method of studying nonlinear equations. The final chapters address extremal problems—including convexity, Lagrange multipliers, and mini-max theorems—and offer an introduction into bifurcation theory. Suitable for graduate-level mathematics courses, this volume also serves as a reference for professionals.
Constructive Aspects of the Fundamental Theorem of Algebra
Bruno & Peter Henrici. Eds. Dejon
Hilbert's Tenth Problem: Relations With Arithmetic and Algebraic Geometry : Workshop on Hilbert's Tenth Problem : Relations With Arithemtic and ... November 2-5
Jan Denef, Leonard Lipshitz, Thanases Pheidas, Jan Van GeelThis book is the result of a meeting that took place at the University of Ghent (Belgium) on the relations between Hilbert's tenth problem, arithmetic, and algebraic geometry. Included are written articles detailing the lectures that were given as well as contributed papers on current topics of interest. The following areas are addressed: an historical overview of Hilbert's tenth problem, Hilbert's tenth problem for various rings and fields, model theory and local-global principles, including relations between model theory and algebraic groups and analytic geometry, conjectures in arithmetic geometry and the structure of diophantine sets, for example with Mazur's conjecture, Lang's conjecture, and Bucchi's problem, and results on the complexity of diophantine geometry, highlighting the relation to the theory of computation.The volume allows the reader to learn and compare different approaches (arithmetical, geometrical, topological, model-theoretical, and computational) to the general structural analysis of the set of solutions of polynomial equations. It would make a nice contribution to graduate and advanced graduate courses on logic, algebraic geometry, and number theory.
History of the Theory of Numbers , Vol. 2: Diophantine Analysis
Leonard Eugene DicksonThis second volume is a comprehensive treatment of Diophantine analysis. Besides the familiar cases of Diophantine equations, this rubric also covers partitions, representations as a sum of two, three, four or $n$ squares, Waring's problem in general and Hilbert's solution of it, and perfect squares in artihmetical and geometrical progressions. Of course, many important Diophantine equations, such as Pell's equation, and classes of equations, such as quadratic, cubic and quartic equations, are treated in detail. As usual with Dickson, the account is encyclopedic and the references are numerous.
Foundations of Modern Analysis
J. DieudonneMany of the earliest books, particularly those dating back to the 1900s and before, are now extremely scarce and increasingly expensive. We are republishing these classic works in affordable, high quality, modern editions, using the original text and artwork.
Linear Algebra and Geometry.
Jean Dieudonne
Mathematics - The Music of Reason
Jean DieudonneThis book is of interest for students of mathematics or of neighboring subjects like physics, engineering, computer science, and also for people who have at least school level mathematics and have kept some interest in it. Also good for younger readers just reaching their final school year of mathematics.
A History of Algebraic and Differential Topology, 1900 - 1960
Jean DieudonnéThis book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it!

—MathSciNet
Elements d'analyse
Jean Alexandre Dieudonne
Elements d'analyse
Jean Alexandre Dieudonne
Elements d'analyse
Jean Alexandre Dieudonne
Elements d'analyse
Jean Alexandre Dieudonne
Elements d'analyse
Jean Alexandre Dieudonne
Elements d'analyse
Jean Alexandre Dieudonne
Elements d'analyse
Jean Alexandre Dieudonne
Elements d'analyse
Jean Alexandre Dieudonne
Lectures on Number Theory
Peter Gustav Lejeune Dirichlet, Richard Dedekind, P. G. L. DirichletThis volume is a translation of Dirichlet's Vorlesungen über Zahlentheorie which includes nine supplements by Dedekind and an introduction by John Stillwell, who translated the volume.

Lectures on Number Theory is the first of its kind on the subject matter. It covers most of the topics that are standard in a modern first course on number theory, but also includes Dirichlet's famous results on class numbers and primes in arithmetic progressions.

The book is suitable as a textbook, yet it also offers a fascinating historical perspective that links Gauss with modern number theory. The legendary story is told how Dirichlet kept a copy of Gauss's Disquisitiones Arithmeticae with him at all times and how Dirichlet strove to clarify and simplify Gauss's results. Dedekind's footnotes document what material Dirichlet took from Gauss, allowing insight into how Dirichlet transformed the ideas into essentially modern form.

Also shown is how Gauss built on a long tradition in number theory—going back to Diophantus—and how it set the agenda for Dirichlet's work. This important book combines historical perspective with transcendent mathematical insight. The material is still fresh and presented in a very readable fashion.

This volume is one of an informal sequence of works within the History of Mathematics series. Volumes in this subset, "Sources", are classical mathematical works that served as cornerstones for modern mathematical thought. (For another historical translation by Professor Stillwell, see Sources of Hyperbolic Geometry, Volume 10 in the History of Mathematics series.)
Problems in Group Theory
John D. Dixon, MathematicsThe most effective way to study any branch of mathematics is to tackle its problems. This wide-ranging anthology offers a straightforward approach, with 431 challenging problems in all phases of group theory, from elementary to the most advanced.
The problems are arranged in eleven chapters: subgroups, permutation groups, automorphisms and finitely generated Abelian groups, normal series, commutators and derived series, solvable and nilpotent groups, the group ring and monomial representations, Frattini subgroup, factorization, linear groups, and representations and characters. Each chapter features a preface of pertinent definitions and theorems, and full solutions appear in a separate section.
Most of these problems are derived from research papers published since 1950 (a listing of 102 references is supplied). This compilation makes them readily accessible as a supplement to courses in group theory. The presentation places equal emphasis on techniques and results, encouraging the development of both skill and comprehension.
Riemann Surfaces
Simon DonaldsonThe theory of Riemann surfaces occupies a very special place in mathematics. It is a culmination of much of traditional calculus, making surprising connections with geometry and arithmetic. It is an extremely useful part of mathematics, knowledge of which is needed by specialists in many other fields. It provides a model for a large number of more recent developments in areas including manifold topology, global analysis, algebraic geometry, Riemannian geometry, and diverse topics in mathematical physics. This graduate text on Riemann surface theory proves the fundamental analytical results on the existence of meromorphic functions and the Uniformisation Theorem. The approach taken emphasises PDE methods, applicable more generally in global analysis. The connection with geometric topology, and in particular the role of the mapping class group, is also explained. To this end, some more sophisticated topics have been included, compared with traditional texts at this level. While the treatment is novel, the roots of the subject in traditional calculus and complex analysis are kept well in mind. Part I sets up the interplay between complex analysis and topology, with the latter treated informally. Part II works as a rapid first course in Riemann surface theory, including elliptic curves. The core of the book is contained in Part III, where the fundamental analytical results are proved. Following this section, the remainder of the text illustrates various facets of the more advanced theory.
The Geometry of Incidence
Harold L. Dorwart
Banach Algebra Techniques in Operator Theory
Ronald G. DouglasA discussion of certain advanced topics in operator theory, providing the necessary background while assuming only standard senior-first year graduate courses in general topology, measure theory, and algebra. Each chapter ends with source notes which suggest additional reading along with comments on who proved what and when, followed by a large number of problems of varying difficulty. This new edition will appeal to a whole new generation of students seeking an introduction to this topic.
Topology
James Dugundji
TOPOLOGY
James Dugundji
Abstract Algebra, 3rd Edition
David S. Dummit, Richard M. FooteWidely acclaimed algebra text. This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings.
* The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.
Analisis Real - Medida E Integracion
Mijail Ivanovich Dyachenko, Piotr Lavrentievich Ulyanov
Galois Theory
Harold M. EdwardsThis is an introduction to Galois Theory along the lines of Galois’s Memoir on the Conditions for Solvability of Equations by Radicals. It puts Galois’s ideas into historical perspective by tracing their antecedents in the works of Gauss, Lagrange, Newton, and even the ancient Babylonians. It also explains the modern formulation of the theory. It includes many exercises, with their answers, and an English translation of Galois’s memoir.
Calculo Diferencial e Integral - 4 Edicion
Hermann-Doig Edwards, Penney
Convexity
H. G. EgglestonThis account of convexity includes the basic properties of convex sets in Euclidean space and their applications, the theory of convex functions and an outline of the results of transformations and combinations of convex sets. It will be useful for those concerned with the many applications of convexity in economics, the theory of games, the theory of functions, topology, geometry and the theory of numbers.
Commutative Algebra: with a View Toward Algebraic Geometry
David EisenbudThis is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
The Geometry of Schemes
David Eisenbud, Joe HarrisGrothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Convexity Methods in Hamiltonian Mechanics
IVAR EKELAND
Analytic Elements in P-Adic Analysis
Alain EscassutThe behaviour of the analytic elements on an infraconnected set D in K an algebraically closed complete ultrametric field is mainly explained by the circular filters and the monotonous filters on D, especially the T-filters: zeros of the elements, Mittag-Leffler series, factorization, Motzkin factorization, maximum principle, injectivity, algebraic properties of the algebra of the analytic elements on D, problems of analytic extension. This is applied to the differential equation y'=hy (y,h analytic elements on D), analytic interpolation, p-adic group duality on meromorphic products and to the p-adic Fourier transform.
Ultrametric Banach Algebras
Alain EscassutIn this volume, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebra, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras. The spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebra, and ultrametric Banach algebras. Given a Krasner-Tate algbebra A=K{t}[x], the absolute values extending the Gauss norm from K{t} to A are defined by the elements of the Shilov boundary of A.
Differential Equations Methods for the Monge-Kantorevich Mass Transfer Problem
Lawrence C. Evans, Wilfrid GangboIn this volume, the authors demonstrate under some assumptions on $f^+$, $f^-$ that a solution to the classical Monge-Kantorovich problem of optimally rearranging the measure $\mu{^+}=f^+dx$ onto $\mu^-=f^-dy$ can be constructed by studying the $p$-Laplacian equation $- \mathrm {div}(\vert DU_p\vert^{p-2}Du_p)=f^+-f^-$ in the limit as $p\rightarrow\infty$. The idea is to show $u_p\rightarrow u$, where $u$ satisfies $\vert Du\vert\leq 1,-\mathrm {div}(aDu)=f^+-f^-$ for some density $a\geq0$, and then to build a flow by solving a nonautonomous ODE involving $a, Du, f^+$ and $f^-$.
Partial Differential Equations
Lawrence C. EvansThis text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between functional analytic insights and calculus-type estimates within the context of Sobolev spaces. Treatment of all topics is complete and self-contained. The book's wide scope and clear exposition make it a suitable text for a graduate course in PDEs.
Weak Convergence Methods for Nonlinear Partial Differential Equations (Regional Conference Seriess in Mathematics, No 74) CBMS/74 (Cbms Regional Conference Series in Mathematics)
Lawrence C. Evanspurpose of this book is to explain systematically and clearly many of the most important techniques set forth in recent years for using weak convergence methods to study nonlinear partial differential equations. This work represents an expanded version of a series of ten talks presented by the author at Loyola University of Chicago in the summer of 1988. The author surveys a wide collection of techniques for showing the existence of solutions to various nonlinear partial differential equations, especially when strong analytic estimates are unavailable. The overall guiding viewpoint is that when a sequence of approximate solutions converges only weakly, one must exploit the nonlinear structure of the PDE to justify passing to limits. The author concentrates on several areas that are rapidly developing and points to some underlying viewpoints common to them all. Among the several themes in the book are the primary role of measure theory and real analysis (as opposed to functional analysis) and the continual use in diverse settings of low amplitude, high frequency periodic test functions to extract useful information. The author uses the simplest problems possible to illustrate various key techniques. Aimed at research mathematicians in the field of nonlinear PDEs, this book should prove an important resource for understanding the techniques being used at the forefront of this vital area of research
An Introduction to Number Theory
G. Everest, Thomas WardIncludes up-to-date material on recent developments and topics of significant interest, such as elliptic functions and the new primality test

Selects material from both the algebraic and analytic disciplines, presenting several different proofs of a single result to illustrate the differing viewpoints and give good insight
Fundamental Algebraic Geometry
Barbara Fantechi, Lothar Gottsche, Luc Illusie, Steven L. Kleiman, Nitin NitsureAlexander Grothendieck's concepts turned out to be astoundingly powerful and productive, truly revolutionizing algebraic geometry. He sketched his new theories in talks given at the Séminaire Bourbaki between 1957 and 1962. He then collected these lectures in a series of articles in Fondements de la géométrie algébrique (commonly known as FGA). Much of FGA is now common knowledge. However, some of it is less well known, and only a few geometers are familiar with its full scope. The goal of the current book, which resulted from the 2003 Advanced School in Basic Algebraic Geometry (Trieste, Italy), is to fill in the gaps in Grothendieck's very condensed outline of his theories. The four main themes discussed in the book are descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. The authors present complete proofs of the main results, using newer ideas to promote understanding whenever necessary, and drawing connections to later developments. With the main prerequisite being a thorough acquaintance with basic scheme theory, this book is a valuable resource for anyone working in algebraic geometry.
Groups and Symmetry: A Guide to Discovering Mathematics
David W. FarmerIn most mathematics textbooks, the most exciting part of mathematics—the process of invention and discovery—is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you.

Suitable for a one-semester course at the beginning undergraduate level, there are no prerequisites for understanding the text. Any college student interested in discovering the beauty of mathematics will enjoy a course taught from this book. The book has also been used successfully with nonscience students who want to fulfill a science requirement.
Knots and Surfaces: A Guide to Discovering Mathematics
David W. Farmer, Theodore B. StanfordIn most mathematics textbooks, the most exciting part of mathematics—the process of invention and discovery—is completely hidden from the reader. The aim of Knots and Surfaces is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you.

Suitable for a one-semester course at the beginning undergraduate level, there are no prerequisites for understanding the text. Any college student interested in discovering the beauty of mathematics will enjoy a course taught from this book. The book has also been used successfully with nonscience students who want to fulfill a science requirement.
Differential calculus
W. L Ferrar
Fourier Analysis and Its Applications
Gerald B. FollandThis book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
A First Course in Abstract Algebra Seventh Edition
John B. Fraleigh
Oscillations en biologie: Analyse qualitative et modèles
Jean-Pierre FrançoiseLes oscillations complexes mises en évidence dans les systèmes physiologiques s'analysent par des modèles. Cet ouvrage se propose de présenter et de développer les mathématiques nécessaires à leur compréhension. On présente en particulier les notions d'excitabilité, de bistabilité, de synchronisation et d'oscillations en salves dans le cadre de l'analyse qualitative.
Methods of Advanced Calculus
Phillip Franklin
Field Arithmetic
Michael D. Fried, Moshe JardenField Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements.

Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
Algebraic Surfaces and Holomorphic Vector Bundles
Robert FriedmanA novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
Lectures on Advanced Ordinary Differential
K. O. Friedrichs
From Holomorphic Functions to Complex Manifolds
Klaus Fritzsche, Hans GrauertThis introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.
From Holomorphic Functions to Complex Manifolds
Klaus Fritzsche, Hans GrauertThis introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.
Topics in the Calculus of Variations
MARTIN FUCHS
Algebraic Topology: A First Course
William FultonThis book introduces the important ideas of algebraic topology by emphasizing the relation of these ideas with other areas of mathematics. Rather than choosing one point of view of modern topology (homotropy theory, axiomatic homology, or differential topology, say) the author concentrates on concrete problems in spaces with a few dimensions, introducing only as much algebraic machinery as necessary for the problems encountered. This makes it possible to see a wider variety of important features in the subject than is common in introductory texts; it is also in harmony with the historical development of the subject. The book is aimed at students who do not necessarily intend on specializing in algebraic topology.
Intersection Theory, 2nd Edition
William FultonIntersection theory has played a central role in mathematics, from the ancient origins of algebraic geometry in the solutions of polynomial equations to the triumphs of algebraic geometry during the last two centuries. This book develops the foundations of the theory and indicates the range of classical and modern applications. The hardcover edition received the prestigious Steele Prize in 1996 for best exposition.
Introduction to Toric Varieties.
William FultonToric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories.

The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.
Representation Theory: A First Course
William Fulton, Joe HarrisThe primary goal of these lectures is to introduce a beginner to the finite-dimensional representations of Lie groups and Lie algebras. Intended to serve non-specialists, the concentration of the text is on examples. The general theory is developed sparingly, and then mainly as useful and unifying language to describe phenomena already encountered in concrete cases. The book begins with a brief tour through representation theory of finite groups, with emphasis determined by what is useful for Lie groups. The focus then turns to Lie groups and Lie algebras and finally to the heart of the course: working out the finite dimensional representations of the classical groups. The goal of the last portion of the book is to make a bridge between the example-oriented approach of the earlier parts and the general theory.
Representation Theory: A First Course
William Fulton, Joe HarrisIntroducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Representation Theory: A First Course
William Fulton, Joe HarrisIntroducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Some Points in Analysis and Their History (University Lecture Series, Vol 11) ULECT/11
Lars GardingThis book is a collection of small essays containing the history and the proofs of some important and interesting theorems of analysis and partial differential operators in this century. Most of the results in the book are associated with Swedish mathematicians. Also included are the Tarski-Seidenberg theorem and Wiener's classical results in harmonic analysis and a delightful essay on the impact of distributions in analysis. All mathematical points are fully explained, but some require a certain mature understanding from the reader. This book is a well-written, simple work that offers full mathematical treatment, along with insight and fresh points of view.
Geometric Tomography
Richard J. GardnerGeometric tomography deals with the retrieval of information about a geometric object from data concerning its projections (shadows) on planes or cross-sections by planes. It is a geometric relative of computerized tomography, which reconstructs an image from X-rays of a human patient. The subject overlaps with convex geometry and employs many tools from that area, including some formulas from integral geometry. It also has connections to discrete tomography, geometric probing in robotics and to stereology. This comprehensive study provides a rigorous treatment of the subject. Although primarily meant for researchers and graduate students in geometry and tomography, brief introductions, suitable for advanced undergraduates, are provided to the basic concepts. More than 70 illustrations are used to clarify the text. The book also presents 66 unsolved problems. Each chapter ends with extensive notes, historical remarks, and some biographies. This edition, first published in 2006, includes numerous updates and improvements, with some 300 new references bringing the total to over 800.
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey, David S. JohnsonBook annotation not available for this title.
Title: Computers and Intractability
Author: Garey, Michael R./ Johnson, David S.
Publisher: Macmillan Higher Education
Publication Date: 1979/01/15
Number of Pages: 338
Binding Type: PAPERBACK
Library of Congress: 78012361
A Course in Galois Theory
D. J. H. GarlingGalois theory is one of the most beautiful branches of mathematics. By synthesising the techniques of group theory and field theory it provides a complete answer to the problem of the solubility of polynomials by radicals: that is, the problem of determining when and how a polynomial equation can be solved by repeatedly extracting roots and using elementary algebraic operations. This textbook, based on lectures given over a period of years at Cambridge, is a detailed and thorough introduction to the subject. The work begins with an elementary discussion of groups, fields and vector spaces, and then leads the reader through such topics as rings, extension fields, ruler-and-compass constructions, to automorphisms and the Galois correspondence. By these means, the problem of the solubility of polynomials by radicals is answered; in particular it is shown that not every quintic equation can be solved by radicals. Throughout, Dr Garling presents the subject not as something closed, but as one with many applications. In the final chapters, he discusses further topics, such as transcendence and the calculation of Galois groups, which indicate that there are many questions still to be answered. The reader is assumed to have no previous knowledge of Galois theory. Some experience of modern algebra is helpful, so that the book is suitable for undergraduates in their second or final years. There are over 200 exercises which provide a stimulating challenge to the reader.
Topological Vector Spaces I
Gottfried Kothe; Translator D.J.H. Garling
Counterexamples in Analysis
Bernard R. Gelbaum, John M. H. OlmstedThese counterexamples, arranged according to difficulty or sophistication, deal mostly with the part of analysis known as "real variables," starting at the level of calculus. The first half of the book concerns functions of a real variable; topics include the real number system, functions and limits, differentiation, Riemann integration, sequences, infinite series, uniform convergence, and sets and measure on the real axis. The second half, encompassing higher dimensions, examines functions of two variables, plane sets, area, metric and topological spaces, and function spaces. This volume contains much that will prove suitable for students who have not yet completed a first course in calculus, and ample material of interest to more advanced students of analysis as well as graduate students. 12 figures. Bibliography. Index. Errata.
Counterexamples in Analysis
Bernard R. Gelbaum, John M. H. OlmstedThese counterexamples, arranged according to difficulty or sophistication, deal mostly with the part of analysis known as "real variables," starting at the level of calculus. The first half of the book concerns functions of a real variable; topics include the real number system, functions and limits, differentiation, Riemann integration, sequences, infinite series, uniform convergence, and sets and measure on the real axis. The second half, encompassing higher dimensions, examines functions of two variables, plane sets, area, metric and topological spaces, and function spaces. This volume contains much that will prove suitable for students who have not yet completed a first course in calculus, and ample material of interest to more advanced students of analysis as well as graduate students. 12 figures. Bibliography. Index. Errata.
Basic Quadratic Forms
Larry J. GersteinThe arithmetic theory of quadratic forms is a rich branch of number theory that has had important applications to several areas of pure mathematics—particularly group theory and topology—as well as to cryptography and coding theory. This book is a self-contained introduction to quadratic forms that is based on graduate courses the author has taught many times. It leads the reader from foundation material up to topics of current research interest—with special attention to the theory over the integers and over polynomial rings in one variable over a field—and requires only a basic background in linear and abstract algebra as a prerequisite. Whenever possible, concrete constructions are chosen over more abstract arguments. The book includes many exercises and explicit examples, and it is appropriate as a textbook for graduate courses or for independent study. To facilitate further study, a guide to the extensive literature on quadratic forms is provided.
Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.
Mariano GiaquintaBook by Giaquinta, Mariano
Elliptic Partial Differential Equations of Second Order
David Gilbarg, Neil S. TrudingerFrom the reviews: "This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student." —New Zealand Mathematical Society, 1985
Chaos: Making a New Science
James GleickJames Gleick explains the theories behind the fascinating new science called chaos. Alongside relativity and quantum mechanics, it is being hailed as the twentieth century's third revolution. 8 pages of photos.
Elements de topologie algebrique. Deuxieme cycle
Claude Godbillon
Analyse mathématique III: Fonctions analytiques, différentielles et variétés, surfaces de Riemann
Roger GodementCe vol. III expose la théorie classique de Cauchy dans un esprit orienté bien davantage vers ses innombrables utilisations que vers une théorie plus ou moins complète des fonctions analytiques. On montre ensuite comment les intégrales curvilignes à la Cauchy se généralisent à un nombre quelconque de variables réelles (formes différentielles, formules de type Stokes). Les bases de la théorie des variétés sont ensuite exposées, principalement pour fournir au lecteur le langage "canonique" et quelques théorèmes importants (changement de variables dans les intégrales, équations différentielles). Un dernier chapitre montre comment on peut utiliser ces théories pour construire la surface de Riemann compacte d'une fonction algébrique, sujet rarement traité dans la littérature non spécialisée bien que n'éxigeant que des techniques élémentaires. Un volume IV exposera, outre,l'intégrale de Lebesgue, un bloc de mathématiques spécialisées vers lequel convergera tout le contenu des volumes précédents: séries et produits infinis de Jacobi, Riemann, Dedekind, fonctions elliptiques, théorie classique des fonctions modulaires et la version moderne utilisant la structure de groupe de Lie de SL(2,R).
Cours d'Algèbre
Roger Godement
Calculus of several variables
Casper Goffman
Curvature and Homology
Samuel I. GoldbergThis systematic and self-contained treatment examines the topology of differentiable manifolds, curvature and homology of Riemannian manifolds, compact Lie groups, complex manifolds, and curvature and homology of Kaehler manifolds. It generalizes the theory of Riemann surfaces to that of Riemannian manifolds. Includes four helpful appendixes. "A valuable survey." — Nature. 1962 edition.
Curvature and Homology: Revised Edition
Samuel I. GoldbergThis systematic and self-contained treatment examines the topology of differentiable manifolds, curvature and homology of Riemannian manifolds, compact Lie groups, complex manifolds, and curvature and homology of Kaehler manifolds. It generalizes the theory of Riemann surfaces to that of Riemannian manifolds. Includes four helpful appendixes. "A valuable survey." — Nature. 1962 edition.
Recursive Analysis
R. L. Goodstein, MathematicsRecursive analysis develops natural number computations into a framework appropriate for real numbers. This text is based upon primary recursive arithmetic and presents a unique combination of classical analysis and intuitional analysis. Written by a master in the field, it is suitable for graduate students of mathematics and computer science and can be read without a detailed knowledge of recursive arithmetic.
Introductory chapters on recursive convergence and recursive and relative continuity are succeeded by explorations of recursive and relative differentiability, the relative integral, and the elementary functions. A final chapter examines transfinite ordinals, and the text concludes with a helpful appendix of topics related to recursive irrationality and transcendence.
Algebraic Geometry: Part I: Schemes. With Examples and Exercises
Ulrich Görtz, Torsten WedhornThis book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.
Proprietes Generales de l'Equation d'Euler et de Gauss
Edouard Goursat
p-adic Numbers: An Introduction
Fernando GouveaThere are numbers of all kinds: rational, real, complex, p-adic. The p-adic numbers are less well known than the others, but they play a fundamental role in number theory and in other parts of mathematics. This elementary introduction offers a broad understanding of p-adic numbers.

From the reviews: "It is perhaps the most suitable text for beginners, and I shall definitely recommend it to anyone who asks me what a p-adic number is." —THE MATHEMATICAL GAZETTE
Lectures on forms in many variables
Marvin J GreenbergLectures on forms in many variables (Mathematics lecture note series)
Algebraic Topology: A First Course
Marvin J. Greenberg, John R. HarperGreat first book on algebraic topology. Introduces (co)homology through singular theory.
Euclidean and Non-Euclidean Geometries: Development and History
Marvin J. GreenbergThis is the definitive presentation of the history, development and philosophical significance of non-Euclidean geometry as well as of the rigorous foundations for it and for elementary Euclidean geometry, essentially according to Hilbert. Appropriate for liberal arts students, prospective high school teachers, math. majors, and even bright high school students. The first eight chapters are mostly accessible to any educated reader; the last two chapters and the two appendices contain more advanced material, such as the classification of motions, hyperbolic trigonometry, hyperbolic constructions, classification of Hilbert planes and an introduction to Riemannian geometry.
A Singular Introduction to Commutative Algebra
Gert-Martin Greuel, Gerhard PfisterThis substantially enlarged second edition aims to lead a further stage in the computational revolution in commutative algebra. This is the first handbook/tutorial to extensively deal with SINGULAR. Among the book’s most distinctive features is a new, completely unified treatment of the global and local theories. Another feature of the book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic.
Principles of Algebraic Geometry
Phillip Griffiths, Joseph HarrisA comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.
Principles of Algebraic Geometry
Phillip Griffiths, Joseph HarrisA comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.
Introduction to Algebraic Curves
Phillip A. GriffithsAlgebraic curves and compact Riemann surfaces comprise the most developed and arguably the most beautiful portion of algebraic geometry. However, the majority of books written on the subject discuss algebraic curves and compact Riemann surfaces separately, as parts of distinct general theories. Most texts and university courses on curve theory generally conclude with the Riemann-Roch theorem, despite the fact that this theorem is the gateway to some of the most fascinating results in the theory of algebraic curves. This book is based on a six-week series of lectures presented by the author to third- and fourth-year undergraduates and graduate students at Beijing University in 1982. The lectures began with minimal technical requirements (a working knowledge of elementary complex function theory and algebra together with some exposure to topology of compact surfaces) and proceeded directly to the Riemann-Roch and Abel theorems. This book differs from a number of recent books on this subject in that it combines analytic and geometric methods at the outset, so that the reader can grasp the basic results of the subject. Although such modern techniques of sheaf theory, cohomology, and commutative algebra are not covered here, the book provides a solid foundation to proceed to more advanced texts in general algebraic geometry, complex manifolds, and Riemann surfaces, as well as algebraic curves. Containing numerous exercises and two exams, this book would make an excellent introductory text.
Algebre lineaire
J Grifone
Algebra Lineal - 5b: Edicion
Stanley I. Grossman
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
John Guckenheimer, Philip HolmesAn application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Symmetric and Alternating Groups As Monodromy Groups of Riemann Surfaces 1: Generic Covers and Covers With Many Branch Points
Robert M. Guralnick, John ShareshianThe authors consider indecomposable degree $n$ covers of Riemann surfaces with monodromy group an alternating or symmetric group of degree $d$. They show that if the cover has five or more branch points then the genus grows rapidly with $n$ unless either $d = n$ or the curves have genus zero, there are precisely five branch points and $n =d(d-1)/2$. Similarly, if there is a totally ramified point, then without restriction on the number of branch points the genus grows rapidly with $n$ unless either $d=n$ or the curves have genus zero and $n=d(d-1)/2$. One consequence of these results is that if $f:X \rightarrow \mathbb{P 1$ is indecomposable of degree $n$ with $X$ the generic Riemann surface of genus $g \ge 4$, then the monodromy group is $S n$ or $A n$ (and both can occur for $n$ sufficiently large). The authors also show if that if $f(x)$ is an indecomposable rational function of degree $n$ branched at $9$ or more points, then its monodromy group is $A n$ or $S n$.Finally, they answer a question of Elkies by showing that the curve parameterizing extensions of a number field given by an irreducible trinomial with Galois group $H$ has large genus unless $H=A n$ or $S n$ or $n$ is very small.
Field Theory and Its Classical Problems
Charles Robert HadlockField Theory and its Classical Problems lets Galois theory unfold in a natural way, beginning with the geometric construction problems of antiquity, continuing through the construction of regular n-gons and the properties of roots of unity, and then on to the solvability of polynomial equations by radicals and beyond. The logical pathway is historic, but the terminology is consistent with modern treatments. No previous knowledge of algebra is assumed. Notable topics treated along this route include the transcendence of e and π, cyclotomic polynomials, polynomials over the integers, Hilbert's irreducibility theorem, and many other gems in classical mathematics. Historical and bibliographical notes complement the text, and complete solutions are provided to all problems.
Naive Set Theory
P. R. HalmosEvery mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set­ theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.
Elliptic Partial Differential Equations: Second Edition
Qing Han, Fanghua LinElliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things about it—it is a wonderful book. —Tobias Colding This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems. This second edition has been thoroughly revised and in a new chapter the authors discuss several methods for proving the existence of solutions of primarily the Dirichlet problem for various types of elliptic equations. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
An Introduction to the Theory of Numbers
G. H. Hardy, E. M. WrightThis is the fifth edition of a work (first published in 1938) which has become the standard introduction to the subject. The book has grown out of lectures delivered by the authors at Oxford, Cambridge, Aberdeen, and other universities. It is neither a systematic treatise on the theory of numbers nor a 'popular' book for non-mathematical readers. It contains short accounts of the elements of many different sides of the theory, not usually combined in a single volume; and, although it is written for mathematicians, the range of mathematical knowledge presupposed is not greater than that of an intelligent first-year student. In this edition, the main changes are in the notes at the end of each chapter. Sir Edward Wright seeks to provide up-to-date references for the reader who wishes to pursue a particular topic further and to present, both in the notes and in the text, a reasonably accurate account of the present state of knowledge.
An Introduction to the Theory of Numbers
G. H. Hardy, Edward M. Wright, Andrew Wiles, Roger Heath-Brown, Joseph SilvermanAn Introduction to the Theory of Numbers by G. H. Hardy and E. M. Wright is found on the reading list of virtually all elementary number theory courses and is widely regarded as the primary and classic text in elementary number theory. Developed under the guidance of D. R. Heath-Brown, this Sixth Edition of An Introduction to the Theory of Numbers has been extensively revised and updated to guide today's students through the key milestones and developments in number theory.

Updates include a chapter by J. H. Silverman on one of the most important developments in number theory - modular elliptic curves and their role in the proof of Fermat's Last Theorem — a foreword by A. Wiles, and comprehensively updated end-of-chapter notes detailing the key developments in number theory. Suggestions for further reading are also included for the more avid reader.

The text retains the style and clarity of previous editions making it highly suitable for undergraduates in mathematics from the first year upwards as well as an essential reference for all number theorists.
Algebraic Geometry: A First Course
Joe Harris"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." —MATHEMATICAL REVIEWS
Moduli of Curves
Joe Harris, Ian MorrisonA guide to a rich and fascinating subject: algebraic curves and how they vary in families. Providing a broad but compact overview of the field, this book is accessible to readers with a modest background in algebraic geometry. It develops many techniques, including Hilbert schemes, deformation theory, stable reduction, intersection theory, and geometric invariant theory, with the focus on examples and applications arising in the study of moduli of curves. From such foundations, the book goes on to show how moduli spaces of curves are constructed, illustrates typical applications with the proofs of the Brill-Noether and Gieseker-Petri theorems via limit linear series, and surveys the most important results about their geometry ranging from irreducibility and complete subvarieties to ample divisors and Kodaira dimension. With over 180 exercises and 70 figures, the book also provides a concise introduction to the main results and open problems about important topics which are not covered in detail.
Rings, Modules and Linear Algebra
B. Hartley, T.O. Hawkesthis is an account of how a certain fundamental algebraic concept can be introduced, developed, and applied to solve some concrete algebraic problems. The book is divided into three parts. The first is concerned with defining concepts and terminology, assembling elementary facts, and developing the theory of factorization in a principal ideal domain. The second part deals with the main decomposition theorems which describe the structure of finitely generated modules over a principal ideal domain. The third part contains the applications of these theorems. This book may be of interest to undergraduates taking courses in algebra.
Ordinary Differential Equations
Philip HartmanOrdinary Differential Equations covers the fundamentals of the theory of ordinary differential equations (ODEs), including an extensive discussion of the integration of differential inequalities, on which this theory relies heavily. In addition to these results, the text illustrates techniques involving simple topological arguments, fixed point theorems, and basic facts of functional analysis. Unlike many texts, which supply only the standard simplified theorems, Ordinary Differential Equations presents the basic theory of ODEs in a general way, making it a valuable reference. This SIAM reissue of the 1982 second edition covers invariant manifolds, perturbations, and dichotomies, making the text relevant to current studies of geometrical theory of differential equations and dynamical systems.
Algebraic Geometry
Robin HartshorneAn introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra.
Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Number Theory
Helmut HasseFrom the reviews: "...a fine book [...] When it appeared in 1949 it was a pioneer. Now there are plenty of competing accounts. But Hasse has something extra to offer.[...] Hasse proved that miracles do happen in his five beautiful papers on quadratic forms of 1923-1924. [...]It is trite but true: Every number-theorist should have this book on his or her shelf." —Irving Kaplansky in Bulletin of the American Mathematical Society, 1981
Algebraic Topology
Allen HatcherIn most major universities one of the three or four basic first-year graduate mathematics courses is algebraic topology. This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.
Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities
Emmanuel HebeyThis volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. "Several surprising phenomena appear when studying Sobolev spaces on manifolds," according to the author. "Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role." The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds. Chapter 3 presents the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5. Chapter 6 presents special types of Sobolev inequalities under constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. And Chapter 9 discusses the influence of symmetries on Sobolev embeddings. An appendix offers brief notes on the case of manifolds with boundaries. This topic is a field undergoing great development at this time. However, several important questions remain open. So a substantial part of the book is devoted to the concept of best constants, which appeared to be crucial for solving limiting cases of some classes of PDEs. The volume is highly self-contained. No familiarity is assumed with differentiable manifolds and Riemannian geometry, making the book accessible to a broad audience of readers, including graduate students and researchers.
Extremum Problems for Eigenvalues of Elliptic Operators
Antoine HenrotThis book focuses on extremal problems. For instance, it seeks a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. Also considered is the case of functions of eigenvalues. The text probes similar questions for other elliptic operators, such as Schrodinger, and explores optimal composites and optimal insulation problems in terms of eigenvalues.
Analysis and Logic
C. Ward Henson, José Iovino, Alexander S. Kechris, Edward Odell, Catherine Finet, Christian MichauxThis volume presents articles from four outstanding researchers who work at the cusp of analysis and logic. The emphasis is on active research topics; many results are presented that have not been published before and open problems are formulated. Considerable effort has been made by the authors to make their articles accessible to mathematicians new to the area
Topics in Algebra, 2nd Edition
I. N. HersteinNew edition includes extensive revisions of the material on finite groups and Galois Theory. New problems added throughout.
Geometry and the Imagination
D. and S. Cohn-Vossen Hilbert
Foundations of Geometry
David Hilbert
The Foundations Of Geometry
David HilbertThis scarce antiquarian book is a facsimile reprint of the original. Due to its age, it may contain imperfections such as marks, notations, marginalia and flawed pages. Because we believe this work is culturally important, we have made it available as part of our commitment for protecting, preserving, and promoting the world's literature in affordable, high quality, modern editions that are true to the original work.
Principles of Mathematical Logic
David Hilbert, W. Ackermann, Robert E. LuceDavid Hilbert was particularly interested in the foundations of mathematics. Among many other things, he is famous for his attempt to axiomatize mathematics. This now classic text is his treatment of symbolic logic. It lays the groundwork for his later work with Bernays. This translation is based on the second German edition, and has been modified according to the criticisms of Church and Quine. In particular, the authors' original formulation of Gödel's completeness proof for the predicate calculus has been updated. In the first half of the twentieth century, an important debate on the foundations of mathematics took place. Principles of Mathematical Logic represents one of Hilbert's important contributions to that debate. Although symbolic logic has grown considerably in the subsequent decades, this book remains a classic.
Introduccion a la Logica Matematica
Shirley Hill, Patrick Suppes
A Course in Homological Algebra
Peter J. Hilton, Urs StammbachHomological algebra has found a large number of applications in many fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In the new edition of this broad introduction to the field, the authors address a number of select topics and describe their applications, illustrating the range and depth of their developments. A comprehensive set of exercises is included.
Diophantine Geometry: An Introduction
Marc Hindry, Joseph H. SilvermanThis is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Differential Topology
Morris W. Hirsch"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." —MATHEMATICAL REVIEWS
Structure of Finite Algebras
David Charles Hobby, Ralph McKenzieThe utility of congruence lattices in revealing the structure of general algebras has been recognized since Garrett Birkhoff's pioneering work in the 1930s and 1940s. However, the results presented in this book are of very recent origin: most of them were developed in 1983. The main discovery presented here is that the lattice of congruences of a finite algebra is deeply connected to the structure of that algebra. The theory reveals a sharp division of locally finite varieties of algebras into six interesting new families, each of which is characterized by the behavior of congruences in the algebras. The authors use the theory to derive many new results that will be of interest not only to universal algebraists, but to other algebraists as well.

The authors begin with a straightforward and complete development of basic tame congruence theory, a topic that offers great promise for a wide variety of investigations. They then move beyond the consideration of individual algebras to a study of locally finite varieties. A list of open problems closes the work.
Topology
John G. Hocking, Gail S. Young, MathematicsSuperb one-year course in classical topology. Topological spaces and functions, point-set topology, much more. Examples and problems. Bibliography. Index.
Topology
John G. Hocking, Gail S. Young, MathematicsSuperb one-year course in classical topology. Topological spaces and functions, point-set topology, much more. Examples and problems. Bibliography. Index.
Building Models by Games
Wilfrid HodgesThis volume presents research by algebraists and model theorists in accessible form for advanced undergraduates or beginning graduate students studying algebra, logic, or model theory. It introduces a general method for building infinite mathematical structures and surveys applications in algebra and model theory. A multi-step procedure, the method resembles a two-player game that continues indefinitely. This approach simplifies, motivates, and unifies a wide range of constructions.
Starting with an overview of basic model theory, the text examines a variety of algebraic applications, with detailed analyses of existentially closed groups of class 2. It describes the classical model-theoretic form of this method of construction, which is known as "omitting types," "forcing," or the "Henkin-Orey theorem," The final chapters are more specialized, discussing how the idea can be used to build uncountable structures. Applications include completeness for Magidor-Malitz quantifiers, Shelah's recent and sophisticated omitting types theorem for L(Q), and applications to Boolean algebras and models of arithmetic. More than 160 exercises range from elementary drills to research-related items, with further information and examples.
A Shorter Model Theory
Wilfrid HodgesThis is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.
Introduction to Stochastic Processes
Paul G/ Port, Sidney C/ Stone, Charles J Hoel
Fudamentals of Banach algebras
K. Hoffman
A First Course in Discrete Dynamical Systems
Richard HolmgrenGiven the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.
Mirror Symmetry
Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, Eric ZaslowThis thorough and detailed exposition is the result of an intensive month-long course sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives. The material will be particularly useful for those wishing to advance their understanding by exploring mirror symmetry at the interface of mathematics and physics.

This one-of-a-kind volume offers the first comprehensive exposition on this increasingly active area of study. It is carefully written by leading experts who explain the main concepts without assuming too much prerequisite knowledge. The book is an excellent resource for graduate students and research mathematicians interested in mathematical and theoretical physics.
The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis
Lars HörmanderThe main change in this edition is the inclusion of exercises with answers and hints. This is meant to emphasize that this volume has been written as a general course in modern analysis on a graduate student level and not only as the beginning of a specialized course in partial differen­ tial equations. In particular, it could also serve as an introduction to harmonic analysis. Exercises are given primarily to the sections of gen­ eral interest; there are none to the last two chapters. Most of the exercises are just routine problems meant to give some familiarity with standard use of the tools introduced in the text. Others are extensions of the theory presented there. As a rule rather complete though brief solutions are then given in the answers and hints. To a large extent the exercises have been taken over from courses or examinations given by Anders Melin or myself at the University of Lund. I am grateful to Anders Melin for letting me use the problems originating from him and for numerous valuable comments on this collection. As in the revised printing of Volume II, a number of minor flaws have also been corrected in this edition. Many of these have been called to my attention by the Russian translators of the first edition, and I wish to thank them for our excellent collaboration.
Topological Vector Spaces and Distributions, Volume I.
John Horvath
Mechanical Behavior of Materials
William F. HosfordThis textbook is for courses on Mechanical Behavior of Materials taught in departments of Mechanical Engineering and Materials Science. The text includes numerous examples and problems for student practice. The book emphasizes quantitative problem solving. End of the chapter notes are included to increase students' interest. This text differs from others because the treatment of plasticity has greater emphasis on the interrelationship of the flow, effective strain and effective stress and their use in conjunction with yield criteria to solve problems. The treatment of defects is new. Schmid's law is generalized for complex stress states. Its use with strains allows for prediction of R-values for textures. Another feature is the treatment of lattice rotations and how they lead to deformation textures. The chapter on fracture mechanics includes coverage of Gurney's approach. Much of the analysis of particulate composites is new. Few texts include anything on metal forming.
Meromorphic Functions over non-Archimedean Fields (Mathematics and Its Applications (closed))
Pei-Chu Hu, Chung-Chun YangThis book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research.
Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.
Meromorphic Functions over non-Archimedean Fields (Mathematics and Its Applications (closed))
Pei-Chu Hu, Chung-Chun YangThis book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research.
Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.
Reflection Groups and Coxeter Groups
James E. HumphreysIn this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature.
Reflection Groups and Coxeter Groups
James E. HumphreysIn this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature.
Algebra
Thomas W. HungerfordFinally a self-contained, one volume, graduate-level algebra text that is readable by the average graduate student and flexible enough to accommodate a wide variety of instructors and course contents. The guiding principle throughout is that the material should be presented as general as possible, consistent with good pedagogy. Therefore it stresses clarity rather than brevity and contains an extraordinarily large number of illustrative exercises.
Algebra
Thomas W. HungerfordFinally a self-contained, one volume, graduate-level algebra text that is readable by the average graduate student and flexible enough to accommodate a wide variety of instructors and course contents. The guiding principle throughout is that the material should be presented as general as possible, consistent with good pedagogy. Therefore it stresses clarity rather than brevity and contains an extraordinarily large number of illustrative exercises.
Complex Geometry: An Introduction
Daniel HuybrechtsEasily accessible

Includes recent developments

Assumes very little knowledge of differentiable manifolds and functional analysis

Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Fourier-Mukai Transforms in Algebraic Geometry
Daniel HuybrechtsThis seminal text on Fourier-Mukai Transforms in Algebraic Geometry by a leading researcher and expositor is based on a course given at the Institut de Mathematiques de Jussieu in 2004 and 2005. Aimed at postgraduate students with a basic knowledge of algebraic geometry, the key aspect of this book is the derived category of coherent sheaves on a smooth projective variety. Including notions from other areas, e.g. singular cohomology, Hodge theory, abelian varieties, K3 surfaces; full proofs are given and exercises aid the reader throughout.
The Geometry of Moduli Spaces of Sheaves
Daniel Huybrechts, Manfred LehnNow back in print, this highly regarded book has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces, which include moduli spaces in positive characteristic, moduli spaces of principal bundles and of complexes, Hilbert schemes of points on surfaces, derived categories of coherent sheaves, and moduli spaces of sheaves on Calabi-Yau threefolds. The authors review changes in the field since the publication of the original edition in 1997 and point the reader towards further literature. References have been brought up to date and errors removed. Developed from the authors' lectures, this book is ideal as a text for graduate students as well as a valuable resource for any mathematician with a background in algebraic geometry who wants to learn more about Grothendieck's approach.
A Classical Introduction to Modern Number Theory
Kenneth Ireland, Michael RosenThis well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.
A Classical Introduction to Modern Number Theory
Kenneth Ireland, Michael RosenThis well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.
A Classical Introduction to Modern Number Theory
Kenneth Ireland, Michael RosenThis well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.
Inverse Problems for Partial Differential Equations
VICTOR ISAKOV
Basic Algebra I: Second Edition
Nathan Jacobson
LECTURES IN ABSTRACT ALGEBRA: VOL. I, BASIC CONCEPTS
Nathan Jacobson
LECTURES IN ABSTRACT ALGEBRA: VOL. II, LINEAR ALGEBRA
Nathan Jacobson
Lie Algebras
Nathan Jacobson, MathematicsDefinitive treatment covers split semi-simple Lie algebras, universal enveloping algebras, classification of irreducible modules, automorphisms, simple Lie algebras over an arbitrary field, and more. Classic handbook for researchers and students; useable in graduate courses or for self-study. Reader should have basic knowledge of Galois theory and the Wedderburn structure theory of associative algebras.
The Axiom of Choice
Thomas J. JechComprehensive in its selection of topics and results, this self-contained text examines the relative strengths and consequences of the axiom of choice. Each chapter contains several problems, graded according to difficulty, and concludes with some historical remarks.
An introduction to the use of the axiom of choice is followed by explorations of consistency, permutation models, and independence. Subsequent chapters examine embedding theorems, models with finite supports, weaker versions of the axiom, and nontransferable statements. The final sections consider mathematics without choice, cardinal numbers in set theory without choice, and properties that contradict the axiom of choice, including the axiom of determinacy and related topics
Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules
Christian. U Jensen, Helmt LenzingThis volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability. Pure mathematicians, especially algebraists, ring theorists, logicians, model theorists and representation theorists, should find this an absorbing and stimulating book.
Plane Waves and Spherical Means Applied to Partial Differential Equations
Fritz John
Elementary Number Theory
Gareth A. Jones, Josephine M. JonesAn undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.
Abroad mathematical classics series: Numerical Optimization
Wright Stephen J Nocedal Jorge
Abstracts. International Workshop on Stochastic Filtering Theory, Held in Chapel Hill, North Carolina on June 26-28, 1994
G. Kallianpur
The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings
Akihiro KanamoriOver the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
Brownian Motion and Stochastic Calculus
Ioannis Karatzas, Steven ShreveA graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.
Number Theory 2: Introduction to Class Field Theory
K. KatoThis book, the second of three related volumes on number theory, is the English translation of the original Japanese book. Here, the idea of class field theory, a highlight in algebraic number theory, is first described with many concrete examples. A detailed account of proofs is thoroughly exposited in the final chapter. The authors also explain the local-global method in number theory, including the use of ideles and adeles. Basic properties of zeta and $L$-functions are established and used to prove the prime number theorem and the Dirichlet theorem on prime numbers in arithmetic progressions. With this book, the reader can enjoy the beauty of numbers and obtain fundamental knowledge of modern number theory. The translation of the first volume was published as Number Theory 1: Fermat's Dream, Translations of Mathematical Monographs (Iwanami Series in Modern Mathematics), vol. 186, American Mathematical Society, 2000.
Number Theory 1: Fermat's Dream
Kazuya Kato, Nobushige Kurokawa, Takeshi SaitoThis is the English translation of the original Japanese book. In this volume, "Fermat's Dream", core theories in modern number theory are introduced. Developments are given in elliptic curves, $p$-adic numbers, the $\zeta$-function, and the number fields. This work presents an elegant perspective on the wonder of numbers. Number Theory 2 on class field theory, and Number Theory 3 on Iwasawa theory and the theory of modular forms, are forthcoming in the series.
P-adic Analysis Compared With Real
Svetlana KatokThe book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. In addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.
Geometric Inequalities
Nicholas D. KazarinoffAnybody who liked his first geometry course will enjoy the simply stated geometric problems about maximum and minimum lenghs and areas in this book. Many of these already fascinated the greeks, for example the problem of of enclosing the largest possible area by a fence of given length, and some were solved long ago; but others remain unsolved even today. Some of the solutions of the problems posed in this book, for example the problem of inscribing a triangle of smallest perimeter into a given triangle, were supplied by world famous mathemaicians, others by high school students.
Prescribing the Curvature of a Riemannian Manifold
Jerry L. KazdanThese notes were the basis for a series of ten lectures given in January 1984 at Polytechnic Institute of New York under the sponsorship of the Conference Board of the Mathematical Sciences and the National Science Foundation. The lectures were aimed at mathematicians who knew either some differential geometry or partial differential equations, although others could understand the lectures. Author's Summary:Given a Riemannian Manifold $(M,g)$ one can compute the sectional, Ricci, and scalar curvatures. In other special circumstances one also has mean curvatures, holomorphic curvatures, etc. The inverse problem is, given a candidate for some curvature, to determine if there is some metric $g$ with that as its curvature. One may also restrict ones attention to a special class of metrics, such as Kahler or conformal metrics, or those coming from an embedding. These problems lead one to (try to) solve nonlinear partial differential equations. However, there may be topological or analytic obstructions to solving these equations. A discussion of these problems thus requires a balanced understanding between various existence and non-existence results. The intent of this volume is to give an up-to-date survey of these questions, including enough background, so that the current research literature is accessible to mathematicians who are not necessarily experts in PDE or differential geometry. The intended audience is mathematicians and graduate students who know either PDE or differential geometry at roughly the level of an intermediate graduate course.
A Course in Commutative Algebra
Gregor KemperThis textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.
Functional Analysis
S. KesavanThe material presented in this book is suited for a first course in Functional Analysis which can be followed by Masters students. While covering all the standard material expected of such a course, efforts have been made to illustrate the use of various theorems via examples taken from differential equations and the calculus of variations, either through brief sections or through exercises. In fact, this book will be particularly useful for students who would like to pursue a research career in the applications of mathematics. The book includes a chapter on weak and weak topologies and their applications to the notions of reflexivity, separability and uniform convexity. The chapter on the Lebesgue spaces also presents the theory of one of the simplest classes of Sobolev spaces. The book includes a chapter on compact operators and the spectral theory for compact self-adjoint operators on a Hilbert space. Each chapter has large collection of exercises at the end. These illustrate the results of the text, show the optimality of the hypotheses of various theorems via examples or counterexamples, or develop simple versions of theories not elaborated upon in the text.
p-Adic Valued Distributions in Mathematical Physics (Mathematics and Its Applications (closed))
Andrei Y. KhrennikovThis book is devoted to the study of non-Archimedean, and especially p-adic mathematical physics. Basic questions about the nature and possible applications of such a theory are investigated. Interesting physical models are developed like the p-adic universe, where distances can be infinitely large p-adic numbers, energies and momentums. Two types of measurement algorithms are shown to exist, one generating real values and one generating p-adic values. The mathematical basis for the theory is a well developed non-Archimedean analysis, and subjects that are treated include non-Archimedean valued distributions using analytic test functions, Gaussian and Feynman non-Archimedean distributions with applications to quantum field theory, differential and pseudo-differential equations, infinite-dimensional non-Archimedean analysis, and p-adic valued theory of probability and statistics.
This volume will appeal to a wide range of researchers and students whose work involves mathematical physics, functional analysis, number theory, probability theory, stochastics, statistical physics or thermodynamics.
An Introduction to Variational Inequalities and Their Applications
David Kinderlehrer, Guido StampacchiaThis unabridged republication of the 1980 text, an established classic in the field, is a resource for many important topics in elliptic equations and systems and is the first modern treatment of free boundary problems. Variational inequalities (equilibrium or evolution problems typically with convex constraints) are carefully explained in An Introduction to Variational Inequalities and Their Applications. They are shown to be extremely useful across a wide variety of subjects, ranging from linear programming to free boundary problems in partial differential equations. Exciting new areas like finance and phase transformations along with more historical ones like contact problems have begun to rely on variational inequalities, making this book a necessity once again.
Complex Algebraic Curves
Frances KirwanThis development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.
Introduction to metamathematics
Stephen Cole Kleene
Mathematical Logic
Stephen Cole KleeneUndergraduate students with no prior classroom instruction in mathematical logic will benefit from this evenhanded multipart text. It begins with an elementary but thorough overview of mathematical logic of first order. The treatment extends beyond a single method of formulating logic to offer instruction in a variety of techniques: model theory (truth tables), Hilbert-type proof theory, and proof theory handled through derived rules.
The second part supplements the previously discussed material and introduces some of the newer ideas and the more profound results of twentieth-century logical research. Subsequent chapters explore the study of formal number theory, with surveys of the famous incompleteness and undecidability results of Godel, Church, Turing, and others. The emphasis in the final chapter reverts to logic, with examinations of Godel's completeness theorem, Gentzen's theorem, Skolem's paradox and nonstandard models of arithmetic, and other theorems. The author, Stephen Cole Kleene, was Cyrus C. MacDuffee Professor of Mathematics at the University of Wisconsin, Madison. Preface. Bibliography. Theorem and Lemma Numbers: Pages. List of Postulates. Symbols and Notations. Index.
p-adic Numbers, p-adic Analysis, and Zeta-Functions
NEAL KoblitzThe first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.
p-adic Numbers, p-adic Analysis, and Zeta-Functions
NEAL KoblitzThe first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.
Number Theory: Algebraic Numbers and Functions
Helmut KochAlgebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of "higher congruences" as an important element of "arithmetic geometry". Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory.
Lectures on Resolution of Singularities
János KollárResolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem.
Elements of the Theory of Functions and Functional Analysis
A. N. Kolmogorov, S. V. FominBased on the authors' courses and lectures, this two-part advanced-level text is now available in a single volume. Topics include metric and normed spaces, continuous curves in metric spaces, measure theory, Lebesque intervals, Hilbert space, and more. Each section contains exercises. Lists of symbols, definitions, and theorems. 1957 edition.
Introductory Real Analysis
A. N. Kolmogorov, S. V. FominSelf-contained and comprehensive, this elementary introduction to real and functional analysis is readily accessible to those with background in advanced calculus. It covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, and much more. 350 problems. 1970 edition.
Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review
Granino A. Korn, Theresa M. KornA reliable source of definitions, theorems, and formulas, this authoritative handbook provides convenient access to information from every area of mathematics. Coverage includes Fourier transforms, Z transforms, linear and nonlinear programming, calculus of variations, random-process theory, special functions, combinatorial analysis, numerical methods, game theory, and much more.
Introduzione alla topologia algebrica
Czes Kosniowski
Differential Geometry
Erwin Kreyszig, MathematicsAn introductory textbook on the differential geometry of curves and surfaces in three-dimensional Euclidean space, presented in its simplest, most essential form, but with many explanatory details, figures and examples, and in a manner that conveys the theoretical and practical importance of the different concepts, methods and results involved. With problems at the end of each section, and solutions listed at the end of the book. Includes 99 illustrations.
Introduction to the Theory of Diffusion Processes
Nikolai Vladimirovich KrylovFocusing on one of the major branches of probability theory, this book treats the large class of processes with continuous sample paths that possess the ``Markov property''. The exposition is based on the theory of stochastic analysis. The diffusion processes discussed are interpreted as solutions of Ito's stochastic integral equations. The book is designed as a self-contained introduction, requiring no background in the theory of probability or even in measure theory. In particular, the theory of local continuous martingales is covered without the introduction of the idea of conditional expectation. Krylov covers such subjects as the Wiener process and its properties, the theory of stochastic integrals, stochastic differential equations and their relation to elliptic and parabolic partial differential equations, Kolmogorov's equations, and methods for proving the smoothness of probabilistic solutions of partial differential equations. With many exercises and thought-provoking problems, this book would be an excellent text for a graduate course in diffusion processes and related subjects.
AN INTRODUCTION TO LINEAR ANALYSIS
Ostberg and Perkins and Kreider and Kuller
Set Theory
Kenneth KunenThis book is designed for readers who know elementary mathematical logic and axiomatic set theory, and who want to learn more about set theory. The primary focus of the book is on the independence proofs. Most famous among these is the independence of the Continuum Hypothesis (CH); that is, there are models of the axioms of set theory (ZFC) in which CH is true, and other models in which CH is false. More generally, cardinal exponentiation on the regular cardinals can consistently be anything not contradicting the classical theorems of Cantor and König. The basic methods for the independence proofs are the notion of constructibility, introduced by Gödel, and the method of forcing, introduced by Cohen. This book describes these methods in detail, verifi es the basic independence results for cardinal exponentiation, and also applies these methods to prove the independence of various mathematical questions in measure theory and general topology. Before the chapters on forcing, there is a fairly long chapter on "infi nitary combinatorics". This consists of just mathematical theorems (not independence results), but it stresses the areas of mathematics where set-theoretic topics (such as cardinal arithmetic) are relevant. There is, in fact, an interplay between infi nitary combinatorics and independence proofs. Infi nitary combinatorics suggests many set-theoretic questions that turn out to be independent of ZFC, but it also provides the basic tools used in forcing arguments. In particular, Martin's Axiom, which is one of the topics under infi nitary combinatorics, introduces many of the basic ingredients of forcing.
Set Theory An Introduction To Independence Proofs
Kenneth KunenMany branches of abstract mathematics have been affected by the modern independence proofs in set theory. This book provides an introduction to relative consistency proofs in axiomatic set theory, and is intended to be used as a text in beginning graduate courses in that subject. It is hoped that this treatment will make the subject accessible to those mathematicians whose research is sensitive to axiomatics. The readers should have had the equivalent of an undergraduate course on cardinals and ordinals, but no specific training in logic is necessary. The volume includes a discussion of modern techniques in forcing, as well as coverage of infinitary combinatorics and its relevance to independence proofs. The work also features a lucid treatment of basic facts about constructibility.
Introduction to Plane Algebraic Curves
Ernst Kunz* Employs proven conception of teaching topics in commutative algebra through a focus on their applications to algebraic geometry, a significant departure from other works on plane algebraic curves in which the topological-analytic aspects are stressed

*Requires only a basic knowledge of algebra, with all necessary algebraic facts collected into several appendices

* Studies algebraic curves over an algebraically closed field K and those of prime characteristic, which can be applied to coding theory and cryptography

* Covers filtered algebras, the associated graded rings and Rees rings to deduce basic facts about intersection theory of plane curves, applications of which are standard tools of computer algebra

* Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook
Linear Algebra
K. Hoffman, R. Kunze
Number Theory 3: Iwasawa Theory and Modular Forms
Nobushige Kurokawa, Masato Kurihara, Takeshi SaitoThis is the third of three related volumes on number theory. (The first two volumes were also published in the Iwanami Series in Modern Mathematics, as volumes 186 and 240.) The two main topics of this book are Iwasawa theory and modular forms. The presentation of the theory of modular forms starts with several beautiful relations discovered by Ramanujan and leads to a discussion of several important ingredients, including the zeta-regularized products, Kronecker's limit formula, and the Selberg trace formula. The presentation of Iwasawa theory focuses on the Iwasawa main conjecture, which establishes far-reaching relations between a p-adic analytic zeta function and a determinant defined from a Galois action on some ideal class groups. This book also contains a short exposition on the arithmetic of elliptic curves and the proof of Fermat's last theorem by Wiles. Together with the first two volumes, this book is a good resource for anyone learning or teaching modern algebraic number theory.
Elements of Applied Bifurcation Theory
Iu. A. Kuznetsov, Yuri A. KuznetsovThis is a book on nonlinear dynamical systems and their bifurcations under parameter variation. It provides a reader with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems. Special attention is given to efficient numerical implementations of the developed techniques. Several examples from recent research papers are used as illustrations. The book is designed for advanced undergraduate or graduate students in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the previous editions, while updating the context to incorporate recent theoretical and software developments and modern techniques for bifurcation analysis. Review of previous editions: "I know of no other book that so clearly explains the basic phenomena of bifurcation theory." - Math Reviews "The book is a fine addition to the dynamical systems literature. It is good to see, in our modern rush to quick publication, that we, as a mathematical community, still have time to bring together, and in such a readable and considered form, the important results on our subject." - Bulletin of the AMS "It is both a toolkit and a primer" - UK Nonlinear News
Tables numeriques de fonctions elementaires: Puissances, racines, exponentielles, logarithmes, fonctions hyperboliques et trigonometriques avec ... des differences tabulaires
Jean Marcel Laborde
Mathematical Pamphlets Algebraic Number Theory
R. Narasimhan, S. Raghavan, S.S. Rangachari, Sunder Lal
Categories for the Working Mathematician
Saunders Mac LaneAn array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Algèbre linéaire t. 1
S. Lang
Algèbre linéaire t. 2
S. Lang
Algebra
Serge Lang
Algebra
Serge LangThis book is intended as a basic text for a one year course in algebra at the graduate level or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. For the new edition, the author has added exercises and made numerous corrections to the text. From MathSciNet's review of the first edition: "The author has an impressive knack for presenting the important and interesting ideas of algebra in just the "right" way, and he never gets bogged down in the dry formalism which pervades some parts of algebra."
Algebra
Serge LangThis book is intended as a basic text for a one year course in algebra at the graduate level or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. For the new edition, the author has added exercises and made numerous corrections to the text. From MathSciNet's review of the first edition: "The author has an impressive knack for presenting the important and interesting ideas of algebra in just the "right" way, and he never gets bogged down in the dry formalism which pervades some parts of algebra."
Analysis I
Serge LangBook by Lang, Serge
Introduction to Diophantine Approximations: New Expanded Edition
Serge LangThe aim of this book is to illustrate by significant special examples three aspects of the theory of Diophantine approximations: the formal relationships that exist between counting processes and the functions entering the theory; the determination of these functions for numbers given as classical numbers; and certain asymptotic estimates holding almost everywhere.
Each chapter works out a special case of a much broader general theory, as yet unknown. Indications for this are given throughout the book, together with reference to current publications. The book may be used in a course in number theory, whose students will thus be put in contact with interesting but accessible problems on the ground floor of mathematics.
Linear Algebra, Second Edition, 1971
Serge Lang
Number Theory III: Diophantine Geometry
Serge LangFrom the reviews: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the braod scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication... Although in the series of number theory, this volume is on diophantine geometry, the reader will notice that algebraic geometry is present in every chapter. ...The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities.
Mededelingen van het wiskundig genootschap
Topics in Nevanlinna Theory
Serge Lang, William CherryThese are notes of lectures on Nevanlinna theory, in the classical case of meromorphic functions, and the generalization by Carlson-Griffith to equidimensional holomorphic maps using as domain space finite coverings of C resp. Cn. Conjecturally best possible error terms are obtained following a method of Ahlfors and Wong. This is especially significant when obtaining uniformity for the error term w.r.t. coverings, since the analytic yields case a strong version of Vojta's conjectures in the number-theoretic case involving the theory of heights. The counting function for the ramified locus in the analytic case is the analogue of the normalized logarithmetic discriminant in the number-theoretic case, and is seen to occur with the expected coefficient 1. The error terms are given involving an approximating function (type function) similar to the probabilistic type function of Khitchine in number theory. The leisurely exposition allows readers with no background in Nevanlinna Theory to approach some of the basic remaining problems around the error term. It may be used as a continuation of a graduate course in complex analysis, also leading into complex differential geometry.
Geometry
Serge/ Murrow, Gene Lang
Calculo Esencial
Ron LarsonCALCULO ESENCIAL RESPONDE A LA CRECIENTE DEMANDA DE UN LIBRO DE TEXTO MAS SIMPLIFICADO PARA LOS ESTUDIANTES. ESTA OBRA CONTINUA LA TRADICIÓN DE LARSON, OFRECIENDO A LOS INSTRUCTORES TÉCNICAS PEDAGÓGICAS DEMOSTRADAS Y RECURSOS DE APRENDIZAJE INNOVADORES Y DE CONTENIDO
Precalculo
Ron Larson
Logique Mathématique, Cours Et Exercices: Vol 1
R. Cori, D. Lascar
Topology: A Geometric Approach
Terry LawsonThis new-in-paperback introduction to topology emphasizes a geometric approach with a focus on surfaces. A primary feature is a large collection of exercises and projects, which fosters a teaching style that encourages the student to be an active class participant. A wide range of material at different levels supports flexible use of the book for a variety of students. Part I is appropriate for a one-semester or two-quarter course, and Part II (which is problem based) allows the book to be used for a year-long course which supports a variety of syllabuses.

The over 750 exercises range from simple checks of omitted details in arguments, to reinforce the material and increase student involvement, to the development of substantial theorems that have been broken into many steps. The style encourages an active student role. Solutions to selected exercises are included as an appendix, with solutions to all exercises available to the instructor on a companion website.
Hyperbolic Partial Differential Equations
Peter D. LaxThe theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject. The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of solutions of equations with constant coefficients is explored with the help of the Fourier and Radon transforms. The existence of solutions of equations with variable coefficients with prescribed initial values is proved using energy inequalities. The propagation of singularities is studied with the help of progressing waves. The second part describes finite difference approximations of hyperbolic equations, presents a streamlined version of the Lax-Phillips scattering theory, and covers basic concepts and results for hyperbolic systems of conservation laws, an active research area today. Four brief appendices sketch topics that are important or amusing, such as Huygens' principle and a theory of mixed initial and boundary value problems. A fifth appendix by Cathleen Morawetz describes a nonstandard energy identity and its uses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Complex numbers
Walter LedermannTHE purpose of this book is to prescnt a straightforward introduction to complex numbers and their properties. Complex numbers, like other kinds of numbers, are essen­ tially objects with which to perform calculations a:cording to certain rules, and when this principle is borne in mind, the nature of complex numbers is no more mysterious than that of the more familiar types of numbers. This formal approach has recently been recommended in a Reportt prepared for the Mathematical Association. We believe that it has distinct advantages in teaching and that it is more in line with modern algebraical ideas than the alternative geometrical or kinematical definitions of v -1 that used to be proposed. On the other hand, an elementary textbook is clearly not the place to enter into a full discussion of such questions as logical consistency, which would have to be included in a rigorous axiomatic treatment. However, the steps that had to be omitted (with due warning) can easily be filled in by the methods of abstract algebra, which do not conflict with the 'naive' attitude adopted here. I should like to thank my friend and colleague Dr. J. A. Green for a number of valuable suggestions, especially in connection with the chapter on convergence, which is a sequel to his volume Sequences and Series in this Library.
Integral Calculus
Walter Ledermann
Introduction to Smooth Manifolds
John M. LeeAuthor has written several excellent Springer books. This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why
Riemannian Manifolds: An Introduction to Curvature
John M. LeeThis text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Plurisubharmonic functions and positive differential forms
Pierre Lelong
Fundamentals of Number Theory
William J. LeVequeThis excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect.
The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few.
Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.
Fundamentals of Number Theory
William J. LeVequeThis excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect.
The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few.
Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.
Topics in Number Theory, Volumes I and II
William J. LeVeque, MathematicsClassic two-part work now available in a single volume assumes no prior theoretical knowledge on reader's part and develops the subject fully. Volume I is a suitable first course text for advanced undergraduate and beginning graduate students. Volume II requires a much higher level of mathematical maturity, including a working knowledge of the theory of analytic functions. Contents range from chapters on binary quadratic forms to the Thue-Siegel-Roth Theorem and the Prime Number Theorem. Includes numerous problems and hints for their solutions. 1956 edition. Supplementary Reading. List of Symbols. Index.
Geometric Measure Theory: An Introduction
Fanghua Lin, Xiaoping YangSince the publication of the seminal work of H. Federer which gives a rather complete and comprehensive discussion on the subject, the geometric measure theory has developed in the last three decades into an even more cohesive body of basic knowledge with an ample structure of its own, establishing strong ties with many other areas of mathematics and made numerous new striking applications. The present book is intended for the researchers in other fields of mathematics as well as graduate students for a quick overview on the subject of the geometric measure theory emphasizing on various basic ideas, techniques and their applications in problems arising in the calculus of variations, geometrical analysis and nonlinear partial differential equations. This graduate-level treatment of Geometric Measure Theory illustrates with concrete examples and emphasizes basic ideas and techniques with their applications to the calculus of variations, geometrical analysis, and nonlinear PDEs. The book, in addition to a full index and bibliography, include eight main chapters. New paperback re-issue.
Algebraic Geometry and Arithmetic Curves
Qing LiuThis new-in-paperback edition provides a general introduction to algebraic and arithmetic geometry, starting with the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem) This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularization (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the fundamental theorem of stable reduction of Deligne-Mumford. This book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are few, and including many examples and approximately 600 exercises, the book is ideal for graduate students.
Analysis
E.H. Lieb, M. Loss
Elliptic Curves, Modular Forms, and Their L-functions
Álvaro Lozano-RobledoMany problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.
Elements of Functional Analysis
L.A.; Sobolev, V.J. Lusternik
From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes
Ib H. Madsen, Jxrgen TornehaveDe Rham cohomology is the cohomology of differential forms. This book offers a self-contained exposition to this subject and to the theory of characteristic classes from the curvature point of view. It requires no prior knowledge of the concepts of algebraic topology or cohomology. The first ten chapters study cohomology of open sets in Euclidean space, treat smooth manifolds and their cohomology and end with integration on manifolds. The last eleven chapters cover Morse theory, index of vector fields, Poincaré duality, vector bundles, connections and curvature, Chern and Euler classes, Thom isomorphism, and the general Gauss-Bonnet theorem. The text includes over 150 exercises, and gives the background necessary for the modern developments in gauge theory and geometry in four dimensions, but it also serves as an introductory course in algebraic topology. It will be invaluable to anyone who wishes to know about cohomology, curvature, and their applications.
Algèbre linéaire et géometrie classiques: Exercices
Malliavin
Integration et probabilites: Analyse de Fourier et analyse spectrale
Paul Malliavin
Algebraic Theories
E.G. ManesIn the past decade, category theory has widened its scope and now inter­ acts with many areas of mathematics. This book develops some of the interactions between universal algebra and category theory as well as some of the resulting applications. We begin with an exposition of equationally defineable classes from the point of view of "algebraic theories," but without the use of category theory. This serves to motivate the general treatment of algebraic theories in a category, which is the central concern of the book. (No category theory is presumed; rather, an independent treatment is provided by the second chap­ ter.) Applications abound throughout the text and exercises and in the final chapter in which we pursue problems originating in topological dynamics and in automata theory. This book is a natural outgrowth of the ideas of a small group of mathe­ maticians, many of whom were in residence at the Forschungsinstitut für Mathematik of the Eidgenössische Technische Hochschule in Zürich, Switzerland during the academic year 1966-67. It was in this stimulating atmosphere that the author wrote his doctoral dissertation. The "Zürich School," then, was Michael Barr, Jon Beck, John Gray, Bill Lawvere, Fred Linton, and Myles Tierney (who were there) and (at least) Harry Appelgate, Sammy Eilenberg, John Isbell, and Saunders Mac Lane (whose spiritual presence was tangible.) I am grateful to the National Science Foundation who provided support, under grants GJ 35759 and OCR 72-03733 A01, while I wrote this book.
A Course in Mathematical Logic for Mathematicians
Yu. I. ManinThe book starts with an elementary introduction to formal languages appealing to the intuition of working mathematicians and unencumbered by philosophical or normative prejudices such as those of constructivism or intuitionism. It proceeds to the Proof Theory and presents several highlights of Mathematical Logic of 20th century: Gödel's and Tarski's Theorems, Cohen's Theorem on the independence of Continuum Hypothesis. Unusual for books on logic is a section dedicated to quantum logic.

Then the exposition moves to the Computability Theory, based on the notion of recursive functions and stressing number{theoretic connections. A complete proof of Davis{Putnam{Robinson{Matiyasevich theorem is given, as well as a proof of Higman's theorem on recursive groups. Kolmogorov complexity is treated.

The third Part of the book establishes essential equivalence of proof theory and computation theory and gives applications such as Gödel's theorem on the length of proofs. The new Chapter IX, written for the second edition, treats, among other things, categorical approach to the theory of computation, quantum computation, and P/NP problem. The new Chapter X, written for the second edition by Boris Zilber, contains basic results of Model Theory and its applications to mainstream mathematics. This theory found deep applications in algebraic and Diophantine geometry.

Yuri Ivanovich Manin is Professor Emeritus at Max-Planck-Institute for Mathematics in Bonn, Germany, Board of Trustees Professor at the Northwestern University, Evanston, USA, and Principal Researcher at the Steklov Institute of Mathematics, Moscow, Russia. Boris Zilber, Professor of Mathematics at the University of Oxford, has been added to the second edition.
A Course in Mathematical Logic
Yu.I. ManinThis book is a text of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last 10 to 15 years, including the independence of the continuum hypothesis, the Diophantine nature of enumerable sets and the impossibility of finding an algorithmic solution for certain problems. The book contains the first textbook presentation of Matijasevic's result. The central notions are provability and computability; the emphasis of the presentation is on aspects of the theory which are of interest to the working mathematician. Many of the approaches and topics covered are not standard parts of logic courses; they include a discussion of the logic of quantum mechanics, Goedel's constructible sets as a sub-class of von Neumann's universe, the Kolmogorov theory of complexity. Feferman's theorem on Goedel formulas as axioms and Highman's theorem on groups defined by enumerable sets of generators and relations. A number of informal digressions concerned with psychology, linguistics, and common sense logic should interest students of the philosophy of science or the humanities.
Chebyshev systems and the versal unfolding of the cusps of order n
Pavao Mardesic
Model Theory: An Introduction
David MarkerAssumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Analisis Clasico Elemental
Hoffman Marsden
Elementary Classical Analysis
Jerrold E. Marsden, Michael J. HoffmanDesigned for courses in advanced calculus and introductory real analysis, Elementary Classical Analysis strikes a careful balance between pure and applied mathematics with an emphasis on specific techniques important to classical analysis without vector calculus or complex analysis. Intended for students of engineering and physical science as well as of pure mathematics.
Análisis clásico elemental
M. Hoffman, J. Marsden
Diophantine Equations over Function Fields
R. C. MasonDiophantine equations over number fields have formed one of the most important and fruitful areas of mathematics throughout civilisation. In recent years increasing interest has been aroused in the analogous area of equations over function fields. However, although considerable progress has been made by previous authors, none has attempted the central problem of providing methods for the actual solution of such equations. The latter is the purpose and achievement of this volume: algorithms are provided for the complete resolution of various families of equations, such as those of Thue, hyperelliptic and genus one type. The results are achieved by means of an original fundamental inequality, first announced by the author in 1982. Several specific examples are included as illustrations of the general method and as a testimony to its efficiency. Furthermore, bounds are obtained on the solutions which improve on those obtained previously by other means. Extending the equality to a different setting, namely that of positive characteristic, enables the various families of equations to be resolved in that circumstance. Finally, by applying the inequality in a different manner, simple bounds are determined on their solutions in rational functions of the general superelliptic equation. This book represents a self-contained account of a new approach to the subject, and one which plainly has not reached the full extent of its application. It also provides a more direct on the problems than any previous book. Little expert knowledge is required to follow the theory presented, and it will appeal to professional mathematicians, research students and the enthusiastic undergraduate.
Introduction to the Mori Program
Kenji MatsukiMori's Program is a fusion of the so-called Minimal Model Program and the IItaka Program toward the biregular and/or birational classification of higher dimensional algebraic varieties. The author presents this theory in an easy and understandable way with lots of background motivation. Prerequisites are those covered in Hartshorne's book "Algebraic Geometry." This is the first book in this extremely important and active field of research and will become a key resource for graduate students wanting to get into the area.
Commutative Ring Theory
H. MatsumuraIn addition to being an interesting and profound subject in its own right, commutative ring theory is important as a foundation for algebraic geometry and complex analytical geometry. Matsumura covers the basic material, including dimension theory, depth, Cohen-Macaulay rings, Gorenstein rings, Krull rings and valuation rings. More advanced topics such as Ratliff's theorems on chains of prime ideals are also explored. The work is essentially self-contained, the only prerequisite being a sound knowledge of modern algebra, yet the reader is taken to the frontiers of the subject. Exercises are provided at the end of each section and solutions or hints to some of them are given at the end of the book.
Elliptic Curves: Function Theory, Geometry, Arithmetic
Henry McKean, Victor MollThe subject of elliptic curves is one of the jewels of nineteenth-century mathematics, whose masters were Abel, Gauss, Jacobi, and Legendre. This book presents an introductory account of the subject in the style of the original discoverers, with references to and comments about more recent and modern developments. It combines three of the fundamental themes of mathematics: complex function theory, geometry, and arithmetic. After an informal preparatory chapter, the book follows a historical path, beginning with the work of Abel and Gauss on elliptic integrals and elliptic functions. This is followed by chapters on theta functions, modular groups and modular functions, the quintic, the imaginary quadratic field, and on elliptic curves. The many exercises with hints scattered throughout the text give the reader a glimpse of further developments. Requiring only a first acquaintance with complex function theory, this book is an ideal introduction to the subject for graduate students and researchers in mathematics and physics.
Symmetry: An Introduction to Group Theory and Its Applications
Roy McWeeny, PhysicsThis well-organized volume develops the elementary ideas of both group theory and representation theory in a progressive and thorough fashion. Designed to allow students to focus on any of the main fields of application, it is geared toward advanced undergraduate and graduate physics and chemistry students. 1963 edition. Appendices.
Elliptic Curves
J. S. MilneThis book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in advanced undergraduate or first-year graduate courses.

Reviews
Indeed, the book is affordable (in fact, the most affordable of all references on the subject), but also a high quality work and a complete introduction to the rich theory of the arithmetic of elliptic curves, with numerous examples and exercises for the reader, many interesting remarks and an updated bibliography.
Mathematical Reviews, Álvaro Lozano-Robledo

J. S. Milne's lecture notes on elliptic curves are already well-known … The book under review is a rewritten version of just these famous lecture notes from 1996, which appear here as a compact and inexpensive paperback that is now available worldwide.
Zentralblatt MATH, Werner Kleinert
Etale Cohomology.
James S. Milne
Morse Theory
John MilnorOne of the most cited books in mathematics, John Milnor's exposition of Morse theory has been the most important book on the subject for more than forty years. Morse theory was developed in the 1920s by mathematician Marston Morse. (Morse was on the faculty of the Institute for Advanced Study, and Princeton published his Topological Methods in the Theory of Functions of a Complex Variable in the Annals of Mathematics Studies series in 1947.) One classical application of Morse theory includes the attempt to understand, with only limited information, the large-scale structure of an object. This kind of problem occurs in mathematical physics, dynamic systems, and mechanical engineering. Morse theory has received much attention in the last two decades as a result of a famous paper in which theoretical physicist Edward Witten relates Morse theory to quantum field theory.

Milnor was awarded the Fields Medal (the mathematical equivalent of a Nobel Prize) in 1962 for his work in differential topology. He has since received the National Medal of Science (1967) and the Steele Prize from the American Mathematical Society twice (1982 and 2004) in recognition of his explanations of mathematical concepts across a wide range of scienti.c disciplines. The citation reads, "The phrase sublime elegance is rarely associated with mathematical exposition, but it applies to all of Milnor's writings. Reading his books, one is struck with the ease with which the subject is unfolding and it only becomes apparent after re.ection that this ease is the mark of a master."

Milnor has published five books with Princeton University Press.
Topology from the Differentiable Viewpoint
John Willard MilnorThis elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
The Theory of Composites
Graeme W. MiltonThe theory of composite materials is the study of partial differential equations with rapid oscillations in their coefficients. Although extensively studied for more than a hundred years, an explosion of ideas in the past four decades has dramatically increased our understanding of the relationship among the properties of the constituent materials, the underlying microstructure of a composite, and the overall effective moduli that govern the macroscopic behavior. This renaissance has been fueled by the technological need for improving our knowledge base of composites, by the advance of the underlying mathematical theory of homogenization, by the discovery of new variational principles, by the recognition of how important the subject is to solving structural optimization problems, and by the realization of the connection with the mathematical problem of quasiconvexification. This book surveys these exciting developments at the frontier of mathematics and presents many new results.
Algebraic Curves and Riemann Surfaces
Rick MirandaIn this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking center stage. But the main examples come from projective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Duality Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves and cohomology are introduced as a unifying device in the latter chapters, so that their utility and naturalness are immediately obvious. Requiring a background of a one semester of complex variable! theory and a year of abstract algebra, this is an excellent graduate textbook for a second-semester course in complex variables or a year-long course in algebraic geometry.
Probabilità ed informazione
A.C.G. Mennucci, S.K. Mitter
Elementary geometry from an advanced standpoint.
Edwin E. MoiseThis book presents a solid understanding of elementary geometry from a sophisticated point of view. Uses modern ideas and language and related geometry to the algebra of the real numbers... Book is virtually self contained, the necessary fragments of algebra and the theory of nunmbers are presented at the end.. FEATURES: A thorough, logical elucidation Uses modern concepts and language Follows recommendations of CUPM Presupposes no earlier knowledge of geometry. Approx 9.5 x 6.5 inches.
Inversive Geometry. First Edition.
Frank Morley
Lectures on Kähler Geometry
Andrei MoroianuKähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained 2007 graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi-Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.
Elementary Induction on Abstract Structures
Yiannis N. MoschovakisHailed by the Bulletin of the American Mathematical Society as "easy to use and a pleasure to read," this research monograph is recommended for students and professionals interested in model theory and definability theory. The sole prerequisite is a familiarity with the basics of logic, model theory, and set theory.
The author, Professor of Mathematics at UCLA and Emeritus Professor of Mathematics,University of Athens, Greece, begins with a focus on the theory of inductive and hyperelementary sets. Subsequent chapters advance to acceptable structures and countable acceptable structures, concluding with the main result of the Barwise-Gandy-Moschovakis theory, which is the key to many applications of  abstract recursion theory. Exercises at the end of each chapter form an integral part of the text, offering examples useful to the development of the general theory and outlining the theory's extensions.
An Introduction to Invariants and Moduli
Shigeru MukaiIncorporated in this volume are the first two books in Mukai's series on Moduli Theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Among other things this volume includes an improved presentation of the classical foundations of invariant theory that, in addition to geometers, would be useful to those studying representation theory. This translation gives an accurate account of Mukai's influential Japanese texts.
Geometric Invariant Theory
David Mumford, John Fogarty, Frances KirwanThis standard reference on applications of invariant theory to the construction of moduli spaces is a systematic exposition of the geometric aspects of classical theory of polynomial invariants. This new, revised edition is completely updated and enlarged with an additional chapter on the moment map by Professor Frances Kirwan. It includes a fully updated bibliography of work in this area.
The Red Book of Varieties and Schemes. Includes the Michigan Lectures (1974) on Curves and their Jacobians
DAVID MUMFORD
Topology
James Munkres
Elementary Differential Topology.
James R. MunkresBook by Munkres, James R.
Problems in Algebraic Number Theory
M. Ram Murty, Jody (Indigo) EsmondeThe problems are systematically arranged to reveal the evolution of concepts and ideas of the subject

Includes various levels of problems - some are easy and straightforward, while others are more challenging

All problems are elegantly solved
Problems in Algebraic Number Theory
M. Ram Murty, Jody (Indigo) EsmondeThe problems are systematically arranged to reveal the evolution of concepts and ideas of the subject

Includes various levels of problems - some are easy and straightforward, while others are more challenging

All problems are elegantly solved
Orlicz Spaces and Modular Spaces
J. Musielak
Representations of Finite Groups
C. Musili
Topological Methods in Euclidean Spaces
Gregory L. Naber, MathematicsExtensive development of a number of topics central to topology, including elementary combinatorial techniques, Sperner's Lemma, the Brouwer Fixed Point Theorem, homotopy theory and the fundamental group, simplicial homology theory, the Hopf Trace Theorem, the Lefschetz Fixed Point Theorem, the Stone-Weierstrass Theorem, and Morse functions. Includes new section of solutions to selected problems.
Topological Methods in Euclidean Spaces
Gregory L. Naber, MathematicsExtensive development of a number of topics central to topology, including elementary combinatorial techniques, Sperner's Lemma, the Brouwer Fixed Point Theorem, homotopy theory and the fundamental group, simplicial homology theory, the Hopf Trace Theorem, the Lefschetz Fixed Point Theorem, the Stone-Weierstrass Theorem, and Morse functions. Includes new section of solutions to selected problems.
Topology of Spaces of Holomorphic Mappings.
Leopoldo Nachbin
Graph Theory and Feynman Integrals
N. Nakanishi
Algebraic Number Theory
Jürgen NeukirchThis introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.
An Invitation to Morse Theory
Liviu NicolaescuThis self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.
Topics in nonlinear functional analysis, 1973-1974
L Nirenberg
Diophantine Approximations
Ivan NivenThis self-contained treatment originated as a series of lectures delivered to the Mathematical Association of America. It covers basic results on homogeneous approximation of real numbers; the analogue for complex numbers; basic results for nonhomogeneous approximation in the real case; the analogue for complex numbers; and fundamental properties of the multiples of an irrational number, for both the fractional and integral parts.
The author refrains from the use of continuous fractions and includes basic results in the complex case, a feature often neglected in favor of the real number discussion. Each chapter concludes with a bibliographic account of closely related work; these sections also contain the sources from which the proofs are drawn.
Introduction to Quadratic Forms
Timothy O. O'MearaFrom the reviews: "Anyone who has heard O'Meara lecture will recognize in every page of this book the crispness and lucidity of the author's style. [...] The organization and selection of material is superb. [...] deserves high praise as an excellent example of that too-rare type of mathematical exposition combining conciseness with clarity." Bulletin of the AMS
Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties
Tadao OdaThe theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's. It is an updated and corrected English edition of the author's book in Japanese published by Kinokuniya, Tokyo in 1985. Toric varieties are here treated as complex analytic spaces. Without assuming much prior knowledge of algebraic geometry, the author shows how elementary convex figures give rise to interesting complex analytic spaces. Easily visualized convex geometry is then used to describe algebraic geometry for these spaces, such as line bundles, projectivity, automorphism groups, birational transformations, differential forms and Mori's theory. Hence this book might serve as an accessible introduction to current algebraic geometry. Conversely, the algebraic geometry of toric varieties gives new insight into continued fractions as well as their higher-dimensional analogues, the isoperimetric problem and other questions on convex bodies. Relevant results on convex geometry are collected together in the appendix.
Excursions in Geometry
C. Stanley OgilvyTopics including harmonic division and Apollonian circles, inversive geometry, the hexlet, conic sections, projective geometry, the Golden Section and angle trisection are addressed in a way that brings out the true intellectual excitement inherent in each. Also included: some unsolved problems of modern geometry. Notes. References. 132 line illustrations.
Vector Bundles on Complex Projective Spaces
OKONEK, SCHNEIDER, SPINDLER
Stochastic Differential Equations an Introduction with Applications Sixth Edition
Bernt OksendalThis Book is Brand new international softcover edition delivered within 7-12 working days via UPS/USPS/DHL and FEDEX.(FOR SALE ONLY U.S. & U.K.)
Introduction to Complex Analysis
R. Nevanlinna, V. Paatero
Combinatorial Optimization: Algorithms and Complexity
Christos H. Papadimitriou, Kenneth SteiglitzThis clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering. "Mathematicians wishing a self-contained introduction need look no further." — American Mathematical Monthly.
Computational Complexity
Christos H. PapadimitriouThis text offers a comprehensive and accessible treatment of the theory of algorithms and complexity - the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. Among topics covered are: reductions and NP-completeness, cryptography and protocols, randomized algorithms, and approximability of optimization problems, circuit complexity, the "structural" aspects of the P=NP question, parallel computation, the polynomial hierarchy, and many others. Several sophisticated and recent results are presented in a rather simple way, while many more are developed in the form of extensive notes, problems, and hints. The book is surprisingly self-contained, in that it develops all necessary mathematical prerequisites from such diverse fields as computability, logic, number theory, combinatorics and probability.
Algebraic Geometry III: Complex Algebraic Varieties Algebraic Curves and Their Jacobians
A.N. Parshin, I.R. ShafarevichThis two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.
Algebraic Geometry IV: Linear Algebraic Groups, Invariant Theory
A.N. Parshin, I.R. ShafarevichTwo contributions on closely related subjects: the theory of linear algebraic groups and invariant theory, by well-known experts in the fields. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics and theoretical physics.
Algebraic Geometry V: Fano Varieties
A.N. Parshin, I.R. ShafarevichThis EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.
Introduction to Probability and Measure
K.R. Parthasarathy
Topology
E. M Patterson
Analysis Now
Gert K. PedersenGraduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two supplementary chapters: a concise account of unbounded operators and their spectral theory, and a complete course in measure and integration theory from an advanced point of view.
Algebraic Geometry: An Introduction
Daniel PerrinAimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.
Dimension Theory in Dynamical Systems: Contemporary Views and Applications
Yakov B. PesinThe principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior.

In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field.

Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes.
Riemannian Geometry
Peter PetersenThis book is intended for a one year course in Riemannian Geometry. It will serve as a single source, introducing students to the important techniques and theorems while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian Geometry. Instead of variational techniques, the author uses a unique approach emphasizing distance functions and special coordinate systems. He also uses standard calculus with some techniques from differential equations, instead of variational calculus, thereby providing a more elementary route for students. Many of the chapters contain material typically found in specialized texts and never before published together in one source. Key sections include noteworthy coverage of: geodesic geometry, Bochner technique, symmetric spaces, holonomy, comparison theory for both Ricci and sectional curvature, and convergence theory. This volume is one of the few published works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory as well as presenting the most up-to-date research including sections on convergence and compactness of families of manifolds. This book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stoke's theorem. Scattered throughout the text is a variety of exercises which will help to motivate readers to deepen their understanding of the subject.
DIFFERENTIAL EQUATIONS
H. T. H. PIAGGIO
An Introduction to Stability Theory
Anand Pillay, MathematicsThis introductory treatment covers the basic concepts and machinery of stability theory. Lemmas, corollaries, proofs, and notes assist readers in working through and understanding the material and applications. Full of examples, theorems, propositions, and problems, it is suitable for graduate students in logic and mathematics, professional mathematicians, and computer scientists. Chapter 1 introduces the notions of definable type, heir, and coheir. A discussion of stability and order follows, along with definitions of forking that follow the approach of Lascar and Poizat, plus a consideration of forking and the definability of types. Subsequent chapters examine superstability, dividing and ranks, the relation between types and sets of indiscernibles, and further properties of stable theories. The text concludes with proofs of the theorems of Morley and Baldwin-Lachlan and an extension of dimension theory that incorporates orthogonality of types in addition to regular types.
A Book of Abstract Algebra: Second Edition
Charles C PinterAccessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications.
An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.
A Course in Model Theory: An Introduction to Contemporary Mathematical Logic
Bruno PoizatTranslated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.
How to Solve it
G. Polya
How to Solve It: A New Aspect of Mathematical Method
G. PolyaA perennial bestseller by eminent mathematician G. Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out—from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft—indeed, brilliant—instructions on stripping away irrelevancies and going straight to the heart of the problem.
Isoperimetric Inequalities in Mathematical Physics
George Polya
Algebra Lineal. Una Introduccion Moderna
David Poole
Lectures in Geometry, Analytic Geometry
M. Postnikov
Lectures in Geometry, Lie groups and Lie algebras
M. Postnikov
Lectures in Geometry, Smooth manifolds
M. Postnikov
Foundations of Galois Theory
M. M. PostnikovWritten by a prominent mathematician, this text offers advanced undergraduate and graduate students a virtually self-contained treatment of the basics of Galois theory. The source of modern abstract algebra and one of abstract algebra's most concrete applications, Galois theory serves as an excellent introduction to group theory and provides a strong, historically relevant motivation for the introduction of the basics of abstract algebra.
This two-part treatment begins with the elements of Galois theory, focusing on related concepts from field theory, including the structure of important types of extensions and the field of algebraic numbers. A consideration of relevant facts from group theory leads to a survey of Galois theory, with discussions of normal extensions, the order and correspondence of the Galois group, and Galois groups of a normal subfield and of two fields. The second part explores the solution of equations by radicals, returning to the general theory of groups for relevant facts, examining equations solvable by radicals and their construction, and concluding with the unsolvability by radicals of the general equation of degree n ≥ 5.
Set Theory and Its Philosophy: A Critical Introduction
Michael PotterMichael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. What makes the book unique is that it interweaves a careful presentation of the technical material with a penetrating philosophical critique. Potter does not merely expound the theory dogmatically but at every stage discusses in detail the reasons that can be offered for believing it to be true. Set Theory and its Philosophy is a key text for philosophy, mathematical logic, and computer science.
Maximum Principles in Differential Equations
Murray H. Protter, Hans F. WeinbergerMaximum Principles are central to the theory and applications of second-order partial differential equations and systems. This self-contained text establishes the fundamental principles and provides a variety of applications.
Lectures on Topics in one-parameter bifurcation problems
P. Rabier
Minimax Methods in Critical Point Theory with Applications to Differential Equations
Paul H. RabinowitzThe book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.
An Introduction to Measure and Integration
Inder K. RanaIntegration is one of the two cornerstones of analysis. Since the fundamental work of Lebesgue, integration has been interpreted in terms of measure theory. This introductory text starts with the historical development of the notion of the integral and a review of the Riemann integral. From here, the reader is naturally led to the consideration of the Lebesgue integral, where abstract integration is developed via measure theory. The important basic topics are all covered: the Fundamental Theorem of Calculus, Fubini's Theorem, $L_p$ spaces, the Radon-Nikodym Theorem, change of variables formulas, and so on. The book is written in an informal style to make the subject matter easily accessible. Concepts are developed with the help of motivating examples, probing questions, and many exercises. It would be suitable as a textbook for an introductory course on the topic or for self-study. For this edition, more exercises and four appendices have been added.
New Directions in Solid State Chemistry
C. N. R. Rao, J. GopalakrishnanIn the new edition of this widely praised textbook the authors have brought the work completely up to date by the addition of new material on numerous topics, and all of the chapters have been revised. In recent years, solid state chemistry has become a vital component of mainstream chemistry and materials science. Students, teachers and researchers need to understand the chemistry of solids because of the crucial role this plays in determining the properties of materials. An understanding of solid state chemistry is also essential in materials design, and chemists continue to discover many fascinating relationships between the structure and properties of solids. This text requires only an understanding of basic physics, chemistry and crystallography, and contains the most recent examples, case studies and references. It will be a valuable reference for advanced students and researchers studying solid state chemistry and materials science.
Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements
B.D. ReddyProviding an introduction to functional analysis, this text treats in detail its application to boundary-value problems and finite elements, and is distinguished by the fact that abstract concepts are motivated and illustrated wherever possible. It is intended for use by senior undergraduates and graduates in mathematics, the physical sciences and engineering, who may not have been exposed to the conventional prerequisites for a course in functional analysis, such as real analysis. Mature researchers wishing to learn the basic ideas of functional analysis will equally find this useful. Offers a good grounding in those aspects of functional analysis which are most relevant to a proper understanding and appreciation of the mathematical aspects of boundary-value problems and the finite element method.
Hilbert Courant
Constance Reid
Classical Topics in Complex Function Theory
Reinhold RemmertAn ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike
Classical Theory of Algebraic Numbers
Paulo RibenboimThe exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Functional Analysis
Frigyes Riesz, Bela Sz.-NagyClassic exposition of modern theories of differentiation and integration and principal problems and methods of handling integral equations and linear functionals and transformations. 1955 edition.
A Course in p-adic Analysis
Alain M. RobertDiscovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
A Course in p-adic Analysis
Alain M. RobertDiscovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
Elementary Geometry
John RoeThe geometry of two and three dimensional space has long been studied for its own sake, but its results also underlie modern developments in fields as diverse as linear algebra, quantum physics, and number theory. This text is a careful introduction to Euclidean geometry that emphasizes its connections with other subjects. Glimpses of more advanced topics in pure mathematics are balanced by a straightforward treatment of the geometry needed for mechanics and classical applied mathematics. The exposition is based on vector methods; an introductory chapter relates these methods to the more classical axiomatic approach. The text is suitable for undergraduate courses in geometry and will be useful supplementary reading for students of mechanics and mathematical methods.
Lattices over orders
Klaus W Roggenkamp
Field Theory
Steven Roman"Springer has just released the second edition of Steven Roman’s Field Theory, and it continues to be one of the best graduate-level introductions to the subject out there....Every section of the book has a number of good exercises that would make this book excellent to use either as a textbook or to learn the material on your own. All in all...a well-written expository account of a very exciting area in mathematics." —THE MAA MATHEMATICAL SCIENCES DIGITAL LIBRARY
Non-Archimedean functional analysis
A. C. M. van Rooij
Analytic Theory of Elliptic Functions Over Local Fields
Peter Roquette
A Course on Group Theory
John S. RoseThis textbook for advanced courses in group theory focuses on finite groups, with emphasis on the idea of group actions. Early chapters summarize presupposed facts, identify important themes, and establish the notation used throughout the book. Subsequent chapters explore the normal and arithmetical structures of groups as well as applications.
Topics include the normal structure of groups: subgroups; homomorphisms and quotients; series; direct products and the structure of finitely generated Abelian groups; and group action on groups. Additional subjects range from the arithmetical structure of groups to classical notions of transfer and splitting by means of group action arguments. More than 675 exercises, many accompanied by hints, illustrate and extend the material.
Number Theory in Function Fields
Michael RosenEarly in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Lie Groups: An Introduction through Linear Groups
Wulf RossmannThis book is an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analyzed in detail, first with elementary matrix methods, then with the help of the structural tools typical of the theory of semisimple groups, such as Cartan subgroups, root, weights and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.
Ordinary Differential Equations
Garrett Birkhoff, Gian-Carlo Rota
Introduction to Model Theory
Philipp RothmalerModel theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect.

This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory.

Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.
An Introduction to Algebraic Topology
Joseph RotmanA clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.
An Introduction to the Theory of Groups
Joseph RotmanAnyone who has studied abstract algebra and linear algebra as an undergraduate can understand this book. The first six chapters provide material for a first course, while the rest of the book covers more advanced topics. This revised edition retains the clarity of presentation that was the hallmark of the previous editions.

From the reviews:

"Rotman has given us a very readable and valuable text, and has shown us many beautiful vistas along his chosen route." —MATHEMATICAL REVIEWS
Nevanlinna Theory and Its Relation to Diophantine Approximation
Min RuIt was discovered recently that Nevanlinna theory and Diophantine approximation bear striking similarities and connections. This book provides an introduction to both Nevanlinna theory and Diophantine approximation, with emphasis on the analogy between these two subjects. Each chapter is divided into part A and part B. Part A deals with Nevanlinna theory and part B covers Diophantine approximation. At the end of each chapter, a table is provided to indicate the correspondence of theorems.
Entire and Meromorphic Functions
Lee A. RubelThis book is an introduction to the theory of entire and meromorphic functions intended for advanced graduate students in mathematics and for professional mathematicians. The book provides a clear treatment of the Nevanlinna theory of value distribution of meromorphic functions, and presentation of the Rubel-Taylor Fourier Series method for meromorphic functions and the Miles theorem on efficient quotient representation. It has a concise but complete treatment of the Polya theory of the Borel transform and the conjugate indicator diagram. It contains some of Buck's results on integer-valued entire functions, and closes with the Malliavin-Rubel uniqueness theorem. The approach gets to the heart of the matter without excessive scholarly detours. It prepares the reader for further study of the vast literature on the subject, which is one of the cornerstones of complex analysis.
Functional Analysis
Walter RudinThis classic text is written for graduate courses in functional analysis. This text is used in modern investigations in analysis and applied mathematics. This new edition includes up-to-date presentations of topics as well as more examples and exercises. New topics include Kakutani's fixed point theorem, Lamonosov's invariant subspace theorem, and an ergodic theorem.

This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Functional Analysis
Walter Rudin
Real and Complex Analysis (McGraw-Hill International Editions: Mathematics Series)
Walter Rudin
Algebraic Structures
Lang S
Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger
Pierre SamuelAlgebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics—algebraic geometry, in particular.
This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Galois theory, Noetherian rings and modules, and rings of fractions. It covers the basics, starting with the divisibility theory in principal ideal domains and ending with the unit theorem, finiteness of the class number, and the more elementary theorems of Hilbert ramification theory. Numerous examples, applications, and exercises appear throughout the text.
Geometric Partial Differential Equations and Image Analysis
Guillermo SapiroThis book provides an introduction to the use of geometric partial differential equations in image processing and computer vision. It brings a number of new concepts into the field, providing a very fundamental and formal approach to image processing. State-of-the-art practical results in a large number of real problems are achieved with the techniques described. Applications covered include image segmentation, shape analysis, image enhancement, and tracking. The volume provides information for people investigating new solutions to image processing problems as well as for people searching for existent advanced solutions.
Algebraic Topology: An Intuitive Approach
Hajime SatoThe single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references.Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Mobius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.
Topological Vector Spaces
H.H. SchaeferIntended as a systematic text on topological vector spaces, this text assumes familiarity with the elements of general topology and linear algebra. Similarly, the elementary facts on Hilbert and Banach spaces are not discussed in detail here, since the book is mainly addressed to those readers who wish to go beyond the introductory level. Each of the chapters is preceded by an introduction and followed by exercises, which in turn are devoted to further results and supplements, in particular, to examples and counter-examples, and hints have been given where appropriate. This second edition has been thoroughly revised and includes a new chapter on C^* and W^* algebras.
Analyse, volume 3
Schawrz
Ultrametric Calculus: An Introduction to p-Adic Analysis
W. H. SchikhofThis is an introduction to p-adic analysis which is elementary yet complete and which displays the variety of applications of the subject. Dr Schikhof is able to point out and explain how p-adic and 'real' analysis differ. This approach guarantees the reader quickly becomes acquainted with this equally 'real' analysis and appreciates its relevance. The reader's understanding is enhanced and deepened by the large number of exercises included throughout; these both test the reader's grasp and extend the text in interesting directions. As a consequence, this book will become a standard reference for professionals (especially in p-adic analysis, number theory and algebraic geometry) and will be welcomed as a textbook for advanced students of mathematics familiar with algebra and analysis.
Diophantine Approximations and Diophantine Equations
Wolfgang M. SchmidtThis book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers. (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well" Acta Scientiarum Mathematicarum
Geometric Galois Actions: Volume 2, The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups
Leila Schneps, Pierre LochakThis book surveys progress in the domains described in the hitherto unpublished manuscript "Esquisse d'un Programme" (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest among workers in algebraic geometry, number theory, algebra and topology.
Topology;
Horst Schubert
Théorie des distributions. Troisième cycle et recherche
Laurent Schwartz
Théorie des distributions. Troisième cycle et recherche
Laurent Schwartz
Introduction to Algebraic Geometry
J. G. Semple, L. RothThis classic work, now available in paperback, outlines the geometric aspects of algebraic equations, one of the oldest and most central subjects in mathematics. Recent decades have seen explosive growth in the more abstract side of algeraic geometry, with great emphasis on new basic techniques. This timely reissue complements these recent innovations, providing a much-needed background in such areas as plane curves, quadratic transformations, the geometry of line systems, and the projective characters of curves and surfaces. Providing a wealth of definitive material, this work will appeal to those interested in algebraic geometry and in more modern abstract studies.
Deformations of Algebraic Schemes
Edoardo SernesiThis account of deformation theory in classical algebraic geometry over an algebraically closed field presents for the first time some results previously scattered in the literature, with proofs that are relatively little known, yet relevant to algebraic geometers. Many examples are provided. Most of the algebraic results needed are proved. The style of exposition is kept at a level amenable to graduate students with an average background in algebraic geometry.
A Course in Arithmetic
J-P. SerreA modern introduction to three areas of number theory: quadratic forms, Dirichlet's density theorem and modular forms. "... Accessible to graduate or even undergraduate students, yet even the advanced mathematician will enjoy reading it." - American Scientist.
A Course in Arithmetic
J-P. SerreA modern introduction to three areas of number theory: quadratic forms, Dirichlet's density theorem and modular forms. "... Accessible to graduate or even undergraduate students, yet even the advanced mathematician will enjoy reading it." - American Scientist.
Algebraic Groups and Class Fields
Jean-Pierre SerreTranslation of the French Edition
Complex Semisimple Lie Algebras
Jean-Pierre SerreThese short notes, already well-known in their original French edition, present the basic theory of semisimple Lie algebras over the complex numbers. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras. Subsequent chapters introduce Cartan subalgebras, root systems, and linear representations. The last chapter discusses the connection between Lie algebras, complex groups and compact groups. The book is intended to guide the reader towards further study.
Linear Representations of Finite Groups
Jean-Pierre SerreThis book consists of three parts, rather different in level and purpose. The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. The second part is a course given in 1966 to second-year students of l’Ecole Normale. It completes in a certain sense the first part. The third part is an introduction to Brauer Theory.
Topics in Galois Theory, Second Edition
Jean-Pierre SerreThis book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt construction for p-groups, p != 2, as well as Hilbert's irreducibility theorem and the large sieve inequality, are presented. The second half is devoted to rationality and rigidity criteria and their application in realizing certain groups as Galois groups of regular extensions of Q(T). While proofs are not carried out in full detail, the book contains a number of examples, exercises, and open problems.
Trees
Jean-Pierre SerreThe seminal ideas of this book played a key role in the development of group theory since the 70s. Several generations of mathematicians learned geometric ideas in group theory from this book. In it, the author proves the fundamental theorem for the special cases of free groups and tree products before dealing with the proof of the general case. This new edition is ideal for graduate students and researchers in algebra, geometry and topology.
Mathematical Pamphlets. Riemann Surfaces
M.S. Narasimhan, R.R. Simha, R. Narasimhan, S. Seshadri
Problems and Solutions for Complex Analysis
Rami ShakarchiAll the exercises plus their solutions for Serge Lang's fourth edition of "Complex Analysis," ISBN 0-387-98592-1. The problems in the first 8 chapters are suitable for an introductory course at undergraduate level and cover power series, Cauchy's theorem, Laurent series, singularities and meromorphic functions, the calculus of residues, conformal mappings, and harmonic functions. The material in the remaining 8 chapters is more advanced, with problems on Schwartz reflection, analytic continuation, Jensen's formula, the Phragmen-Lindeloef theorem, entire functions, Weierstrass products and meromorphic functions, the Gamma function and Zeta function. Also beneficial for anyone interested in learning complex analysis.
Injective Modules
SharpeIn the preface of this book, the authors express the view that 'a good working knowledge of injective modules is a sound investment for module theorists'. The existing literature on the subject has tended to deal with the applications of injective modules to ring theory. The aim of this tract is to demonstrate some of the applications of injective modules to commutative algebra. A number of well-known concepts and results which so far have been applicable principally to commutative rings are generalized to a non-commutative context. There are exercises and brief notes appended to each chapter to illustrate and extend the scope of the treatment in the main text. Together with the short bibliography the notes form a guide to sources of reading for students and researchers who wish to delve more exhaustively into the theory of injective modules. The tract is intended primarily for those who have some knowledge of the rudiments of commutative algebra, although these are recalled at the outset.
Hilbert's Tenth Problem: Diophantine Classes and Extensions to Global Fields
Alexandra ShlapentokhIn the late sixties Matiyasevich, building on the work of Davis, Putnam and Robinson, showed that there was no algorithm to determine whether a polynomial equation in several variables and with integer coefficients has integer solutions. Hilbert gave finding such an algorithm as problem number ten on a list he presented at an international congress of mathematicians in 1900. Thus the problem, which has become known as Hilbert's Tenth Problem, was shown to be unsolvable. This book presents an account of results extending Hilbert's Tenth Problem to integrally closed subrings of global fields including, in the function field case, the fields themselves. While written from the point of view of Algebraic Number Theory, the book includes chapters on Mazur's conjectures on topology of rational points and Poonen's elliptic curve method for constructing a Diophatine model of rational integers over a 'very large' subring of the field of rational numbers.
Introduction to Number Theory
James E Shockley
Mathematical Logic
Joseph R. ShoenfieldThis classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
Monotone Operators in Banach Space and Nonlinear Partial Differential Equations
R. E. ShowalterThe objectives of this monograph are to present some topics from the theory of monotone operators and nonlinear semigroup theory which are directly applicable to the existence and uniqueness theory of initial-boundary-value problems for partial differential equations and to construct such operators as realizations of those problems in appropriate function spaces. A highlight of this presentation is the large number and variety of examples introduced to illustrate the connection between the theory of nonlinear operators and partial differential equations. These include primarily semilinear or quasilinear equations of elliptic or of parabolic type, degenerate cases with change of type, related systems and variational inequalities, and spatial boundary conditions of the usual Dirichlet, Neumann, Robin or dynamic type. The discussions of evolution equations include the usual initial-value problems as well as periodic or more general nonlocal constraints, history-value problems, those which may change type due to a possibly vanishing coefficient of the time derivative, and other implicit evolution equations or systems including hysteresis models. The scalar conservation law and semilinear wave equations are briefly mentioned, and hyperbolic systems arising from vibrations of elastic-plastic rods are developed. The origins of a representative sample of such problems is given in the Appendix.
Lectures on Symplectic Geometry
Ana Cannas da SilvaThe goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups.

This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding.

There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster.

For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Advanced Topics in the Arithmetic of Elliptic Curves
Joseph H. SilvermanIn The Arithmetic of Elliptic Curves, the author presented the basic theory culminating in two fundamental global results, the Mordell-Weil theorem on the finite generation of the group of rational points and Siegel's theorem on the finiteness of the set of integral points. This book continues the study of elliptic curves by presenting six important, but somewhat more specialized topics: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Néron models, Kodaira-N ron classification of special fibres, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Néron's theory of canonical local height functions.
The Arithmetic of Dynamical Systems
Joseph H. SilvermanThis book provides an introduction to the relatively new discipline of arithmetic dynamics. Whereas classical discrete dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic dynamics is the study of the number-theoretic properties of rational and algebraic points under repeated application of a polynomial or rational function. A principal theme of arithmetic dynamics is that many of the fundamental problems in the theory of Diophantine equations have dynamical analogs.This graduate-level text provides an entry for students into an active field of research and serves as a standard reference for researchers.
The Arithmetic of Elliptic Curves
Joseph H. SilvermanThe theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. The book begins with a brief discussion of the necessary algebro-geometric results, and proceeds with an exposition of the geometry of elliptic curves, the formal group of an elliptic curve, elliptic curves over finite fields, the complex numbers, local fields, and global fields. The last two chapters deal with integral and rational points, including Siegel's theorem and explicit computations for the curve Y^2 = X^3 + DX. The book contains three appendices: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and a third appendix giving an overview of more advanced topics.
Rational Points on Elliptic Curves
Joseph H. Silverman, John TateThe theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Differential equations with Applications and Historical Notes
G.F. Simmons
Differential Equations with Applications and Historical Notes, 2nd Edition
George F. Simmons, John S. Robertson
Differential Equations with Applications and Historical Notes, 2nd edition
George F. Simmons
Differential Equations with Applications and Historical Notes, 2nd edition (International Series in Pure and Applied Mathematics)
George F. Simmons
Introduction to Topology and Modern Analysis
George F. SimmonsThis material is intended to contribute to a wider appreciation of the mathematical words "continuity and linearity". The book's purpose is to illuminate the meanings of these words and their relation to each other.
Models and Ultraproducts: An Introduction
A. B. Slomson, J. L. Bell, MathematicsIn this text for first-year graduate students, the authors provide an elementary exposition of some of the basic concepts of model theory—focusing particularly on the ultraproduct construction and the areas in which it is most useful. The book, which assumes only that its readers are acquainted with the rudiments of set theory, starts by developing the notions of Boolean algebra, propositional calculus, and predicate calculus.
Model theory proper begins in the fourth chapter, followed by an introduction to ultraproduct construction, which includes a detailed look at its theoretic properties. An overview of elementary equivalence provides algebraic descriptions of the elementary classes. Discussions of completeness follow, along with surveys of the work of Jónsson and of Morley and Vaught on homogeneous universal models, and the results of Keisler in connection with the notion of a saturated structure. Additional topics include classical results of Gödel and Skolem, and extensions of classical first-order logic in terms of generalized quantifiers and infinitary languages. Numerous exercises appear throughout the text.
Introducing Pure Mathematics
Robert SmedleyA new edition updated to meet the needs of the Pure Mathematics encountered in all the new specifications for single-subject A Level Mathematics. This major text is clearly set out with an excellent combination of clear examples and explanations, and plenty of practice material - ideal for supporting students who are working alone. The first two chapters are vital in preparing new students, particularly those with a Grade C at GCSE, for the rigours of A Level. Each chapter concludes with a selection of exam-style questions, giving students lots of practice for the real thing!
Introductory Mathematics: Algebra and Analysis
Geoffrey C. SmithThis text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.
First-Order Logic
Raymond M. SmullyanThis completely self-contained study, widely considered the best book in the field, is intended to serve both as an introduction to quantification theory and as an exposition of new results and techniques in "analytic" or "cut-free" methods. Impressed by the simplicity and mathematical elegance of the tableau point of view, the author focuses on it here.
After preliminary material on tress (necessary for the tableau method), Part I deals with propositional logic from the viewpoint of analytic tableaux, covering such topics as formulas or propositional logic, Boolean valuations and truth sets, the method of tableaux and compactness.
Part II covers first-order logic, offering detailed treatment of such matters as first-order analytic tableaux, analytic consistency, quantification theory, magic sets, and analytic versus synthetic consistency properties.
Part III continues coverage of first-order logic. Among the topics discussed are Gentzen systems, elimination theorems, prenex tableaux, symmetric completeness theorems, and system linear reasoning.
Raymond M. Smullyan is a well-known logician and inventor of mathematical and logical puzzles. In this book he has written a stimulating and challenging exposition of first-order logic that will be welcomed by logicians, mathematicians, and anyone interested in the field.
Godel's Incompleteness Theorems
Raymond M. SmullyanKurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
Tensor Calculus
Barry Spain
Introduction to Riemann Surfaces
George SpringerThis well-known book is a self-contained treatment of the classical theory of abstract Riemann surfaces. The first five chapters cover the requisite function theory and topology for Riemann surfaces. The second five chapters cover differentials and uniformization. For compact Riemann surfaces, there are clear treatments of divisors, Weierstrass points, the Riemann-Roch theorem and other important topics. Springer's book is an excellent text for an introductory course on Riemann surfaces. It includes exercises after each chapter and is illustrated with a beautiful set of figures.
Mathematical Pamphlets Galois Theory
M. Pavaman Murthy, K.G. Ramanathan, C.S. Seshadri, U. Shukla, R. Sridharan
Counterexamples in Topology
Lynn Arthur Steen, J. Arthur Seebach Jr.Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Over 25 Venn diagrams and charts summarize properties of the examples, while discussions of general methods of construction and change give readers insight into constructing counterexamples. Includes problems and exercises, correlated with examples. Bibliography. 1978 edition.
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals
Elias M. SteinThis book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.
Mathematics: the Man-Made Universe; an Introduction to the Spirit of..
Sherman K. Stein
Lectures on Differential Geometry
Sholomo SternbergThis is a collection of lectures about differential geometry.
Algebraic Number Theory and Fermat's Last Theorem: Third Edition
Ian Stewart, David TallFirst published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it is also eminently suited as a text for self-study.
Lie algebras
Ian Stewart
Set Theory and Logic
Robert R. Stoll, MathematicsSet Theory and Logic is the result of a course of lectures for advanced undergraduates, developed at Oberlin College for the purpose of introducing students to the conceptual foundations of mathematics. Mathematics, specifically the real number system, is approached as a unity whose operations can be logically ordered through axioms. One of the most complex and essential of modern mathematical innovations, the theory of sets (crucial to quantum mechanics and other sciences), is introduced in a most careful concept manner, aiming for the maximum in clarity and stimulation for further study in set logic.
Contents include: Sets and Relations — Cantor's concept of a set, etc.
Natural Number Sequence — Zorn's Lemma, etc.
Extension of Natural Numbers to Real Numbers
Logic — the Statement and Predicate Calculus, etc.
Informal Axiomatic Mathematics
Boolean Algebra Informal Axiomatic Set Theory Several Algebraic Theories — Rings, Integral Domains, Fields, etc.
First-Order Theories — Metamathematics, etc.
Symbolic logic does not figure significantly until the final chapter. The main theme of the book is mathematics as a system seen through the elaboration of real numbers; set theory and logic are seen s efficient tools in constructing axioms necessary to the system.
Mathematics students at the undergraduate level, and those who seek a rigorous but not unnecessarily technical introduction to mathematical concepts, will welcome the return to print of this most lucid work.
"Professor Stoll . . . has given us one of the best introductory texts we have seen." — Cosmos.
"In the reviewer's opinion, this is an excellent book, and in addition to its use as a textbook (it contains a wealth of exercises and examples) can be recommended to all who wish an introduction to mathematical logic less technical than standard treatises (to which it can also serve as preliminary reading)." — Mathematical Reviews.
Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems ,3/e
Michael Struwe
Algorithms in Invariant Theory
Bernd SturmfelsThis book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.
Measure and Probability
S.R. Athreya And V.S. Sunder
Axiomatic Set Theory
Patrick SuppesThis clear and well-developed approach to axiomatic set theory is geared toward upper-level undergraduates and graduate students. It examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, finite sets and cardinal numbers, rational and real numbers, and other subjects. 1960 edition.
Direct and Inverse Problems Potentials in Quantum Scattering
B.N. Zakhariev, A.A. Suzko
The theory of functions of a complex variable
A. and Tikhonov, A. N. Sveshnikov
An Introduction to Functional Analysis
Charles SwartzBased on an introductory, graduate-level course given by Swartz at New Mexico State U., this textbook, written for students with a moderate knowledge of point set topology and integration theory, explains the principles and theories of functional analysis and their applications, showing the interpla
Introduction to Logic: and to the Methodology of Deductive Sciences
Alfred TarskiThis classic undergraduate treatment examines the deductive method in its first part and explores applications of logic and methodology in constructing mathematical theories in its second part. A thought-provoking introduction to the fundamentals and the perfect adjunct to courses in logic and the foundations of mathematics. Exercises appear throughout.
Undecidable Theories: Studies in Logic and the Foundation of Mathematics
Alfred Tarski, Andrzej Mostowski, Raphael M. Robinson, MathematicsThis graduate-level book is well known for its proof that many mathematical systems—including lattice theory, abstract projective geometry, and closure algebras—are undecidable. Based on research conducted from 1938 to 1952, it consists of three treatises by a prolific author who ranks among the greatest logicians of all time. 
The first article,  "A General Method in Proofs of Undecidability," examines theories with standard formalization, undecidable theories, interpretability, and relativization of quantifiers. The second feature, "Undecidability and Essential Undecidability in Mathematics," explores definability in arbitrary theories and the formalized arithmetic of natural numbers. It also considers recursiveness, definability, and undecidability in subtheories of arithmetic as well as the extension of results to other arithmetical theories. The compilation concludes with “Undecidability of the Elementary Theory of Groups."
An Introduction to Sobolev Spaces and Interpolation Spaces
Luc TartarAfter publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.
Class Field Theory
Emil Artin and John TateThis classic book, originally published in 1968, is based on notes of a year-long seminar the authors ran at Princeton University. The primary goal of the book was to give a rather complete presentation of algebraic aspects of global class field theory, and the authors accomplished this goal spectacularly: for more than 40 years since its first publication, the book has served as an ultimate source for many generations of mathematicians. In this revised edition, two mathematical additions complementing the exposition in the original text are made. The new edition also contains several new footnotes, additional references, and historical comments.
Differential Geometry: Bundles, Connections, Metrics and Curvature
Clifford Henry TaubesBundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kahler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.
Introduction to Functional Analysis
angus taylor
Mathematical Modeling in Continuum Mechanics
Roger Temam, Alain MiranvilleTemam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.
Function field arithmetic
Dinesh S. ThakurThis book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and log-algebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.
The Philosophy of Set Theory: An Historical Introduction to Cantor's Paradise
Mary TilesA century ago, Georg Cantor demonstrated the possibility of a series of transfinite infinite numbers. His methods, unorthodox for the time, enabled him to derive theorems that established a mathematical reality for a hierarchy of infinities. Cantor's innovation was opposed, and ignored, by the establishment; years later, the value of his work was recognized and appreciated as a landmark in mathematical thought, forming the beginning of set theory and the foundation for most of contemporary mathematics.
As Cantor's sometime collaborator, David Hilbert, remarked, "No one will drive us from the paradise that Cantor has created." This volume offers a guided tour of modern mathematics' Garden of Eden, beginning with perspectives on the finite universe and classes and Aristotelian logic. Author Mary Tiles further examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory; logical objects and logical types; and independence results and the universe of sets. She concludes with views of the constructs and reality of mathematical structure.
Philosophers with only a basic grounding in mathematics, as well as mathematicians who have taken only an introductory course in philosophy, will find an abundance of intriguing topics in this text, which is appropriate for undergraduate-and graduate-level courses.
Selected Topics on "Analysis in Metric Spaces"
L. Ambrosio, P. Tilli
Walks on Ordinals and Their Characteristics
Stevo TodorcevicThe walks on ordinals and analysis of their characteristics is a subject matter started by the author some twenty years ago in order to disprove a particular extension of the Ramsey theorem. A further analysis has shown however that the resulting method is quite useful in detecting critical mathematical objects in contexts where only rough classifications are possible. The book gives a careful and comprehensive account of the method and gathers many of these applications in a unified and comprehensive manner.
Introduction to the theory of Many-Body Systems
A. Minguzzi, M. Tosi
Procesos estocásticos
C. Tudor
Procesos estocásticos
Constantin Tudor
A modern introduction to geometries
Annita Tuller
Graph Theory
W. T. Tutte
Algebraic Geometry 2: Sheaves and Cohomology
Kenji UenoModern algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes was explained in Algebraic Geometry 1: From Algebraic Varieties to Schemes, (see Volume 185 in the same series, Translations of Mathematical Monographs). In the present book, Ueno turns to the theory of sheaves and their cohomology. Loosely speaking, a sheaf is a way of keeping track of local information defined on a topological space, such as the local holomorphic functions on a complex manifold or the local sections of a vector bundle. To study schemes, it is useful to study the sheaves defined on them, especially the coherent and quasicoherent sheaves. The primary tool in understanding sheaves is cohomology. For example, in studying ampleness, it is frequently useful to translate a property of sheaves into a statement about its cohomology.

The text covers the important topics of sheaf theory, including types of sheaves and the fundamental operations on them, such as ...

coherent and quasicoherent sheaves.
proper and projective morphisms.
direct and inverse images.
Cech cohomology.

For the mathematician unfamiliar with the language of schemes and sheaves, algebraic geometry can seem distant. However, Ueno makes the topic seem natural through his concise style and his insightful explanations. He explains why things are done this way and supplements his explanations with illuminating examples. As a result, he is able to make algebraic geometry very accessible to a wide audience of non-specialists.
Algebraic Geometry 3: Further Study of Schemes
Kenji UenoAlgebraic geometry plays an important role in several branches of science and technology. This is the last of three volumes by Kenji Ueno algebraic geometry. This, in together with Algebraic Geometry 1 and Algebraic Geometry 2, makes an excellent textbook for a course in algebraic geometry.

In this volume, the author goes beyond introductory notions and presents the theory of schemes and sheaves with the goal of studying the properties necessary for the full development of modern algebraic geometry. The main topics discussed in the book include dimension theory, flat and proper morphisms, regular schemes, smooth morphisms, completion, and Zariski's main theorem. Ueno also presents the theory of algebraic curves and their Jacobians and the relation between algebraic and analytic geometry, including Kodaira's Vanishing Theorem.
Vector Measures
J. J. UhlIn this survey the authors endeavor to give a comprehensive examination of the theory of measures having values in Banach spaces. The interplay between topological and geometric properties of Banach spaces and the properties of measures having values in Banach spaces is the unifying theme. The first chapter deals with countably additive vector measures finitely additive vector measures, the Orlicz-Pettis theorem and its relatives. Chapter II concentrates on measurable vector valued functions and the Bochner integral. Chapter III begins the study of the interplay among the Radon-Nikodym theorem for vector measures, operators on $L_1$ and topological properties of Banach spaces.A variety of applications is given in the next chapter. Chapter V deals with martingales of Bochner integrable functions and their relation to dentable subsets of Banach spaces. Chapter VI is devoted to a measure-theoretic study of weakly compact absolutely summing and nuclear operators on spaces of continuous functions. In Chapter VII a detailed study of the geometry of Banach spaces with the Radon-Nikodym property is given. The next chapter deals with the use of Radon-Nikodym theorems in the study of tensor products of Banach spaces. The last chapter concludes the survey with a discussion of the Liapounoff convexity theorem and other geometric properties of the range of a vector measure. Accompanying each chapter is an extensive survey of the literature and open problems.
Modern Applied Statistics with S-PLUS
W.N. Venables, B.D. RipleyS is a powerful environment for the statistical and graphical analysis of data. It provides the tools to implement many statistical ideas that have been made possible by the widespread availability of workstations having good graphics and computational capabilities. This book is a guide to using S environments to perform statistical analyses and provides both an introduction to the use of S and a course in modern statistical methods. Implementations of S are available commercially in S-PLUS(R) workstations and as the Open Source R for a wide range of computer systems. The aim of this book is to show how to use S as a powerful and graphical data analysis system. Readers are assumed to have a basic grounding in statistics, and so the book is intended for would-be users of S-PLUS or R and both students and researchers using statistics. Throughout, the emphasis is on presenting practical problems and full analyses of real data sets. Many of the methods discussed are state of the art approaches to topics such as linear, nonlinear and smooth regression models, tree-based methods, multivariate analysis, pattern recognition, survival analysis, time series and spatial statistics. Throughout modern techniques such as robust methods, non-parametric smoothing and bootstrapping are used where appropriate. This fourth edition is intended for users of S-PLUS 6.0 or R 1.5.0 or later. A substantial change from the third edition is updating for the current versions of S-PLUS and adding coverage of R. The introductory material has been rewritten to emphasis the import, export and manipulation of data. Increased computational power allows even more computer-intensive methods to be used, and methods such as GLMMs, MARS, SOM and support vector machines are considered.
Nonlinear Differential Equations and Dynamical Systems
Ferdinand VerhulstFor lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.
Nonlinear Differential Equations and Dynamical Systems
Ferdinand VerhulstFor lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.
Homology Theory: An Introduction to Algebraic Topology
James W. VickThis introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Topics in Optimal Transportation
Cedric VillaniThis is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook.

In 1781, Gaspard Monge defined the problem of "optimal transportation" (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind.

Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology.

Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
Elements of Number Theory
I.M. Vinogradov
Elements of number theory;
Ivan Matveevich Vinogradov"A very welcome addition to books on number theory."—Bulletin, American Mathematical Society
Clear and detailed in its exposition, this text can be understood by readers with no background in advanced mathematics; only a small part requires a working knowledge of calculus. One of the most valuable characteristics of this book is its stress on learning number theory by means of demonstrations and problems. More than 200 problems and full solutions appear in the text, plus 100 numerical exercises. Some of these exercises deal with estimation of trigonometric sums and are especially valuable as introductions to more advanced studies. Translation of 1949 Russian edition.
Generalized functions in Mathematical Physics
V.S. Vladimirov
Hodge Theory and Complex Algebraic Geometry I: Volume 1
Claire VoisinThis is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.
Hodge Theory and Complex Algebraic Geometry II: Volume 2
Claire VoisinThe second volume of this modern account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. The main results are the generalized Noether-Lefschetz theorems, the generic triviality of the Abel-Jacobi maps, and most importantly, Nori's connectivity theorem, which generalizes the above. The last part deals with the relationships between Hodge theory and algebraic cycles. The text is complemented by exercises offering useful results in complex algebraic geometry. Also available: Volume I 0-521-80260-1 Hardback $60.00 C
Game Theory: Lectures for Economists and Systems Scientists
Nikolai N. Vorob'evThe basis for this book is a number of lectures given frequently by the author to third year students of the Department of Economics at Leningrad State University who specialize in economical cybernetics. The main purpose of this book is to provide the student with a relatively simple and easy-to-understand manual containing the basic mathematical machinery utilized in the theory of games. Practical examples (including those from the field of economics) serve mainly as an interpretation of the mathematical foundations of this theory rather than as indications of their actual or potential applicability. The present volume is significantly different from other books on the theory of games. The difference is both in the choice of mathematical problems as well as in the nature of the exposition. The realm of the problems is somewhat limited but the author has tried to achieve the greatest possible systematization in his exposition. Whenever possible the author has attempted to provide a game-theoretical argument with the necessary mathematical rigor and reasonable generality. Formal mathematical prerequisites for this book are quite modest. Only the elementary tools of linear algebra and mathematical analysis are used.
Algebra: Volume I
B.L. van der WaerdenThis beautiful and eloquent text transformed the graduate teaching of algebra in Europe and the United States. It clearly and succinctly formulated the conceptual and structural insights which Noether had expressed so forcefully and combined it with the elegance and understanding with which Artin had lectured. This text is a reprinted version of the original English translation of the first volume of B.L. van der Waerden’s Algebra.
Algebra II
B.L.van der WaerdenDas vorliegende, nunmehr zum neunten Male herausgebrachte Werk von B. L. VAN DER W AERDEN nimmt unter den mathematischen Lehrbiichem eine auBergewohnliche Stellung ein. Selten nur hat in der Vergangenheit ein Lehrbuch eine iihnlich groBe Wirkung auf das mathematische Leben ausgeiibt wie dieses. Seit seinem ersten Erscheinen im Sommer 1930, also vor nunmehr 63 Jahren, haben Generationen von Mathematikem nach ihm die Algebra gelemt, zumindest im deutschsprachigen Bereich. Fiir zahllose Studenten bedeutete es Eintritt und Aufnahme in die hOhere Mathematik, fur viele war es die erste Stufe zu wissenschaftlicher Arbeit und mathematischer Forscherlaufbahn. Worin liegt das Geheimnis eines solch langlebigen Erfolges? Auf diese Frage hatte mancher Autor gem eine Antwort. Der eine versucht eine Verbesserung durch eine breitere Grundlegung, der andere durch verein­ fachteArgumentation, ein dritter durch groBere Vollstandigkeit, ein vierter durch Verwirklichung aller dieser Moglichkeiten - vergebens, einen "van der Waerden" hat es bis heute nicht wieder gegeben. Zieht man einmal andere beriihmte Lehrbiicher der Vergangenheit zur Betrachtung heran, wie etwa die EULERsche und die WEBERsche "Algebra", den HILBERTschen "Zahlbericht", den "Roten Mumford", die SERREsche "Cohomologie galoisienne" (welche letztere ein Lehrbuch gar nicht hat sein sollen, urn dann doch ein so groBartiges zu werden), so erkennt man, daB es nicht die systematische Vollstandigkeit und die fraglose Vollkommenheit ist, die den Erfolg hervorbringt.
Fonctions holomorphes - Equations différentielles : Exercices corrigés
Claude Wagschal
Modern Algebra
Seth Warner, MathematicsThis standard text, written for junior and senior undergraduates, is unusual in that its presentation is accessible enough for the beginner, yet its thoroughness and mathematical rigor provide the more advanced student with an exceptionally comprehensive treatment of every aspect of modern algebra. It especially lends itself to use by beginning graduate students unprepared in modern algebra.
The presentation opens with a study of algebraic structures in general; the first part then carries the development from natural numbers through rings and fields, vector spaces, and polynomials. The second part (originally published as a separate volume) is made up of five chapters on the real and complex number fields, algebraic extensions of fields, linear operations, inner product spaces, and the axiom of choice.
For the benefit of the beginner who can best absorb the principles of algebra by solving problems, the author has provided over 1300 carefully selected exercises. "There is a vast amount of material in these books and a great deal is either new or presented in a new form." — Mathematical Reviews. Preface. List of Symbols. Exercises. Index. 28 black-and-white line illustrations.
An Introduction to Homological Algebra
Charles A. WeibelThe landscape of homological algebra has evolved over the past half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras is also described. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors.
Oeuvres Scientifiques / Collected Papers: Volume 1
André WeilFrom the reviews

"…All of Weil’s works except for books and lecture notes are compiled here, in strict chronological order for easy reference.

But the value … goes beyond the convenience of easy reference and accessibility. In the first place, these volumes contain several essays, letters, and addresses which were either published in obscure places (…) or not published at all.

Even more valuable are the lengthy commentaries on many of the articles, written by Weil himself. These remarks serve as a guide, helping the reader place the papers in their proper context. Moreover, we have the rare opportunity of seeing a great mathematician in his later life reflecting on the development of his ideas and those of his contemporaries at various stages of his career.

The sheer number of mathematical papers of fundamental significance would earn Weil’s Collected Papers a place in the library of a mathematician with an interest in number theory, algebraic geometry, representations theory, or related areas. The additional import of the mathematical history and culture in these volumes makes them even more essential." Neal Koblitz in Mathematical Reviews

"…André Weil’s mathematical work has deeply influenced the mathematics of the twentieth century and the monumental (...) "Collected papers" emphasize this influence." O. Fomenko in Zentralblatt der Mathematik
Oeuvres Scientifiques / Collected Papers: Volume 2
André WeilFrom the reviews:

"…All of Weil’s works except for books and lecture notes are compiled here, in strict chronological order for easy reference.

But the value … goes beyond the convenience of easy reference and accessibility. In the first place, these volumes contain several essays, letters, and addresses which were either published in obscure places (…) or not published at all.

Even more valuable are the lengthy commentaries on many of the articles, written by Weil himself. These remarks serve as a guide, helping the reader place the papers in their proper context. Moreover, we have the rare opportunity of seeing a great mathematician in his later life reflecting on the development of his ideas and those of his contemporaries at various stages of his career.

The sheer number of mathematical papers of fundamental significance would earn Weil’s Collected Papers a place in the library of a mathematician with an interest in number theory, algebraic geometry, representations theory, or related areas. The additional import of the mathematical history and culture in these volumes makes them even more essential." Neal Koblitz in Mathematical Reviews

"…André Weil’s mathematical work has deeply influenced the mathematics of the twentieth century and the monumental (...) "Collected papers" emphasize this influence." O. Fomenko in Zentralblatt der Mathematik
Oeuvres Scientifiques / Collected Papers: Volume 3
André WeilFrom the reviews "All of Weil's works except for books and lecture notes are compiled here, in strict chronological order for easy reference. But the value goes beyond the convenience of easy reference and accessibility. In the first place, these volumes contain several essays, letters, and addresses which were either published in obscure places or not published at all. Even more valuable are the lengthy commentaries on many of the articles, written by Weil himself. These remarks serve as a guide, helping the reader place the papers in their proper context. Moreover, we have the rare opportunity of seeing a great mathematician in his later life reflecting on the development of his ideas and those of his contemporaries at various stages of his career. The sheer number of mathematical papers of fundamental significance would earn Weil's Collected Papers a place in the library of a mathematician with an interest in number theory, algebraic geometry, representations theory, or related areas. The additional import of the mathematical history and culture in these volumes makes them even more essential" Neal Koblitz in Mathematical Reviews "André Weil's mathematical work has deeply influenced the mathematics of the twentieth century and the monumental ( . . . ) "Collected papers" emphasize this influence" O. Fomenko in Zentralblatt der Mathematik
Algebraic Number Theory
Edwin WeissCareful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).
Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract techniques constitute the primary focus. Topics include introductory materials on elementary valuation theory, extension of valuations, local and ordinary arithmetic fields, and global, quadratic, and cyclotomic fields.
Subjects correspond to those usually covered in a one-semester, graduate level course in algebraic number theory, making this book ideal either for classroom use or as a stimulating series of exercises for mathematically minded individuals.
Matroid Theory
D. J. A. WelshThe theory of matroids connects disparate branches of combinatorial theory and algebra such as graph and lattice theory, combinatorial optimization, and linear algebra. Aimed at advanced undergraduate and graduate students, this text is one of the earliest substantial works on matroid theory. Its author, D. J. A. Welsh, Professor of Mathematics at Oxford University, has exercised a profound influence over the theory's development.
The first half of the text describes standard examples and investigation results, using elementary proofs to develop basic matroid properties and referring readers to the literature for more complex proofs. The second half advances to a more sophisticated treatment, addressing a variety of research topics. Praised by the Bulletin of the American Mathematical Society as "a useful resource for both the novice and the expert," this text features numerous helpful exercises.
Percolation Et Modele D'ising / Percolation and the Ising Model
Wendelin Werner
The Concept of a Riemann Surface
Hermann WeylThis classic on the general history of functions was written by one of the twentieth century's best-known mathematicians. Hermann Weyl, who worked with Einstein at Princeton, combined function theory and geometry in this high-level landmark work, forming a new branch of mathematics and the basis of the modern approach to analysis, geometry, and topology.
The author intended this book not only to develop the basic ideas of Riemann's theory of algebraic functions and their integrals but also to examine the related ideas and theorems with an unprecedented degree of rigor. Weyl's two-part treatment begins by defining the concept and topology of Riemann surfaces and concludes with an exploration of functions of Riemann surfaces. His teachings illustrate the role of Riemann surfaces as not only devices for visualizing the values of analytic functions but also as indispensable components of the theory.
The Concept of a Riemann Surface
Hermann WeylThis classic on the general history of functions was written by one of the twentieth century's best-known mathematicians. Hermann Weyl, who worked with Einstein at Princeton, combined function theory and geometry in this high-level landmark work, forming a new branch of mathematics and the basis of the modern approach to analysis, geometry, and topology.
The author intended this book not only to develop the basic ideas of Riemann's theory of algebraic functions and their integrals but also to examine the related ideas and theorems with an unprecedented degree of rigor. Weyl's two-part treatment begins by defining the concept and topology of Riemann surfaces and concludes with an exploration of functions of Riemann surfaces. His teachings illustrate the role of Riemann surfaces as not only devices for visualizing the values of analytic functions but also as indispensable components of the theory.
Measure and Integral: An Introduction to Real Analysis
Richard Wheeden, Richard L. Wheeden, Antoni ZygmundThis volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.

Closely related topics in real variables, such as functions of bounded variation, the Riemann-Stieltjes integral, Fubini's theorem, L(p)) classes, and various results about differentiation are examined in detail. Several applications of the theory to a specific branch of analysis—harmonic analysis—are also provided. Among these applications are basic facts about convolution operators and Fourier series, including results for the conjugate function and the Hardy-Littlewood maximal function.

Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis for student interested in mathematics, statistics, or probability. Requiring only a basic familiarity with advanced calculus, this volume is an excellent textbook for advanced undergraduate or first-year graduate student in these areas.
Advanced Calculus
David V. WidderThis classic text by a distinguished mathematician and former Professor of Mathematics at Harvard University, leads students familiar with elementary calculus into confronting and solving more theoretical problems of advanced calculus. In his preface to the first edition, Professor Widder also recommends various ways the book may be used as a text in both applied mathematics and engineering.
Believing that clarity of exposition depends largely on precision of statement, the author has taken pains to state exactly what is to be proved in every case. Each section consists of definitions, theorems, proofs, examples and exercises. An effort has been made to make the statement of each theorem so concise that the student can see at a glance the essential hypotheses and conclusions.
For this second edition, the author has improved the treatment of Stieltjes integrals to make it more useful to the reader less than familiar with the basic facts about the
Riemann integral. In addition the material on series has been augmented by the inclusion of the method of partial summation of the Schwarz-Holder inequalities, and of additional results about power series. Carefully selected exercises, graded in difficulty, are found in abundance throughout the book; answers to many of them are contained in a final section.
The Fourier Integral and Certain of its Applications
Norbert Wiener
Normally Hyperbolic Invariant Manifolds in Dynamical Systems
Stephen WigginsIn the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.
Real and Complex Analysis by Walter Rudin 1965
Walter Rudin_ Professor of mathematics University of WisconsinThe first textbook to present a unified, one-year couse in analysis at the first-year graduate level.
Lectures on Harmonic Analysis
Thomas H. Wolff, Izabella Aba, Carol ShubinThomas H. Wolff was a leading analyst and winner of the Salem and Bôcher Prizes. He made significant contributions to several areas of harmonic analysis, in particular to geometrical and measure-theoretic questions related to the Kakeya needle problem. Wolff attacked the problem with awesome power and originality, using both geometric and combinatorial ideas. This book provides an inside look at the techniques used and developed by Wolff. It is based on a graduate course on Fourier analysis he taught at Caltech. The selection of the material is somewhat unconventional in that it leads the reader, in Wolff's unique and straightforward way, through the basics directly to current research topics. The book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The first few chapters cover the usual background material: the Fourier transform, convolution, the inversion theorem, the uncertainty principle, and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics, and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensure that both graduate students and research mathematicians will benefit from the book.
Scattering Theory: Some Old and New Problems (Lecture Notes in Mathematics)
Dmitri R. Yafaev
Compact Riemann Surfaces and Algebraic Curves
Kichoon Yang
Curves and Their Properties
Robert C. Yates
Functional Analysis
Kosaku YosidaThe present book is based on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i. e. , the general theory of linear operators in function spaces together with salient features of its application to diverse fields of modern and classical analysis. Necessary prerequisites for the reading of this book are summarized, with or without proof, in Chapter 0 under titles: Set Theory, Topo- logical Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathe- maticians, both pure and applied. The reader may pass, e. g. , from Chapter IX (Analytical Theory of Semi-groups) directly to Chapter XIII (Ergodic Theory and Diffusion Theory) and to Chapter XIV (Integration of the Equation of Evolution). Such materials as "Weak Topologies and Duality in Locally Convex Spaces" and "Nuclear Spaces" are presented in the form of the appendices to Chapter V and Chapter X, respectively. These might be skipped for the first reading by those who are interested rather in the application of linear operators.
Lectures on the Calculus of Variations and Optimal Control Theory
L. C. YoungThis book is divided into two parts. The first addresses the simpler variational problems in parametric and nonparametric form. The second covers extensions to optimal control theory. The author opens with the study of three classical problems whose solutions led to the theory of calculus of variations. They are the problem of geodesics, the brachistochrone, and the minimal surface of revolution. He gives a detailed discussion of the Hamilton-Jacobi theory, both in the parametric and nonparametric forms. This leads to the development of sufficiency theories describing properties of minimizing extremal arcs. Next, the author addresses existence theorems. He first develops Hilbert's basic existence theorem for parametric problems and studies some of its consequences. Finally, he develops the theory of generalized curves and ``automatic'' existence theorems. In the second part of the book, the author discusses optimal control problems. He notes that originally these problems were formulated as problems of Lagrange and Mayer in terms of differential constraints. In the control formulation, these constraints are expressed in a more convenient form in terms of control functions. After pointing out the new phenomenon that may arise, namely, the lack of controllability, the author develops the maximum principle and illustrates this principle by standard examples that show the switching phenomena that may occur. He extends the theory of geodesic coverings to optimal control problems. Finally, he extends the problem to generalized optimal control problems and obtains the corresponding existence theorems.
Wigner Measure and Semiclassical Limits of Nonlinear Schrodinger Equations
Ping Zhang###############################################################################################################################################################################################################################################################
Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation
William P. ZiemerThe major thrust of this book is the analysis of pointwise behavior of Sobolev functions of integer order and BV functions (functions whose partial derivatives are measures with finite total variation). The development of Sobolev functions includes an analysis of their continuity properties in terms of Lebesgue points, approximate continuity, and fine continuity as well as a discussion of their higher order regularity properties in terms of Lp-derivatives. This provides the foundation for further results such as a strong approximation theorem and the comparison of Lp and distributional derivatives. Also included is a treatment of Sobolev-Poincaré type inequalities which unifies virtually all inequalities of this type. Although the techniques required for the discussion of BV functions are completely different from those required for Sobolev functions, there are similarities between their developments such as a unifying treatment of Poincaré-type inequalities for BV functions. This book is intended for graduate students and researchers whose interests may include aspects of approximation theory, the calculus of variations, partial differential equations, potential theory and related areas. The only prerequisite is a standard graduate course in real analysis since almost all of the material is accessible through real variable techniques.
Calculo. Trascendentes Tempranas (Combo) 4ª ed
ZILL
topologie algebrique u
ZISMAN
The Monodromy Group
Henryk ZoladekIn singularity theory and algebraic geometry, the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. There is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. In covering these and other topics, this book underlines the unifying role of the monogropy group.
Sphere Packings
Chuanming Zong, John TalbotSphere packings is one of the most fascinating and challenging subjects in mathematics. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with other subjects found. This book gives a full account of this fascinating subject, especially its local aspects, discrete aspects, and its proof methods. The book includes both classical and contemporary results and provides a full treatment of the subject.